Enantioselective synthesis of tertiary thiols by N \rightarrow C aryl migration in lithiated thiocarbamates

Paul MacLellan and Jonathan Clayden,

School of Chemistry, University of Manchester, Oxford ROAD, Manchester M13 9PL, UK

SUPPORTING INFORMATION

- 2-4 General experimental procedures
- 5-11 Experimental data for synthesis of precursors
- 12-26 Experimental data for all compounds reported in the paper
- 27 Deuteration experiments to identify origin of loss of e.r.
- 28-101 Copies of NMR spectra

102-122 Copies of HPLC traces

GENERAL PROCEDURES

General Procedure A – *Preparation of* N-*methyl*-N-*aryl*-1H-*imidazole*-1-*carboxamides* Grzyb, J. A.; Shen, M.; Yoshina-Ishii, C.; Chi, W.; Brown, R. S.; Batey, R. A. *Tetrahedron* **2005**, *61*, 7153

Substituted *N*-methyl aniline (1 eq) was added to a solution of carbonyldiimidazole (CDI) (2 eq) in THF. The mixture was heated to reflux with stirring until completion. The mixture was cooled to rt and the solvent removed under reduced pressure. The resulting residue was redissolved in dichloromethane and washed with water. The organic fraction was dried over magnesium sulfate, filtered and the solvent removed under reduced pressure to afford the *N*-methyl-*N*-aryl-1*H*-imidazole-1-carboxamide.

General Procedure B – *Preparation of 3-methyl-1-(methyl(aryl)carbamoyl)-1*H-*imidazol-3-ium iodides* Grzyb, J. A.; Shen, M.; Yoshina-Ishii, C.; Chi, W.; Brown, R. S.; Batey, R. A. *Tetrahedron* **2005**, *61*, 7153

Iodomethane (4 eq) was added to a solution of *N*-methyl-*N*-aryl-1*H*-imidazole-1-carboxamide (1 eq) in acetonitrile. The mixture was heated to reflux with stirring until consummation of starting material was observed by TLC. The mixture was cooled to rt and the solvent was removed under reduced pressure to afford the 3-methyl-1-(methyl(aryl)carbamoyl)-1*H*-imidazol-3-ium iodide.

General Procedure C – Preparation of thiocarbamates from thioesters

Lithium aluminium hydride (1 eq, 1M in THF) was added dropwise to a solution of 1-arylethyl ethanethioate (1 eq) in diethyl ether. The mixture was heated to reflux with stirring for 1.5 h then cooled to rt. Aqueous HCl (1 M) was added with care. The phases were separated and the aqueous layer extracted with diethyl ether. The combined ethereal fractions were dried over magnesium sulfate, filtered and the solvent removed under reduced pressure. The crude thiol was then dissolved in dichloromethane. 3-Methyl-1-(methyl(aryl)carbamoyl)-1*H*-imidazol-3-ium iodide (1.1 eq) and triethylamine (1.2 eq) were added. The mixture was stirred until completion was observed by TLC. The mixture was extracted with aqueous HCl, dried over magnesium sulfate, filtered and the solvent removed under reduced pressure. The crude product was then purified by flash column chromatography as required.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

General Procedure D – Preparation of thiocarbamates from thiols

Benzylic thiol was dissolved in dichloromethane. 3-Methyl-1-(methyl(aryl)carbamoyl)-1*H*-imidazol-3ium iodide (1.1 eq) and triethylamine (1.2 eq) were added. The mixture was stirred until completion was observed by TLC. The mixture was extracted twice with aqueous HCl (1M), dried over magnesium sulfate, filtered and the solvent removed under reduced pressure. The crude product was then purified by flash column chromatography as required.

General Procedure E – Lithiation of benzylic thiocarbamates with LDA in THF

n-Butyllithium (solution in hexanes, 2.5 eq) was added to a solution of diisopropylamine (3 eq) in THF (1 cm³) at 0 °C. This was stirred for 15 minutes and then cooled to -78 °C. This solution was added by cannular to a cooled (-78 °C) solution of benzylic thiocarbamate (0.05 g, 1 eq) in THF (1.5 cm³). The mixture was allowed to stir for 1 or 2 hours. Propionic acid (3 eq) was added and the mixture allowed to warm to room temperature. Water (10 cm³) and diethyl ether (10 cm³) were added and the phases separated. The aqueous fraction was extracted with diethyl ether (2 x 10 cm³) and the combined organic fractions dried over magnesium sulfate, filtered and concentrated under reduced pressure. The crude product was then purified by flash column chromatography as required.

General Procedure F – Lithiation of benzylic thiocarbamates with LDA in THF/DMPU

n-Butyllithium (solution in hexanes, 2.5 eq) was added to a solution of diisopropylamine (3 eq) in THF (1 cm³) at 0 °C. This was stirred for 15 minutes and then cooled to -78 °C. This solution was added by cannular to a cooled (-78 °C) solution of benzylic thiocarbamate (0.05 g, 1 eq) in THF (1 cm³) and DMPU (0.5 cm³). The mixture was allowed to stir for 1 or 2 hours. Propionic acid (3 eq) was added and the mixture allowed to warm to room temperature. Water (10 cm³) and diethyl ether (10 cm³) were added and the phases separated. The aqueous fraction was extracted with diethyl ether (2 x 10 cm³) and the combined organic fractions dried over magnesium sulfate, filtered and concentrated under reduced pressure. The crude product was then purified by flash column chromatography as required.

General Procedure G – *Lithiation of benzylic thiocarbamates with LiTMP in THF*

n-Butyllithium (solution in hexanes, 2.5 eq) was added to a solution of N,N,N',N'-tetramethylpiperidine (3 eq) in THF (1 cm³) at 0 °C. This was stirred for 15 minutes and then cooled to -78 °C. This solution was added by cannular to a cooled (-78 °C) solution of benzylic thiocarbamate (0.05 g, 1 eq) in THF (1.5 cm³). The mixture was allowed to stir for 15 hours. Propionic acid (3 eq) was added and the mixture allowed to warm to room temperature. Water (10 cm³) and diethyl ether (10 cm³) were added and the phases separated. The aqueous fraction was extracted with diethyl ether (2 x 10 cm³) and the combined organic fractions dried over magnesium sulfate, filtered and concentrated under reduced pressure. The crude product was then purified by flash column chromatography as required.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

General Procedure H – One-pot lithiation/deprotection of benzylic thiocarbamates with LiTMP in THF

n-Butyllithium (solution in hexanes, 2.5 eq) was added to a solution of N,N,N',N'-tetramethylpiperidine (3 eq) in THF (1 cm³) at 0 °C. This was stirred for 15 minutes and then cooled to -78 °C. This solution was added by cannular to a cooled (-78 °C) solution of benzylic thiocarbamate (0.05 g, 1 eq) in THF (1.5 cm³). The mixture was allowed to stir for 15 hours. Propionic acid (3 eq) was added and the mixture allowed to warm to room temperature. Sodium ethoxide solution (21 % w/w in ethanol, 5 eq) was added and the mixture stirred for a further 20 min. Water (10 cm³) and diethyl ether (10 cm³) were added and the phases separated. The aqueous fraction was extracted with diethyl ether (2 x 10 cm³) and the combined organic fractions dried over magnesium sulfate, filtered and concentrated under reduced pressure. The crude product was then purified by flash column chromatography as required.

General Procedure I – Benzylic thiols by deprotection of benzylic thiocarbamates

Sodium ethoxide solution (21 % w/w in ethanol, 2 eq) was added to a solution of benzylic thiocarbamate (1 eq) in ethanol (1 cm³) at 0 °C. This was stirred for 30 minutes and saturated ammonium chloride solution (1 cm³) added. The mixture was allowed to warm to room temperature. Water (10 cm³) and diethyl ether (10 cm³) were added and the phases separated. The aqueous fraction was extracted with diethyl ether (2 x 10 cm³) and the combined organic fractions dried over magnesium sulfate, filtered and concentrated under reduced pressure. The crude product was then purified by flash column chromatography as required.

SYNTHESIS OF PRECURSORS

s1: (S)-1-(4-Methoxyphenyl)ethanol

Fujii, A.; Hashiguchi, S.; Uematsu, N.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118, 2521

OH

Triethylamine (2.02 cm³, 12.0 mmol) and formic acid (1.13 cm³, 30 mmol) were stirred together at 0 °C and allowed to warm to room temperature. 4-Methoxyacetophenone (0.751)mmol) and [(p-cymene)RuCl((S,S)-N-(p-toluenesulfonyl)-1,2g, 5 diphenylethylenediamine(1-))] (0.156 g, 0.025 mmol) were added and the mixture was stirred for 72 hours. Water and EtOAc were added, the phases separated and the aqueous fraction extracted with EtOAc (3 x 10 cm^3). The combined organic fractions were dried over magnesium sulfate, filtered and the solvent removed under reduced pressure. The crude product was purified by flash column chromatography (petrol/EtOAc, 4:1) and the title compound was isolated as a

colourless oil (0.728 g, 96%). **R**_F: 0.38 (petrol/EtOAc, 1:1); [a]_D²²: -40.3° (c. 1.2, CHCl₃); MS m/z (EI) 151 (100%, M-H⁺); **HRMS**: found 137.0597, M-CH₃ requires 137.0597; **IR** v_{max} (film)/cm⁻¹ 3373 (OH); ¹H-NMR (CDCl₃, 400 MHz) δ 7.31 (d, J 8.8 Hz, 2H), 6.89 (d, J 8.8 Hz, 2H), 4.86 (q, J 4.8 Hz, 1H), 3.81 (s, 3H), 1.48 (d, J 4.8 Hz, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 159.0, 138.0, 126.7, 113.8, 70.0, 55.3, 25.1.

s2: (S)-1-(3-Trifluoromethylphenyl)ethanol

Biswas, K.; Prieto, O.; Goldsmith, P. J.; Woodward, S. Angew. Chemie Int. Ed.; Eng. 2005, 44 (15), 2232

F₃C ЮH Triethylamine (2.02 cm³, 12.0 mmol) and formic acid (1.13 cm³, 30 mmol) were stirred together at 0 °C and allowed to warm to room temperature. 3-Trifluoromethylacetophenone (0.68 cm³, 5 mmol) and [(p-cymene)RuCl((S,S)-N-(ptolyenesulfonyl)-1,2-diphenylethylenediamine(1-))] (0.114 g, 0.018 mmol) were

added and the mixture was stirred for 72 h. Water and EtOAc were added, the phases separated and the aqueous fraction extracted with EtOAc (3 x 10 cm^3). The combined organic fractions were dried over magnesium sulfate, filtered and the solvent removed under reduced pressure. The crude product was purified by flash column chromatography (petrol/EtOAc, 4:1) and the title compound isolated as a colourless oil (0.764 g, 79%). $R_{\rm F}$: 0.17 (petrol/EtOAc, 4:1); $[\alpha]_{\rm D}^{22}$: -14.4° (c. 1.1, CHCl₃); **MS** m/z (ES-) 189 (100%, M-H⁺); **HRMS**: found 189.0525, M-H⁺ requires 189.0527; **IR** $v_{\rm max}$ (film)/cm⁻¹ 3349 (OH); ¹H-NMR (CDCl₃, 400 MHz) δ 7.66 (s, 1H), 7.58 - 7.45 (m, 3H), 4.97 (q, J 6.4 Hz, 1H), 2.01 (s, 1H), 1.52 (d, J 6.4 Hz, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 146.7, 131.0, 130.6, 129.0, 128.8, 125.5, 124.3, 124.3, 122.8, 122.2, 122.2, 69.9, 25.4.

s3: Thioacetic acid S-((S)-1-phenylethyl) ester

Kawano, Y.; Kaneko, N.; Mukaiyama, T. Chem. Lett. 2005, 34, 1612

Oxalyl chloride (0.85 cm³, 10 mmol) was added to a stirred solution of DMF (0.85 cm³, 11 mmol) in DCM (30 cm³) at 0 °C. The mixture was stirred for 5 minutes. (R)-1phenylethanol (1.2 cm³, 10 mmol), triethylamine (2.8 cm³, 20 mmol) and ethanethioic S-acid (0.5 cm³, 7 mmol) were added sequentially. The mixture was warmed to room

temperature and stirred for 17 h. Water (5 cm³) was added and the aqueous layer extracted with EtOAc. The combined organic fractions were dried over magnesium sulfate, filtered and the solvent removed under reduced pressure. The crude product was subjected to flash column chromatography (40:1 petrol/diethyl ether) and the title compound isolated as a yellow oil (0.781 g, 62 %). R_F: 0.58 (9:1 Petrol/diethyl ether); $[\alpha]_D^{22}$: -226.9° (c. 1.3, CHCl₃); **MS** m/z (EI) 180 (20%, M⁺); **HRMS**: found 180.0602, M⁺ requires 180.0603; IR v_{max}(film)/cm⁻¹ 1690 (C=O); ¹H-NMR (CDCl₃, 400 MHz) δ 7.24-7.35 (m, 5H), 4.75 (q, J 7.2 Hz, 1H), 2.30 (s, 3H), 1.66 (d, J 7.2 Hz, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 195.1, 142.6, 128.6, 127.3, 127.2, 43.0, 30.5, 22.2.

s4: Thioacetic acid S-((R)-1-phenylbutyl) ester

F₃C

Oxalyl chloride $(0.29 \text{ cm}^3, 3.3 \text{ mmol})$ was added to a stirred solution of DMF $(0.28 \text{ cm}^3, 3.7 \text{ mmol})$ in DCM (20 cm^3) at 0 °C. The mixture was stirred for 5 min. (S)-1-phenylbutan-1-ol (0.51 g, 3.3 mmol), triethylamine $(0.93 \text{ cm}^3, 6.67 \text{ mmol})$ and ethanethioic S-acid $(0.21 \text{ cm}^3, 3.00 \text{ mmol})$ were added sequentially. The mixture was warmed to room temperature and stirred for 18 h. Water (5 cm^3) was added, the phases

separated and the aqueous layer extracted with EtOAc. The combined organic fractions were dried over magnesium sulfate, filtered and the solvent removed under reduced pressure. The crude product was purified by flash column chromatography (petrol/diethyl ether, 40:1) and the title compound isolated as a yellow oil (0.110 g, 18%). R_F : 0.46 (9:1, Petrol:Et₂O); $[\alpha]_D{}^{20}$: 46.2° (c. 0.4, CHCl₃); **MS** m/z (ES+) 132 (100%, M+Na⁺); **HRMS**: found 231.0829, M+Na⁺ requires 231.0814; **IR** v_{max}(film)/cm⁻¹ 1690 (C=O); **'H-NMR** (CDCl₃, 400 MHz) δ 7.33-7.19 (m, 5H), 4.56 (t, *J* 7.4 Hz, 1H), 2.27 (s, 3H), 1.88 (ap q, *J* 7.7 Hz, 2H), 1.40-1.21 (m, 2H), 0.88 (t, *J* 7.4 Hz, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 194.9, 142.0, 128.5, 127.6, 127.2, 47.8, 38.3, 30.5, 20.7, 13.6.

s5: Thioacetic acid S-[(R)-1-(3-trifluoromethylphenyl)ethyl] ester

Oxalyl chloride (0.27 cm³, 3.1 mmol) was added to a stirred solution of DMF (0.26 cm³, 3.4 mmol) in DCM (20 cm³) at 0 °C. The mixture was stirred for 5 min. **s2** (0.6 g, 3.1 mmol), triethylamine (0.87 cm³, 6.2 mmol) and ethanethioic S-acid (0.20 cm³, 2.8 mmol) were added sequentially. The mixture was warmed to room

temperature and stirred for 18 h. Water (5 cm³) was added, the phases separated and the aqueous layer extracted with EtOAc. The combined organic fractions were dried over magnesium sulfate, filtered and the solvent removed under reduced pressure. The crude product was purified by flash column chromatography (petrol/diethyl ether, 40:1) and the title compound isolated as a yellow oil (0.315 g, 45%). $R_F 0.33$ (petrol/diethyl ether, 9:1); $[\alpha]_D^{22}$: +125.9° (*c*. 1.0, CHCl₃); MS m/z (EI) 248 (20%, M⁺); HRMS: found 248.0480, M⁺ requires 248.0477; IR v_{max} (film)/cm⁻¹ 1693 (C=O); ¹H-NMR (CDCl₃, 400 MHz) δ 7.59-7.42 (m, 4H), 4.78 (q, *J* 7.3 Hz, 1H), 2.32 (s, 3H), 1.67 (d, *J* 7.1 Hz, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 194.6, 143.9, 130.8, 129.0, 124.2, 124.1, 124.0, 123.9, 42.4, 30.4, 21.9.

s6: Naphthalen-1-ylcarbamic acid benzyl ester

Azzena, U.; Dettori, G.; Pisano, L.; Pittalis, M. Syn. Comm. 2007, 37, 3623

Benzyl chloroformate (1.90 cm³, 13 mmol) was added dropwise to a stirred mixture of naphthalen-1-amine (1.557 g, 11 mmol) and pyridine (1.10 cm³, 14 mmol) at room temperature. The mixture was stirred for 20 h. The mixture was partitioned between saturated aqueous sodium bicarbonate solution and DCM and separated. The aqueous fraction was extracted with DCM (3 x 20 cm³), the combined organic fractions dried over sodium sulfate, filtered and the solvent

removed under reduced pressure. The crude product was purified by flash column chromatography (petrol/EtOAc, 9:1) and the title compound isolated as an amorphous pink solid (2.857 g, 98 %). R_F : 0.31 (9:1, Petrol:EtOAc); **Mpt**: 136-138 °C (DCM); **MS** m/z (ES+) 278 (45%, M+H⁺), 300 (30%, M+Na⁺); **HRMS**: found 278.1180, M+H⁺ requires 278.1179; **IR** v_{max} (film)/cm⁻¹ 3277 (NH), 1690 (C=O); ¹H-NMR (CDCl₃, 300 MHz) δ 7.89-7.86 (m, 3H), 7.69 (d, *J* 8.0 Hz, 1 H), 7.55-7.35 (m, 8H), 7.01 (br s, 1H), 5.27 (s, 2H); ¹³C-NMR (CDCl₃, 100 MHz) δ 136.1, 134.1, 132.4, 128.8, 128.7, 128.4, 128.4, 126.3, 126.0, 125.8, 125.1, 120.4, 120.4, 119.1, 67.3.

s7: N-Methylnaphthalen-1-amine

Iagarashi, T.; Shimokawa, M.; Iwasaki, M.; Nagata, K.; Fujii, M.; Sakurai, T. Synlett 2007, 9, 1436

Lithium aluminium hydride (6.8 cm³, 2 M in THF, 14 mmol) was added dropwise at 0 °C to a solution of **s6** (2.481 g, 9 mmol) in THF (50 cm³). The mixture was heated to reflux and stirred for 4 hours then allowed to cool to room temperature. Water (0.5 cm³) was added dropwise followed by stirring for 10 minutes. Aqueous sodium hydroxide solution (15 %

w/w) was added followed by stirring for 30 min. Water (1.5 cm³) was added and the mixture stirred for 1 hour. The resulting suspension was filtered and the solvent removed under reduced pressure. The crude product was purified by flash column chromatography (petrol/EtOAc, 9:1) to afford the title compound as a brown oil (1.167 g, 82%). R_F : 0.25 (9:1, Petrol:EtOAc); MS m/z (ES+) 158 (100%, M+H⁺); HRMS: found 158.0973, M+H⁺ requires 158.0964; IR v_{max} (film)/cm⁻¹ 3440 (NH); ¹H-NMR (CDCl₃, 300 MHz) δ 7.78-7.83 (m, 2H), 7.36-7.45 (m, 3H), 7.24-7.27 (m, 1H), 6.62 (d, *J* 7.5 Hz, 1H), 4.45 (br s, 1H), 3.03 (s, 3H); ¹³C-NMR (CDCl₃, 75 MHz) δ 144.6, 134.3, 128.7, 126.7, 125.7, 124.7, 123.5, 119.8, 117.3, 103.8, 31.1.

s8: N-Methyl-N-p-tolyl-1H-imidazole-1-carboxamide

General procedure A was followed using N,4-dimethylbenzeneamine (1.3 cm³, 10 mmol), CDI (3.244 g, 20 mmol) in THF (20 cm³) with stirring for 18 hours. The title compound was isolated as colourless prisms (1.7821 g, 83 %). $R_{\rm F}$: 0.45 (EtOAc); Mpt: 118-121 °C (DCM); MS m/z (ES+) 216 (100%, M+H⁺); HRMS: found 216.1133, M+H⁺ requires 216.1131; IR $v_{\rm max}$ (film)/cm⁻¹ 1687 (C=O); ¹H-NMR (CDCl₃, 400 MHz) δ 7.53 (s, 1H), 7.16 (d, *J* 8.1 Hz), 6.99 (d, *J* 8.1 Hz), 6.87 (m, 1H), 6.80, (m, 1H), (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 150.3, 140.3, 138.2, 137.7, 130.9, 128.9, 125.7,

3.45 (s, 3H), 2.34 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 150.3, 140.3, 138.2, 137.7, 130.9, 128.9, 125.7, 118.5, 40.2, 21.1.

s9: Imidazole-1-carboxylic acid methylphenylamide

Batey, R. A.; Santhakumar, V.; Yoshina-Ishii, C.; Taylor, S. D. Tetrahedron Lett. 1998, 39, 6267

General procedure A was followed using methylphenylamine (1.09 cm³, 10.0 mmol), CDI (3.240 g, 20.0 mmol) in THF (20 cm³) with stirring for 20 hours. The title compound was isolated as colourless prisms (2.005 g, 99 %). R_F : 0.4 (EtOAc); Mpt: 55-57 °C (DCM); MS m/z (ES+) 202 (35%, M+H⁺); HRMS: found 202.0984, M+H⁺ requires 202.0975; IR ν_{max} (film)/cm⁻¹ 1700 (C=O); ¹H-NMR (CDCl₃, 400 MHz) δ 7.58 (br s, 1H),

7.42 - 7.31 (m, 3H), 7.15 - 7.12 (m, 2H), 6.86 (m, 1H), 6.82 (m, 1H), 3.50 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 150.3, 143.0, 137.7, 130.3, 129.0, 128.1, 126.0, 118.4, 40.2.

s10: N-(4-Methoxyphenyl)-N-methyl-1*H*-imidazole-1-carboxamide

General procedure A was followed using 4-methoxy-N-methylbenzenamine (0.503 g, 3.67 mmol), CDI (1.130 g, 7.00 mmol) in THF (10 cm³) with stirring for 6 hours. The title compound was isolated as a pink amorphous solid (0.810 g, 95 %). R_F : 0.1 (1:1, Petrol:EtOAc); **Mpt**: 47-49 °C (DCM); **MS** m/z (ES+) 232 (20%, M+H⁺); **HRMS**: found 232.1074, M+H⁺ requires 232.1081; **IR** ν_{max} (film)/cm⁻¹ 1698 (C=O); ¹H-NMR (CDCl₃, 400 MHz) δ 7.54 (s, 1H), 7.04 (d, *J* 9.0 Hz, 2H), 6.88 (m, 3H), 6.81 (s, 1H), 3.80 (s, 3H), 3.44 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 159.1, 150.3, 137.8, 135.5, 128.9, 127.2,

118.6, 115.4, 55.5, 40.4.

s11: N-(2-Methoxyphenyl)-N-methyl-1*H*-imidazole-1-carboxamide

General procedure A was followed using 2-methoxy-N-methyl aniline (1.375 g, 10 mmol), CDI (3.244 g, 20 mmol) in THF (20 cm³) with stirring for 48 h. The title compound was isolated as off-white prisms (2.180 g, 94 %). R_F : 0.58 (EtOAc); Mpt: 60-62 °C (DCM); MS m/z (ES+) 232 (100%, M+H⁺); HRMS: found 232.1085, M+H⁺ requires 232.1081; IR ν_{max} (film)/cm⁻¹ 1702 (C=O); ¹H-NMR (CDCl₃, 400 MHz) δ 7.59 (s, 1H), 7.29 (ddd, *J* 1.7, 7.6 and 8.3 Hz, 1H), 7.17 (dd, *J* 1.6 and 7.7

Hz, 1H), 6.97 (ddd, J 1.2, 7.6 and 7.6 Hz, 1H), 6.90, (m, 2H), 6.78 (s, 1H), 3.71 (s, 3H), 3.37 (s, 3H); ¹³**C**-**NMR** (CDCl₃, 100 MHz) δ 154.2, 151.3, 137.4, 131.6, 129.8, 128.6, 127.8, 121.7, 118.1, 112.4, 55.6, 39.1.

s12: N-(4-Chlorophenyl)-N-methyl-1*H*-imidazole-1-carboxamide

General procedure A was followed using 4-chloro-N-methylbenzenamine (1.20 cm³, 10 mmol) and CDI (3.246 g, 20 mmol) in THF (20 cm³) with stirring for 23 h. The title compound was isolated as an amorphous white solid (2.3104 g, 99 %). $R_{\rm F}$: 0.37 (EtOAc); **Mpt**: 110-112 °C (DCM); **MS** m/z (ES+) 236 (100%, M+H⁺); **HRMS**: found 236.0596, M+H⁺ requires 236.0585; **IR** $\nu_{\rm max}$ (film)/cm⁻¹ 1700 (C=O); ¹**H-NMR** (CDCl₃, 300 MHz) δ 7.59 (s, 1H), 7.35 (m, 2H), 7.05 (m, 2H), 6.86 (m, 2H), 3.47 (s, 3H); ¹³**C-NMR** (CDCl₃, 100 MHz) δ 150.1, 141.5, 137.6, 133.9, 130.5, 129.3, 127.1, 118.3, 40.1.

s13: Imidazole-1-carboxylic acid (3-chlorophenyl)methylamide

General procedure A was followed using (3-chlorophenyl)methylamine (1.73 cm³, 14.12 mmol), CDI (4.580 g, 28.24 mmol) in THF (30 cm³) with stirring for 2 days. The title compound was isolated as colourless prisms (3.30 g, 99 %). $R_{\rm F}$: 0.35 (EtOAc); **Mpt**: 73-75 °C (DCM); **MS** m/z (ES+) 236 (40%, M+H⁺); **HRMS**: found 236.0595, M+H⁺ requires 236.0585; **IR** v_{max}(film)/cm⁻¹ 1700 (C=O); ¹H-NMR (CDCl₃, 400 MHz) δ 7.63 (ap t, J 1.0 Hz, 1H), 7.32 - 7.30 (m, 2H), 7.19 (m, 1H), 7.00 - 6.97 (m, 1H), 6.89 - 6.88 (m, U) - 2.42 (n, 2H); **IG** NMP (CDCl₃ = 100 MHz) δ 150 h = 144.2 + 127.6 + 125.8 + 121.2 + 120.4

1H), 6.86 (m, 1H), 3.42 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 150.1, 144.2, 137.6, 135.8, 131.2, 129.4, 128.3, 126.1, 124.1, 118.3, 40.1.

s14: Imidazole-1-carboxylic acid (4-cyanophenyl)methylamide

General procedure A was followed using 4-methylaminobenzonitrile (1.518 g, 11.50 mmol), CDI (3.680 g, 22.72 mmol) in THF (20 cm³) with stirring for 10 days. The title compound was isolated as colourless prisms (2.43 g, 95 %). R_F : 0.35 (EtOAc); **Mpt**: 136-138 °C (DCM); **MS** m/z (ES+) 249 (35%, M+Na⁺); **HRMS**: found 249.0747, M+Na⁺ requires 249.0747; **IR** ν_{max} (film)/cm⁻¹ 1700 (C=O), 2229 (nitrile); ¹H-NMR (CDCl₃, 400 MHz) δ 7.68 (d, J 8.8 Hz, 2H), 7.64 (br s, 1H), 7.22 (d, J 8.8 Hz, 2H), 6.89 (m, 1H), 6.86 (m, 1H), 3.54 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 147.0, 137.4, 134.1, 129.9, 126.0,

118.1, 117.6, 111.4, 39.7.

s15: Imidazole-1-carboxylic acid methyl(2,4,6-trimethylphenyl)amide

General procedure A was followed using methyl(2,4,6-trimethylphenyl)amine (0.92 cm³, 5.77 mmol), CDI (1.957 g, 12.10 mmol) in THF (20 cm³) with stirring for 4 days. The title compound was isolated as a white amorphous solid (1.00 g, 71 %). $R_{\rm F}$: 0.53 (EtOAc); Mpt: 92-94 °C (DCM); MS m/z (ES+) 266 (70%, M+Na⁺); HRMS: found 266.1250, M+Na⁺ requires 266.1264; **IR** ν_{max} (film)/cm⁻¹ 1698 (C=O); ¹H-NMR (CDCl₃, 300 MHz) & 7.44 (br s, 1H), 6.94 (s, 2H), 6.85 (s, 1H), 6.81 (s, 1H), 3.33 (s, 3H), 2.30 (s, 3H), 2.15 (s, 6H);¹³C-NMR (CDCl₃, 100 MHz) δ 150.3, 139.2, 137.5, 137.4, 135.1, 130.3, 129.0, 118.3, 38.0, 21.0, 17.5.

s16: Imidazole-1-carboxylic acid methylnaphthalen-1-ylamide

General procedure A was followed using s7 (0.990 g, 6.37 mmol), CDI (2.064 g, 12.74 mmol) in THF (20 cm³) with stirring for 2 days. The title compound was isolated as colourless prisms (1.21 g, 75 %). R_F: 0.52 (EtOAc); Mpt: 107-109 °C (DCM); MS m/z (ES+) 274 (100%, M+Na⁺), 252 (15%, M+H⁺); HRMS: found 252.1138, M+H⁺ requires 252.1131; IR v_{max} (film)/cm⁻¹ 1682 (C=O); ¹H-NMR

(CDCl₃, 400 MHz) & 7.97-7.89 (m, 3H), 7.67-7.60 (m, 2H), 7.52 (br s, 1H), 7.43 (t, J 7.8 Hz, 1H), 7.28-7.26 (m, 1H), 6.76 (br s, 1H), 6.69 (br s, 1H), 3.56 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 151.1, 138.9, 137.3, 134.8, 129.5, 129.2, 129.2, 128.7, 128.3, 127.3, 126.0, 125.1, 121.6, 118.2, 40.3.

s17: Imidazole-1-carboxylic acid (3-fluorophenyl)methylamide

General procedure A was followed using (3-fluorophenyl)methylamine (0.63 cm³, 5.60 mmol), CDI (1.810 g, 11.20 mmol) in THF (10 cm³) with stirring for 4 days. The title compound was isolated as white cubes (1.22 g, 99 %). **R**_F: 0.39 (EtOAc); **Mpt**: 56-58 °C (DCM); MS m/z (ES+) 220 (30%, M+H⁺); HRMS: found 220.0887, M+H⁺ requires 220.0881; IR ν_{max}(film)/cm⁻¹ 1703 (C=O); ¹H-NMR (CDCl₃, 400 MHz) δ 7.62 (s, 1H), 7.32 - 7.38 (m, 1H), 7.01 - 7.07 (m, 1H), 6.86 - 6.91 (m, 4H), 3.49 (s, 3H);¹³C-NMR

(CDCl₃, 100 MHz) & 164.5, 162.0, 150.1, 144.4, 144.3, 137.6, 131.6, 131.5, 129.4, 121.7, 118.3, 115.3, 115.1, 113.5, 113.3, 40.1.

s18: 3-Methyl-1-(methyl(p-tolyl)carbamoyl)-1H-imidazol-3-ium iodide

General procedure B was followed using s8 (2.137 g, 10 mmol) and iodomethane (2.49 cm³, 40 mmol) in acetonitrile (20 cm³) with stirring for 4.5 hours. The title compound was isolated as a vellow amorphous solid (3.343 g, 94 %). $R_{\rm F}$: 0.04 (EtOAc); Mpt: 144-146 °C (MeCN); MS m/z (ES+) 230 (100%, M-I⁻); HRMS: found 230.1295, M-I⁻ requires 230.1288; **IR** ν_{max}(film)/cm⁻¹ 1731 (C=O); ¹**H-NMR** (CDCl₃, 400 MHz) δ 9.73 (br s, 1H), 7.51 (br s, 1H), 7.31 (d, J 8.3 Hz), 7.23 (d, J 8.3 Hz), 7.00 (br s, 1H), 4.10 (s, 3H), 3.50 (s, 3H), 2.34 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 145.9, 139.7,

138.4, 137.9, 131.5, 126.4, 123.5, 121.0, 41.2, 38.1, 21.2.

s19: 1-Methyl -3-(methylphenylcarbamoyl)-3H-imidazol-1-ium iodide

Batey, R. A.; Santhakumar, V.; Yoshina-Ishii, C.; Taylor, S. D. Tetrahedron Lett. 1998, 39, 6267

General procedure B was followed using s9 (2.012 g, 10.00 mmol) and iodomethane (2.49 cm³, 40.00 mmol) in acetonitrile (20 cm³) with stirring for 4 hours. The title compound was isolated as yellow prisms (3.204 g, 93 %). R_F: 0.03 (EtOAc); Mpt: 104-106 °C (DCM); MS m/z (ES+) 216 (100%, M-I); HRMS: found 216.1121, M-I

requires 216.1131; IR v_{max}(film)/cm⁻¹ 1729 (C=O); ¹H-NMR (CDCl₃, 400 MHz) δ 9.77 (br s, 1H), 7.50-7.38 (m, 6H), 7.07 (br s, 1H), 4.10 (s, 3H), 3.56 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 145.8. 140.5. 138.4, 130.9, 129.4, 126.7, 123.3, 121.0, 41.1, 38.1.

s20: 1-((4-Methoxyphenyl)(methyl)carbamoyl)-3-methyl-1H-imidazol-3-ium iodide

General procedure B was followed using s10 (0.520 g, 2.20 mmol) and iodomethane (0.54 cm³, 8.70 mmol) in acetonitrile (10 cm³) with stirring for 2 hours. The title compound was isolated as a dull green amorphous solid (0.7678 g, 95 %). R_F: 0.03 (EtOAc); Mpt: 139-141 °C (MeCN); MS m/z (ES+) 246 (100%, M-I⁻); HRMS: found 246.1240, M-I⁻ requires 246.1237; IR v_{max}(film)/cm⁻¹ 1731 (C=O); ¹H-NMR (CDCl₃, 500 MHz) δ 9.69 (br s, 1H), 7.39 (d, J 8.5 Hz), 7.35 (br s, 1H), 7.02 (br s, 1H), 6.95 (d, J 8.5 Hz), 4.10 (s, 3H), 3.82 (s, 3H), 3.51 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 159.9, 145.9, 138.4, 133.0, 128.0, 123.3, 121.1, 116.0, 55.7, 41.3, 38.1.

s21: 1-((2-Methoxyphenyl)(methyl)carbamoyl)-3-methyl-1H-imidazol-3-ium iodide

General procedure B was followed using s11 (1.161 g, 5 mmol) and iodomethane (1.25 cm³, 20 mmol) in acetonitrile (20 cm³) with stirring for 16 hours. The title compound was isolated as an orange amorphous solid (1.860 g, 99 %). R_F: 0.03 (EtOAc); Mpt: 158-160 °C (MeCN); MS m/z (ES+) 246 (100%, M-I⁻); HRMS: found 246.1232, M-I⁻ requires 246.1237; IR v_{max}(film)/cm⁻¹ 1739 (C=O); ¹H-NMR (CDCl₃, 400 MHz) δ 9.71 (br s, 1H), 7.64 (br s, 1H), 7.59 (dd, J 1.6, 7.8 Hz,

1H), 7.34 (dt, J 1.6, 8.3 Hz, 1H), 7.16 (br s, 1H), 7.05 (dt, J 1.1, 7.7 Hz, 1H), 6.91 (dd, J 0.9, 8.3 Hz, 1H), 4.11 (s, 3H), 3.81 (s, 3H), 3.39 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 153.3, 147.1, 137.3, 131.1, 129.1, 128.5, 123.7, 122.5, 120.6, 112.6, 56.5, 40.0, 38.1.

s22: 1-((4-Chlorophenyl)(methyl)carbamoyl)-3-methyl-1H-imidazol-3-ium iodide

Ebdrup, S.; Refsgaard, H. H. F.; Fledelius, C.; Jocobsen, P. J. Med. Chem. 2007, 50, 5449

General procedure B was followed using s12 (1.184 g, 5 mmol) and iodomethane (1.25 cm³, 20 mmol) in acetonitrile (20 cm³) with stirring for 8 hours. The title compound was isolated as an orange amorphous solid (1.744 g, 92 %). R_F: 0.03 (EtOAc); Mpt: 120-122 °C (MeCN); MS m/z (ES+) 250 (100%, M-I⁻); HRMS: found 250.0736, M-I⁻ requires 250.0742; IR v_{max}(film)/cm⁻¹ 1731 (C=O); ¹H-NMR (CD₃OD, 400 MHz) δ 9.29 (br s, 1H), 7.48-7.45 (m, 3H), 7.38 (d, J 8.7 Hz), 7.31 (br s, 1H), 3.91 (s, 3H), 3.53 (s, 3H); ¹³C-NMR (CD₃OD, 100 MHz) δ 147.6, 141.3, 135.7, 131.6, 129.3, 124.6,

s23: 3-[(3-Chlorophenyl)methylcarbamoyl]-1-methyl-3H-imidazol-1-ium iodide

General procedure B was followed using s13 (3.009 g, 12.74 mmol) and iodomethane (3.17 cm³, 50.95 mmol) in acetonitrile (60 cm³) with stirring for 4 hours. The title compound was isolated as yellow prisms (4.786 g, 99 %). R_F: 0.03 (EtOAc); Mpt: 112-114 °C (DCM); MS m/z (ES+) 250 (100%, M-I⁻); HRMS: found 250.0757, M-I⁻ requires 250.0742; IR v_{max}(film)/cm⁻¹ 1731 (C=O); ¹H-NMR (CDCl₃, 300 MHz) δ 9.99 (br s, 1H), 7.59 - 7.36 (m, 5H), 7.18 (br s, 1H), 4.14 (s, 3H), 3.57 (s, 3H); ¹³C-

NMR (CDCl₃, 75.5 MHz) δ 141.7, 138.7, 135.9, 132.1, 129.7, 126.3, 125.8, 123.4, 121.0, 41.3, 38.1.

s24: 3-[(4-Cyanophenyl)methylcarbamoyl]-1-methyl-3*H*-imidazol-1-ium iodide

General procedure B was followed using **s14** (2.209 g, 9.73 mmol) and iodomethane (2.43 cm³, 38.94 mmol) in acetonitrile (40 cm³) with stirring for 4 hours. The title compound was isolated as yellow prisms (3.532 g, 98 %). $R_{\rm F}$: 0.03 (EtOAc); **Mpt**: 178-180 °C (DCM); **MS** m/z (ES+) 241 (100%, M-I⁻); **HRMS**: found 241.1077, M-I⁻ requires 241.1084; **IR** v_{max}(film)/cm⁻¹ 1729 (C=O), 2229 (nitrile); ¹H-NMR (CD₃OD, 400 MHz) δ 9.36 (br s, 1H, exchanges with MeOD), 7.83 (d, *J* 8.4 Hz, 2H), 7.60 (d, *J* 8.4 Hz, 2H), 7.50 (br s, 1H), 7.38 (br s, 1H), 3.94 (s, 3H), 3.59 (s, 3H);¹³C-NMR

(CD₃OD, 100 MHz) & 147.6, 146.5, 139.9, 135.4, 128.4, 124.8, 122.8, 118.7, 113.4, 40.7, 37.3.

s25: 1-Methyl-3-[methyl(2,4,6-trimethylphenyl)carbamoyl]-3H-imidazol-1-ium iodide

General procedure B was followed using **s15** (0.989 g, 4.10 mmol) and iodomethane (1.02 cm³, 16.45 mmol) in acetonitrile (20 cm³) with stirring for 4 hours. The title compound was isolated as yellow prisms (0.512 g, 96 %). $R_{\rm F}$: 0.05 (EtOAc); **Mpt**: 160 °C (decomposition); **MS** m/z (ES+) 258 (100%, M-I'); **HRMS**: found 258.1598, M-I⁻ requires 258.1601; **IR** $v_{\rm max}$ (film)/cm⁻¹ 1724 (C=O); ¹H-NMR (CDCl₃, 400 MHz) δ 9.38 (br s, 1H), 7.78 (m, 1H), 7.00 (s, 2H), 6.61 (m, 1H), 4.18 (s, 3H), 3.38 (s, 3H), 2.32 (s, 3H), 2.24 (s, 6H); ¹³C-NMR (CDCl₃, 100 MHz) δ 145.9, 140.7, 121.0 + 120.2 at 2.27.2 at 1.1 (c=1)

138.3, 135.2, 134.9, 131.0, 124.8, 120.2, 39.0, 38.7, 21.1, 18.1).

s26: 1-Methyl-3-(methylnaphthalen-1-ylcarbamoyl)-3*H*-imidazol-1-ium iodide

General procedure B was followed using **s16** (1.005 g, 3.98 mmol) and iodomethane (0.99 cm³, 15.94 mmol) in acetonitrile (20 cm³) with stirring for 4 hours. The title compound was isolated as yellow prisms (1.498 g, 96 %). R_F : 0.02 (EtOAc); Mpt: 83-85 °C (DCM); MS m/z (ES+) 266 (100%, M-I⁻); HRMS: found found 266.1288, M-I⁻ requires 266.1288; IR ν_{max} (film)/cm⁻¹ 1721 (C=O); ¹H-NMR (CDCl₃, 400 MHz) δ 9.86 (br s, 1H), 7.98-7.87 (m, 4H), 7.73-7.69 (m,

1H), 7.65-7.59 (m, 2H), 7.19 (br s, 1H), 6.73 (br s, 1H), 4.04 (s, 3H), 3.64 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 146.9, 138.4, 136.2, 134.6, 130.5, 129.4, 129.1, 128.4, 127.6, 127.0, 126.7, 123.6, 120.9, 120.2, 41.0, 38.0.

s27: 3-[(3-Fluorophenyl)methylcarbamoyl]-1-methyl-3*H*-imidazol-1-ium iodide

General procedure B was followed using **s17** (1.098 g, 5.00 mmol) and iodomethane (1.25 cm³, 20.00 mmol) in acetonitrile (20 cm³) with stirring for 4 hours. The title compound was isolated as yellow prisms (1.598 g, 88 %). $R_{\rm F}$: 0.03 (EtOAc); Mpt: 115-117 °C (DCM); MS m/z (ES+) 234 (100%, M-I); HRMS: found 234.1035, M-I requires 234.1043; IR v_{max}(film)/cm⁻¹ 1731 (C=O); ¹H-NMR (CDCl₃, 400 MHz) δ

9.92 (br s, 1H), 7.52 (m, 1H), 7.45 (td, *J* 8.0, 6.4 Hz, 1H), 7.37 - 7.35 (m, 1H), 7.31 (dt, *J* 8.8, 2.0 Hz, 1H), 7.23 (br s, 1H), 7.12 - 7.08 (m, 1H), 4.07 (s, 3H), 3.50 (s, 3H);¹³**C-NMR** (CDCl₃, 100 MHz) δ 164.3, 161.8, 145.8, 142.0, 141.9, 141.9, 138.5, 132.3, 132.2, 123.6, 123.0, 121.2, 116.7, 116.5, 114.3, 114.0, 41.3, 38.1.

EXPERIMENTAL DATA FOR COMPOUNDS REPORTED

5a: Methylphenylthiocarbamic acid S-(4-methylbenzyl) ester

General procedure D was followed using benzyl thiol (0.24 cm³, 2.0 mmol), **s18** (0.81 g, 2.2 mmol) and triethylamine (0.34 cm³, 2.4 mmol) in DCM (10 cm³) with stirring for 18 hours. The crude mixture was purified by flash column chromatography (petrol/EtOAc, 8:1) to afford the title compound as a colourless oil (0.523 g, 95 %). $R_{\rm F}$: 0.31 (8:1, Petrol:EtOAc); MS m/z (ES+)

294 (100%, M+Na⁺); **HRMS**: found 294.0928, M+Na⁺ requires 294.0923; **IR** $\nu_{max}(film)/cm^{-1}$ 1656 (C=O); ¹**H-NMR** (CDCl₃, 400 MHz) δ 7.31-7.14 (m, 9H), 4.09 (s, 2H), 3.32 (s, 3H), 2.37 (s, 3H); ¹³**C-NMR** (CDCl₃, 100 MHz) δ 168.6, 138.1, 130.2, 129.0, 128.5, 128.2, 128.1, 127.0, 38.4, 35.5, 21.2.

5b: Methylphenylthiocarbamic acid 4-methoxybenzyl ester

General procedure D was followed using (4-methoxyphenyl)methanethiol (0.61 cm³, 4.4 mmol), **s19** (1.507 g, 4.4 mmol) and triethylamine (0.73 cm³, 5.3 mmol) in DCM (20 cm³) with stirring for 18 hours. The crude mixture was purified by flash column chromatography (petrol/EtOAc, 8:1) to afford the title compound as an amorphous white solid (1.192 g, 95 %). R_F : 0.11 (8:1, Petrol:EtOAc); **Mpt**: 74-76 °C (DCM); **MS** m/z (ES+) 310 (100%,

M+Na⁺); **HRMS**: found 310.0881, M+Na⁺ requires 310.0872; **IR** ν_{max} (film)/cm⁻¹ 1650 (C=O); **¹H-NMR** (CDCl₃, 400 MHz) δ 7.41-7.32 (m, 3H), 7.27-7.25 (m, 2H), 7.22 (d, *J* 8.0 Hz, 2H), 6.79 (d, *J* 8.0 Hz, 2H), 4.05 (s, 2H), 3.76 (s, 3H), 3.33 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 168.7, 158.7, 142.0, 130.1, 130.0, 129.5, 128.4, 128.3, 113.9, 55.3, 38.3, 35.0.

5c: Methylphenylthiocarbamic acid 4-tert-butylbenzyl ester

General procedure D was followed using (4-tert-butylphenyl)methanethiol $(0.52 \text{ cm}^3, 2.8 \text{ mmol})$, **s19** (1.078 g, 3.1 mmol) and triethylamine $(0.58 \text{ cm}^3, 4.1 \text{ mmol})$ in DCM (20 cm^3) with stirring for 18 hours. The crude mixture was purified by flash column chromatography (petrol/EtOAc, 15:1) to afford the title compound as an amorphous colourless solid (0.845 mm)

g, 97 %). $R_{\rm F}$: 0.28 (8:1, Petrol:EtOAc); **Mpt**: 67-69 °C (DCM); **MS** m/z (ES+) 336 (100%, M+Na⁺); **HRMS**: found 336.1397, M+Na⁺ requires 336.1393; **IR** $\nu_{\rm max}$ (film)/cm⁻¹ 1654 (C=O); ¹H-NMR (CDCl₃, 400 MHz) δ 7.42-7.22 (m, 9H), 4.09 (s, 2H), 3.35 (s, 3H), 1.29 (s, 9H); ¹³C-NMR (CDCl₃, 100 MHz) δ 168.7, 150.0, 134.8, 129.5, 128.7, 128.4, 128.4, 128.3, 125.4, 38.4, 35.2, 34.5, 31.3.

5d: Methylphenylthiocarbamic acid 2-chlorobenzyl ester

General procedure D was followed using (2-chlorophenyl)methanethiol (0.41 cm³, 3.2 mmol), **s19** (1.197 g, 3.5 mmol) and triethylamine (0.66 cm³, 4.7 mmol) in DCM (20 cm³) with stirring for 18 hours. The crude mixture was purified by flash column chromatography (petrol/EtOAc, 10:1) to afford the title compound as an amorphous colourless solid (0.787 g, 86 %). $R_{\rm F}$: 0.24 (8:1,

Petrol:EtOAc); **Mpt**: 67-78 °C (DCM); **MS** m/z (ES+) 314 (100%, M+Na⁺), 292 (20%, M+H⁺); **HRMS**: found 292.0547, M+H⁺ requires 292.0557; **IR** v_{max} (film)/cm⁻¹ 1651 (C=O); ¹**H-NMR** (CDCl₃, 400 MHz) δ 7.50-7.47 (m, 1H), 7.41-7.25 (m, 6H), 7.20-7.13 (m, 2H), 4.22 (s, 2H), 3.33 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 168.4, 141.8, 136.0, 134.2, 131.3, 129.5, 129.4, 128.6, 128.3, 126.9, 38.5, 33.3.

6a: Methylthiocarbamic acid phenyl-p-tolylmethyl ester

General procedure F was followed using **5a** (0.045 g, 0.17 mmol), diisopropylamine (0.08 cm³, 0.55 mmol), *n*-butyllithium (0.29 cm³, 1.6 M, 0.46 mmol) and propionic acid (0.04 cm³, 0.50 mmol) with stirring for 2 hours. The crude product was purified by flash column chromatography (petrol/EtOAc, 8:1) to afford the title compound as an amorphous colourless solid (0.032 g, 73 %). $R_{\rm F}$: 0.09 (8:1, Petrol:EtOAc); **Mpt**: 113-115 °C (DCM); **MS** m/z (ES+) 294 (100%, M+Na⁺); **HRMS**: found 294.0924, M+Na⁺ requires 294.0923; **IR** $v_{\rm max}$ (film)/cm⁻¹ 1648 (C=O); ¹**H-NMR** (CDCl₃, 400

MHz) δ 7.39 (d, J 8.0 Hz, 2H), 7.32-7.21 (m, 5H), 7.12 (d, J 8.0 Hz, 2H), 5.94 (s, 1H), 5.24 (br s, 1H), 2.85 (d, J 4.0 Hz, 3H), 2.32 (s, 3H); ¹³**C-NMR** (CDCl₃, 100 MHz) δ 166.6, 141.6, 138.4, 136.9, 129.2, 128.5, 128.3, 128.2, 127.1, 52.8, 28.0, 21.1.

6b: Methylthiocarbamic acid (4-methoxyphenyl)phenylmethyl ester

General procedure F was followed using **5b** (0.057 g, 0.18 mmol), diisopropylamine (0.07 cm³, 0.52 mmol), *n*-butyllithium (0.29 cm³, 1.5 M, 0.43 mmol) and propionic acid (0.04 cm³, 0.50 mmol) with stirring for 2 hours. The crude product was purified by flash column chromatography (petrol/EtOAc, 8:1) to afford the title compound as an amorphous colourless solid (0.055 g, 96 %). $R_{\rm F}$: 0.06 (8:1, Petrol:EtOAc); Mpt: 84-86 °C (DCM); MS m/z (ES+)

310 (100%, M+Na⁺); **HRMS**: found 310.0870, M+Na⁺ requires 310.0872; **IR** ν_{max} (film)/cm⁻¹ 1644 (C=O); **¹H-NMR** (CDCl₃, 400 MHz) δ 7.40-7.38 (m, 2H), 7.33-7.21 (m, 5H), 6.84 (d, *J* 8.0 Hz, 2H), 5.94 (s, 1H), 5.29 (br s, 1H), 3.79 (s, 3H), 2.85 (d, *J* 4.0 Hz, 3H); ¹³**C-NMR** (CDCl₃, 100 MHz) δ 166.6, 158.6, 141.7, 133.5, 129.5, 128.5, 128.3, 127.1, 113.9, 55.3, 52.5, 28.0.

6c: Methylthiocarbamic acid (4-tert-butylphenyl)phenylmethyl ester

General procedure F was followed using **5c** (0.050 g, 0.16 mmol), diisopropylamine (0.07 cm³, 0.48 mmol), *n*-butyllithium (0.27 cm³, 1.5 M, 0.40 mmol) and propionic acid (0.04 cm³, 0.50 mmol) with stirring for 2 hours. The crude product was purified by flash column chromatography (petrol/EtOAc, 8:1) to afford the title compound as a colourless oil (0.042 g, 83 %). $R_{\rm F}$: 0.09 (8:1, Petrol:EtOAc); **MS** m/z (ES+) 336 (100%, M+Na⁺); **HRMS**: found 336.1380, M+Na⁺ requires 336.1393; **IR** $\nu_{\rm max}$ (film)/cm⁻¹ 1653 (C=O); ¹H-

NMR (CDCl₃, 400 MHz) δ 7.42 (d, *J* 7.6 Hz, 2H), 7.33-7.21 (m, 7H), 5.96 (s, 1H), 5.32 (br s, 1H), 2.83 (d, *J* 4.8 Hz, 3H), 1.30 (s, 9H); ¹³C-NMR (CDCl₃, 100 MHz) δ 165.6, 148.9, 140.7, 137.2, 127.4, 127.3, 126.9, 126.0, 124.4, 51.6, 33.4, 30.3, 26.9.

7a: Phenyl-*p*-tolylmethanethiol

General procedure I was followed using sodium ethoxide solution (0.04 cm³, 0.10 mmol) and 6a (0.015 g, 0.06 mmol). The crude product was purified by flash column chromatography (n-pentane) and the title compound isolated as a colourless oil (0.007 g, 57 %). $R_{\rm F}$: 0.55 (8:1, Petrol:EtOAc); MS m/z (ES-) 213 (55%, M-H⁺), 181 (50%, M-SH⁻); HRMS: found 214.0816, M requires 214.0811; IR v_{max}(film)/cm⁻¹ 2560 (w, SH); ¹H-NMR (CDCl₃, 400 MHz) δ 7.42 (d, J 7.6 Hz, 2H), 7.34-7.22 (m, 5H), 7.14 (d, J 8.0 Hz, 2H), 5.44 (d, J 4.8 Hz, 1H), 2.34 (s, 3H), 2.27 (d, J 5.0 Hz, 1H); ¹³C-NMR (CDCl₃, 100

MHz) & 143.6, 140.5, 136.9, 129.2, 128.5, 127.8, 127.1, 47.5, 21.0.

7b: (4-Methoxyphenyl)phenylmethanethiol

General procedure I was followed using sodium ethoxide solution (0.09 cm³, 0.23 mmol) and 6b (0.033 g, 0.12 mmol). The crude product was purified by flash column chromatography (n-pentane) and the title compound isolated as a colourless oil (0.031 g, 99 %).

The title compound was also isolated from the following procedure:

n-Butyllithium (0.29 cm³, 1.5 M in hexanes, 0.44 mmol) was added to a solution of diisopropylamine (0.07 cm³, 0.52 mmol) in THF (1 cm³) at 0 °C. This was stirred for 15 minutes and then cooled to -78 °C. This solution was added by cannular to a cooled (-78 °C) solution of **5b** (0.055 g, 0.19 mmol) in THF (1 cm³) and DMPU (0.5 cm³). The mixture was allowed to stir for 2 hours. Methanol (1 cm³) was added and the mixture allowed to warm to room temperature. Water (10 cm³) and diethyl ether (10 cm³) were added and the phases separated. The aqueous fraction was extracted with diethyl ether $(2 \times 10 \text{ cm}^3)$ and the combined organic fractions dried over magnesium sulfate, filtered and the solvent removed under reduced pressure. The crude product was then purified by flash column chromatography (petrol/EtOAc, 15:1) to afford the title compound as a colourless oil (0.027 g, 62 %). R_F: 0.40 (8:1, Petrol:EtOAc); MS m/z (EI) 229 (20%, M-H⁺); **HRMS**: found 229.0685, M-H⁺ requires 229.0682; **IR** ν_{max} (film)/cm⁻¹ 2559 (w, S-H); ¹H-NMR (CDCl₃, 400 MHz) δ 7.42 (d, J 4.0 Hz, 2H), 7.35-7.32 (m, 4H), 7.26-7.23 (m, 1H), 6.86 (d, J 4.0 Hz, 2H), 5.44 (d, J 4.0 Hz, 1H), 3.80 (s, 3H), 2.27 (d, J 4.0 Hz, 1H); ¹³C-NMR (CDCl₃, 100 MHz) δ 157.6, 142.7, 134.5, 127.9, 127.5, 126.7, 126.1, 112.8, 54.3, 46.2.

7c: (4-tert-Butylphenyl)phenylmethanethiol

General procedure I was followed using sodium ethoxide solution (0.07 cm³, 0.18 mmol) and 6c (0.028 g, 0.09 mmol). The crude product was purified by flash column chromatography (n-pentane) and the title compound isolated as a colourless oil (0.018 g, 78 %). *R*_F: 0.54 (8:1, Petrol:EtOAc); **MS** m/z (EI) 223 (100%, M-SH⁻); **HRMS**: found 223.1472, M-SH⁻ requires 223.1481; IR v_{max}(film)/cm⁻¹ 2558 (w, SH); ¹H-NMR (CDCl₃, 400 MHz) δ 7.37 (d, J 7.3 Hz, 2H), 7.32-7.11 (m, 7H), 5.37 (d, J 5.0 Hz, 1H), 2.22 (d, J 5.0 Hz, 1H), 1.24 (s, 9H); ¹³C-NMR (CDCl₃, 100 MHz) δ 149.0, 142.5, 139.2, 127.5, 126.8, 126.3, 126.1, 124.4, 46.4, 33.4, 30.3.

7d: (2-Chlorophenyl)phenylmethanethiol

n-Butyllithium (0.17 cm³, 0.43 mmol, 2.5 M in hexanes) was added to a solution of diisopropylamine (0.07 cm³, 0.51 mmol) in THF (1 cm³) at 0 °C. This was stirred for 15 minutes and then cooled to -60 °C. This solution was added by cannular to a cooled (-60 °C) solution of **5d** (0.053 g, 0.17 mmol) in THF (1 cm³) and DMPU (0.5 cm³). The mixture was allowed to stir for 15 hours. Propionic acid (0.04 cm³, 0.51 mmol) was added and the

mixture allowed to warm to room temperature. Water (10 cm³) and diethyl ether (10 cm³) were added and the phases separated. The aqueous fraction was extracted with diethyl ether (2 x 10 cm³) and the combined organic fractions dried over magnesium sulfate, filtered and the solvent removed under reduced pressure. The crude product was then purified by flash column chromatography (petrol) to afford the title compound as a colourless oil (0.017 g, 41 %). R_F : 0.57 (8:1, Petrol:EtOAc); **MS** m/z (EI) 201 (75%, M-SH⁻); **HRMS**: found 201.0460, M-SH⁻ requires 201.0466; **IR** ν_{max} (film)/cm⁻¹ 2559 (w, SH); ¹H-NMR (CDCl₃, 400 MHz) δ 7.64-7.61 (dd, *J* 7.8 1.5 Hz, 1H), 7.44-7.42 (d, *J* 7.6 Hz, 2H), 7.38-7.18 (m, 6H), 5.92 (d, *J* 5.6 Hz, 1H), 2.35 (d, *J* 5.6 Hz, 1H);¹³C-NMR (CDCl₃, 100 MHz) δ 141.9, 141.0, 132.9, 129.7, 129.7, 128.6, 128.4, 128.0, 127.3, 127.2, 43.8.

8a: Methyl-*p*-tolylthiocarbamic acid (S)-1-phenylethyl ester

S N

General procedure C was followed using s3 (0.302 g, 1.67 mmol) and lithium aluminium hydride (1.67 cm³, 1.67 mmol, 1 M in THF) in diethyl ether (7 cm³) followed by s18 (0.585 g, 1.64 mmol) and triethylamine (0.23 cm³, 1.64 mmol) in DCM (10 cm³) with stirring for 24 hours. The crude

mixture was purified by flash column chromatography (petrol/EtOAc, 8:1) to afford the title compound as an amorphous white solid (0.376 g, 79 %). $R_{\rm F}$: 0.30 (8:1, Petrol:EtOAc); $[\alpha]_{\rm D}^{22}$: -8.4° (*c*. 1.1, CHCl₃); **Mpt**: 76-78 °C (DCM); **MS** m/z (ES+) 286 (20%, M+H⁺), 308 (100%, M+Na⁺); **HRMS**: found 286.1268, M+Na⁺ requires 286.1260; **IR** v_{max}(film)/cm⁻¹ 1656 (C=O); ¹**H-NMR** (CDCl₃, 400 MHz) δ 7.33-7.11 (m, 9H), 4.67 (q, *J* 7.1 Hz, 1H), 3.28 (s, 3H), 2.36 (s, 3H), 1.63 (d, *J* 7.1 Hz, 3H); ¹³**C-NMR** (CDCl₃, 100 MHz) δ 168.3, 143.4, 139.3, 130.1, 128.4, 128.1, 127.4, 127.0, 44.9, 38.3, 22.9, 21.2; **HPLC**: er 98:2, General conditions I: *t_r* 5.2 (maj), 6.0 (min).

8b: (4-Methoxyphenyl)methylthiocarbamic acid S-((S)-1-phenylethyl) ester

General procedure C was followed using s3 (0.246 g, 1.34 mmol) and lithium aluminium hydride (1.34 cm³, 1.34 mmol, 1 M in THF) in diethyl ether (9 cm³) followed by s20 (0.483 g, 1.3 mmol) and triethylamine (0.18 cm³, 1.3 mmol) in DCM (10 cm³) with stirring for 26 hours. The crude

mixture was purified by flash column chromatography (petrol/EtOAc, 19:1) and the title compound isolated as a colourless oil (0.250 g, 62 %). $R_{\rm F}$: 0.35 (8:1, Petrol:EtOAc); $[\alpha]_{\rm D}^{21}$: 4.9° (*c*. 1.1, CHCl₃); **MS** m/z (ES+) 302 (5%, M+H⁺); **HRMS**: found 302.1201, M+H⁺ requires 302.1209; **IR** v_{max}(film)/cm⁻¹ 1651 (C=O); ¹H-NMR (CDCl₃, 500 MHz) δ 7.34-7.18 (m, 5H), 7.15 (d, *J* 8.8 Hz, 2H), 6.88 (d, *J* 8.8 Hz, 2H), 4.66 (q, *J* 7.1 Hz, 1H), 3.81 (s, 3H), 3.27 (s, 3H), 1.62 (d, *J* 7.1 Hz, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 168.6, 143.4, 129.8, 129.7, 128.4, 127.4, 127.0, 114.6, 55.4, 44.9, 38.4, 23.0; **HPLC**: er 96:4, General conditions I: *t_r* 7.7 (maj), 8.8 (min).

8c: (2-Methoxyphenyl)methylthiocarbamic acid S-((S)-1-phenylethyl) ester

General procedure C was followed using **s3** (0.270 g, 1.50 mmol) and lithium aluminium hydride (1.50 cm³, 1.50 mmol, 1 M in THF) in diethyl ether (7 cm³) followed by **s21** (0.560 g, 1.50 mmol) and triethylamine (0.21 cm³, 1.50 mmol) in DCM (10 cm³) with stirring for 18 hours. The crude mixture was purified by

flash column chromatography (petrol/EtOAc, 8:1) to afford the title compound as an amorphous white solid (0.410 g, 91 %). R_F : 0.17 (8:1, Petrol:EtOAc); $[\alpha]_D^{22}$: -18° (*c*. 1.6, CHCl₃); **Mpt**: 97-99 °C (petrol); **MS** m/z (ES+) 324 (100%, M+Na⁺); **HRMS**: found 324.1022, M+Na⁺ requires 324.1029; **IR** v_{max} (film)/cm⁻¹ 1656 (C=O); mixture of 2 rotamers ¹**H-NMR** (CDCl₃, 400 MHz) δ 7.36-7.15 (m, 14H), 6.99-6.90 (m, 4H), 4.68 (q, *J* 7.0 Hz, 1H), 4.67 (q, *J* 7.0 Hz, 1H), 3.89 (s, 3H), 3.74 (s, 3H), 3.22 (s, 6H), 1.63 (d, *J* 7.1 Hz, 3H), 1.61 (d, *J* 7.1 Hz, 3H); ¹³**C-NMR** (CDCl₃, 100 MHz) δ 169.0, 168.9, 156.2, 156.1, 143.6, 143.5, 130.8, 130.7, 130.1, 130.0, 128.4, 128.3, 127.4, 126.9, 126.8, 120.8, 120.7, 112.2, 112.2, 55.7, 55.5, 44.6, 44.6, 36.8, 23.0, 22.9; **HPLC**: er 97:3, General conditions I: *t_r*9.1 (min), 10.9 (maj).

8d: (4-Chlorophenyl)methylthiocarbamic acid S-((S)-1-phenylethyl) ester

General procedure C was followed using s3 (0.482 g, 2.68 mmol) and lithium aluminium hydride (2.68 cm³, 2.68 mmol, 1 M in THF) in diethyl ether (10 cm³) followed by s22 (1.015 g, 2.70 mmol) and triethylamine (0.38 cm³, 2.70 mmol) in DCM (10 cm³) with stirring for 18 hours. The

crude mixture was purified by flash column chromatography (petrol/EtOAc, 8:1) to afford the title compound as an amorphous white solid (0.596 g, 73 %). $R_{\rm F}$: 0.29 (8:1, Petrol:EtOAc); $[\alpha]_{\rm D}^{22}$: -6.5° (*c*. 1.1, CHCl₃); **MS** m/z (ES+) 328 (100%, M+Na⁺); **HRMS**: found 328.0533, M+Na⁺ requires 328.0533; **IR** $\nu_{\rm max}$ (film)/cm⁻¹ 1656 (C=O); ¹**H-NMR** (CDCl₃, 400 MHz) δ 7.28-7.18 (m, 6H), 7.15-7.10 (m, 3H), 4.60 (q, *J* 7.1 Hz, 1H), 3.20 (s, 3H), 1.56 (d, *J* 7.3 Hz, 3H); ¹³**C-NMR** (CDCl₃, 100 MHz) δ 167.2, 142.1, 139.5, 133.1, 128.6, 128.5, 127.4, 126.3, 126.1, 44.0, 37.1, 21.9; **HPLC**: er 98:2, General conditions I: t_r 5.9 (maj), 7.9 (min).

8e: (3-Chlorophenyl)methylthiocarbamic acid (S)-1-phenylethyl ester

General procedure C was followed using s3 (0.182 g, 1.00 mmol) and lithium aluminium hydride (1.00 cm³, 1.00 mmol, 1 M in THF) in diethyl ether (7 cm³) followed by s23 (0.415 g, 1.10 mmol) and DCM (10 cm³) with stirring for 16 h. The crude mixture was purified by flash column

chromatography (petrol/EtOAc, 8:1) to afford the title compound as a colourless oil (0.283 g, 92%). R_F : 0.19 (petrol/EtOAc, 8:1); $[\alpha]_D^{22}$: -17.9° (*c*. 0.9, CHCl₃); **MS** m/z (ES+) 306 (60%, M+H⁺); **HRMS**: found 306.0722, M+H⁺ requires 306.0714; **IR** v_{max} (film)/cm⁻¹ 1656 (C=O); ¹H-NMR (CDCl₃, 400 MHz) δ 7.35 - 7.15 (m, 9H), 4.70 (q, *J* 7.2 Hz, 1H), 3.30 (s, 3H) and 1.66 (d, *J* 7.2 Hz, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 168.2, 143.2, 143.1, 134.8, 130.3, 128.5, 128.4, 127.4, 127.2, 45.1, 38.1, 22.9; **HPLC**: er 98:2, General conditions I: *t_r* 6.3 (maj), 7.5 (min).

8f: (4-Cyanophenyl)methylthiocarbamic acid (S)-1-phenylethyl ester

General procedure C was followed using s3 (0.192 g, 1.00 mmol) and lithium aluminium hydride (1.00 cm³, 1.00 mmol, 1 M in THF) in diethyl ether (7 cm³) followed by s24 (0.405 g, 1.10 mmol), triethylamine (0.17 cm³, 1.20 mmol) and DCM (10 cm³) with stirring for 18 h. The crude

mixture was purified by flash column chromatography (petrol/EtOAc, 8:1) to afford the title compound as colourless prisms (0.238 g, 77%). R_F : 0.10 (petrol/EtOAc, 8:1); $[\alpha]_D^{22}$: -12.0° (*c*. 1, CHCl₃); Mpt: 98-100 °C (DCM); MS m/z (ES+) 319 (100%, M+Na⁺); HRMS: found 319.0866, M+Na⁺ requires 319.0876; IR v_{max} (film)/cm⁻¹ 1659 (C=O); ¹H-NMR (CDCl₃, 400 MHz) δ 7.68 (d, *J* 8.4 Hz, 2H), 7.41 (d, *J* 8.4 Hz, 2H), 7.36 - 7.22 (m, 5H), 4.72 (q, *J* 7.2 Hz, 1H), 3.34 (s, 3H) and 1.68 (d, *J* 7.2 Hz, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 168.1, 146.3, 142.7, 133.3, 128.6, 128.1, 127.3, 127.3, 118.2, 45.3, 37.7, 22.8; HPLC: er 98:2, General conditions I: t_r 14.4 (maj), 18.9 (min).

8g: Methyl(2,4,6-trimethylphenyl)thiocarbamic acid (S)-1-phenyl-ethyl ester

General procedure C was followed using s3 (0.186 g, 1.03 mmol) and lithium aluminium hydride (1.03 cm³, 1.03 mmol, 1 M in THF) in diethyl ether (7 cm³) followed by s25 (0.423 g, 1.10 mmol), triethylamine (0.17 cm³, 1.20 mmol) and DCM (10 cm³) with stirring for 20 h. The crude mixture was purified by flash column chromatography (petrol/EtOAc, 8:1) to afford the

title compound as colourless prisms (0.185 g, 55 %). $R_{\rm F}$: 0.10 (petrol/EtOAc, 8:1); $[\alpha]_{\rm D}^{22}$: -3.9° (c. 0.9, CHCl₃); **Mpt**: 45-47 °C (DCM); **MS** m/z (ES+) 336 (100%, M+Na⁺); **HRMS**: found 336.1394, M+Na⁺ requires 336.1393; **IR** $\nu_{\rm max}$ (film)/cm⁻¹ 1656 (C=O); ¹H-NMR (CDCl₃, 400 MHz) δ 7.33 - 7.16 (m, 5H), 6.93 (s, 1H), 6.88 (s, 1H), 4.67 (q, J 7.2 Hz, 1H), 3.16 (s, 3H), 2.29 (s, 3H), 2.23 (s, 3H), 2.07 (s, 3H) and 1.61 (d, J 7.2 Hz, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 168.5, 143.5, 138.8, 137.0, 136.8, 136.2, 129.6, 129.5, 128.3, 127.4, 126.9, 44.3, 35.3, 22.8, 21.1, 17.6, 17.5. Conditions for resolution on chrial HPLC were not found.

8h: Methylnaphthalen-1-ylthiocarbamic acid (S)-1-phenylethyl ester

General procedure C was followed using s3 (0.209 g, 1.16 mmol) and lithium aluminium hydride (1.16 cm³, 1.16 mmol, 1 M in THF) in diethyl ether (7 cm³) followed by s26 (0.501 g, 1.27 mmol) and triethylamine (0.18 cm³, 1.27 mmol) in DCM (10 cm³) with stirring for 15 hours. The crude mixture was purified by flash column chromatography (petrol/DCM, 9:1) to afford the title compound

as an amorphous white solid (0.274 g, 73 %). $R_{\rm F}$: 0.06 (9:1, Petrol:DCM); $[\alpha]_{\rm D}^{21}$: +1° (*c*. 1.2, CHCl₃); **Mpt**: 87-89 °C (DCM); **MS** m/z (ES+) 344 (100%, M+Na⁺); **HRMS**: found 344.1068, M+Na⁺ requires 344.1080; **IR** $\nu_{\rm max}$ (film)/cm⁻¹ 1654 (C=O); mixture of 2 rotamers ¹H-NMR (CDCl₃, 500 MHz) δ 7.96-7.84 (m, 4H), 7.68-7.35 (m, 10H), 7.29-7.17 (m, 10H), 4.72-7.65 (m, 2H), 3.42 (s, 3H), 3.40 (s, 3H), 1.60-1.52 (m, 6H); ¹³C-NMR (CDCl₃, 75.5 MHz) δ 169.2, 143.4,143.3, 134.7, 134.7, 128.4, 127.4, 126.9, 125.4, 122.6, 122.5, 44.9, 44.8, 38.1, 22.9, 22.8; **HPLC**: er 97:3, General conditions III: t_r 7.8 (min), 9.7 (maj).

8i: Methyl(2,4,6-trimethylphenyl)thiocarbamic acid (S)-1-phenylethyl ester

General procedure C was followed using **s3** (0.191 g, 1.05 mmol) and lithium aluminium hydride (1.05 cm³, 1.05 mmol, 1 M in THF) in diethyl ether (7 cm³) followed by **s27** (0.397 g, 1.10 mmol), triethylamine (0.17 cm³, 1.20 mmol) and DCM (10 cm³) with stirring for 20 h. The crude mixture was purified by flash column chromatography (petrol/EtOAc, 8:1) to afford the title compound as a slightly yellow oil (0.275 g, 90%). $\mathbf{R}_{\rm F}$: 0.19 (petrol/EtOAc, 8:1); $[\alpha]_{\rm D}^{22}$: -38.5°

(c. 1.3, CHCl₃); **MS** m/z (ES+) 312 (100%, M+Na⁺); **HRMS**: found 312.0815, M+Na⁺ requires 312.0829; **IR** ν_{max} (film)/cm⁻¹ 1659 (C=O); ¹H-NMR (CDCl₃, 400 MHz) δ 7.38 - 7.21 (m, 6H), 7.08 - 6.98 (m, 3H), 4.70 (q, *J* 7.2 Hz, 1H), 3.31 (s, 3H) and 1.66 (d, *J* 7.2 Hz, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 168.2, 164.0, 161.5, 143.5, 143.4, 143.1, 130.5, 130.5, 128.5, 127.4, 127.2, 123.8, 115.4, 115.2, 45.0, 38.1, 22.9; **HPLC**: er 98:2, General conditions I: t_r 6.0 (maj), 7.0 (min).

8j: Methyl-*p*-tolylthiocarbamic acid S-((*R*)-1-phenylbutyl) ester

General procedure C was followed using s4 (0.075 g, 0.36 mmol) and lithium aluminium hydride (0.36 cm³, 0.36 mmol, 1 M in THF) in diethyl ether (5 cm³) followed by s18 (0.144 g, 0.40 mmol), triethylamine (0.06 cm³, 0.43 mmol) and DCM (10 cm³) with stirring for 18 h. The crude mixture was purified by flash column chromatography (petrol/EtOAc, 8:1) to afford the

title compound as colourless prisms (0.078 g, 69%). $R_{\rm F}$: 0.33 (petrol/EtOAc, 8:1); $[\alpha]_{\rm D}^{20}$: 29.4° (c. 2.2, CHCl₃); **Mpt**: 37-39 °C (DCM); **MS** m/z (ES+) 336 (100%, M+Na⁺), 314 (15%, M+H⁺); **HRMS**: found 336.1393, M+Na⁺ requires 336.1393; **IR** $v_{\rm max}$ (film)/cm⁻¹ 1649 (C=O); ¹H-NMR (CDCl₃, 400 MHz) δ 7.28-7.25 (m, 4H), 7.23-7.18 (m, 3H), 7.11 (d, J 8.3 Hz, 2H), 4.52 (dd, J 6.6, 8.8 Hz, 1H), 3.27 (s, 3H), 2.37 (s, 3H), 1.97-1.79 (m, 2H), 1.38-1.15 (m, 3H), 0.87 (t, J 7.3 Hz, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 167.4, 141.6, 129.0, 127.4, 127.3, 127.1, 126.8, 125.8, 48.8, 38.0, 37.3, 20.2, 19.8, 12.7; **HPLC**: er 99:1, General conditions III: t_r 5.2 (maj), 6.1 (min).

8k: Methyl(3-triflouromethylphenyl)thiocarbamic acid (R)-1-phenylethyl ester

General procedure C was followed using **s5** (0.399 g, 1.59 mmol) and lithium aluminium hydride (1.60 cm³, 1.60 mmol, 1 M in THF) in diethyl ether (8 cm³) followed by **s19** (0.600 g, 1.75 mmol) and triethylamine (0.27 cm³, 1.91 mmol) in DCM (10 cm³) with stirring for 18 hours. The

crude mixture was purified by flash column chromatography (petrol/EtOAc, 8:1) to afford the title compound as an amorphous white solid (0.436 g, 80 %). $R_{\rm F}$: 0.17 (8:1, Petrol:EtOAc); $[\alpha]_{\rm D}^{22}$: -18° (*c*. 1.6, CHCl₃); **Mpt**: 97-99 °C (petrol); **MS** m/z (ES+) 324 (100%, M+Na⁺); **HRMS**: found 324.1022, M+Na⁺ requires 324.1029; **IR** $v_{\rm max}$ (film)/cm⁻¹ 1656 (C=O); ¹**H-NMR** (CDCl₃, 500 MHz) $\delta \delta$ 7.59 (br s, 1H), 7.53 (d, *J* 7.6 Hz, 1H), 7.47 (d, *J* 7.9 Hz, 1H), 7.43-7.36 (m, 4H), 7.26-7.25 (m, 2H), 4.74 (q, *J* 7.3 Hz, 1H), 3.31 (s, 3H), 1.63 (d, *J* 7.3 Hz, 3H); ¹³**C-NMR** (CDCl₃, 75.5 MHz) δ 167.7, 144.8, 141.9, 131.0, 131.0, 130.5, 129.5, 128.8, 128.5, 128.3, 124.1-123.8 (m), 44.3, 38.3, 22.6; **HPLC**: er 96:4, General conditions I: *t_r* 5.9 (min), 6.5 (maj).

81: Methyl-p-tolylthiocarbamic acid 1-(4-methoxyphenyl)ethyl ester

Oxalyl chloride $(0.34 \text{ cm}^3, 4.00 \text{ mmol}, 1 \text{ eq})$ was added to a stirred solution of DMF $(0.33 \text{ cm}^3, 4.30 \text{ mmol}, 1.1 \text{ eq})$ in DCM (10 cm^3) at 0 °C. The mixture was stirred for 5 min. (S)-1-(4-methoxyphenyl)ethanol (0.54 g, 3.60 mmol, 1 eq), triethylamine (1.10

cm³, 7.90 mmol, 2 eq) and ethanethioic S-acid (0.25 cm³, 3.60 mmol, 1 eq) were added sequentially. The mixture was warmed to room temperature and stirred for 18 h. Water (5 cm³) was added, the phases separated and the aqueous layer extracted with EtOAc ($3 \times 10 \text{ cm}^3$). The combined organic fractions were dried over magnesium sulfate, filtered and the solvent removed under reduced pressure. The crude thioacetate was dissolved in diethyl ether (7 cm³). Lithium aluminium hydride (1.2 cm³, 1 M in THF, 1.20 mmol, 1 eq) was added dropwise. The mixture was heated to reflux with stirring for 1.5 h then cooled to room temperature. Aqueous HCl (3 cm³, 1 M) was added with care. The phases were separated and the aqueous layer extracted with diethyl ether (3 x 10 cm^3). The combined organic fractions were dried over magnesium sulfate, filtered and the solvent removed under reduced pressure. The crude thiol was then dissolved in DCM (10 cm³). **s18** (0.283 g, 0.79 mmol, 1.1 eq) and triethylamine (0.11 cm³, 0.80 mmol, 1.2 eq) were added and the mixture was stirred for 72 h. The mixture was washed with aqueous HCl (2 x 7 cm³,1M), dried over magnesium sulfate, filtered and the solvent removed under reduced pressure. The crude product was purified by flash column chromatography (petrol/EtOAc, 8:1) and the title compound isolated as a waxy colourless oil (0.165 g, 15 %). **R**_F: 0.19 (8:1, Petrol:EtOAc); **MS** m/z (ES+) 338 (100%, M+Na⁺), 316 (20%, M+H⁺); **HRMS**: found 338.1178, M+Na⁺ requires 338.1186; **IR** ν_{max} (film)/cm⁻¹ 1649 (C=O); **'H-NMR** (CDCl₃, 400 MHz) δ 7.25 (d, J 8.8 Hz, 2H), 7.18 (d, J 8.1 Hz, 2H), 7.12 (d, J 8.6 Hz, 2H), 6.80 (d, J 8.8 Hz, 2H), 4.65 (q, J 7.3 Hz, 1H), 3.77 (s, 3H), 3.29 (s, 3H), 2.36 (s, 3H), 1.62 (d, J 7.3 Hz, 3H); ¹³C-NMR (CDCl₃, 75.5 MHz) δ 168.5, 125.5, 135.4, 130.1, 128.5, 113.7, 55.2, 44.4, 38.3, 23.0, 21.2.

Optically pure (S)-1-(4-methoxy-phenyl)-ethanol was used in this procedure. The product, however, was isolated as a racemic mixture. It is though that the electron rich nature of the benzylic ring promotes S_N1 nucleophilic addition of ethanethioic *S*-acid over the desired S_N2 mechanism.

8m: Methyl-p-tolylthiocarbamic acid (S)-indan-1-yl ester

Oxalyl chloride $(0.54 \text{ cm}^3, 6.16 \text{ mmol}, 1 \text{ eq})$ was added to a stirred solution of DMF $(0.52 \text{ cm}^3, 6.77 \text{ mmol}, 1.1 \text{ eq})$ in DCM (50 cm^3) at 0 °C. The mixture was stirred for 5 min. (*R*)-indan-1-ol (0.83 g, 6.16 mmol, 1 eq), triethylamine $(1.72 \text{ cm}^3, 12.3 \text{ mmol}, 2 \text{ eq})$ and ethanethioic S-acid (0.44 cm³, 6.16 mmol, 1 eq) were added sequentially. The mixture was warmed to room

temperature and stirred for 18 h. Water (20 cm³) was added, the phases separated and the aqueous layer extracted with EtOAc (3 x 10 cm³). The combined organic fractions were dried over magnesium sulfate, filtered and the solvent removed under reduced pressure. The crude thioacetate was dissolved in diethyl ether (20 cm³). Lithium aluminium hydride (6.16 cm³, 1 M in THF, 6.16 mmol, 1 eq) was added dropwise. The mixture was heated to reflux with stirring for 1.5 h then cooled to room temperature. Aqueous HCl (10 cm³, 1 M) was added with care. The phases were separated and the aqueous layer extracted with diethyl ether (3 x 10 cm³). The combined organic fractions were dried over magnesium sulfate, filtered and the solvent removed under reduced pressure. The crude thiol was then dissolved in DCM (20 cm³). **s18** (2.42 g, 6.78 mmol, 1.1 eq) and triethylamine (1.03 cm³, 7.39 mmol, 1.2 eq) were added and the mixture was stirred for 15 h. The mixture was washed with aqueous HCl (2 x 10 cm³, 1M), dried over magnesium sulfate, filtered and the solvent removed under reduced pressure. The crude pressure. The crude product was purified by flash column chromatography (petrol/EtOAc, 15:1) and the title compound isolated as a yellow oil (0.954 g, 52 %). **R**_F: 0.33 (8:1, Petrol:EtOAc); $[\alpha]_D^{21}$: -38.7° (*c*. 1.0, CHCl₃); **MS** m/z (ES+) 320 (100%, M+Na⁺); **HRMS**: found 320.1074, M+Na⁺ requires 320.1080; **IR** v_{max}(film)/cm⁻¹ 1654

(C=O); ¹H-NMR (CDCl₃, 400 MHz) δ 7.34-7.32 (m, 1H), 7.25-7.12 (m, 7H), 5.01 (dd, *J* 4.8, 7.6 Hz, 1H), 3.35 (s, 3H), 3.03-2.95 (m, 1H), 2.89-2.82 (m, 1H), 2.70-2.61 (m, 1H), 2.36 (s, 3H), 2.18-2.10 (m, 1H); ¹³C-NMR (CDCl₃, 100 MHz) δ 169.1, 143.9, 142.4, 139.5, 130.3, 130.1, 128.1, 127.6, 126.6, 125.1, 124.5, 49.6, 38.3, 34.7, 30.9, 21.2; HPLC: er 79:21, General conditions I: *t_r* 7.3 (maj), 8.7 (min).

9a: Methylthiocarbamic acid (S)-1-phenyl-1-p-tolylethyl ester

General procedure G was followed using *n*-BuLi (0.18 cm³, 0.44 mmol, 2.5 M in hexanes), TMP (0.09 cm³, 0.53 mmol), **8a** (0.050 g, 0.18 mmol) and propionic acid (0.04 cm³, 0.53 mmol). The crude product was purified by flash column chromatography (petrol/EtOAc, 8:1) and the title compound isolated as an amorphous white solid (0.042 g, 83%). $R_{\rm F}$: 0.10 (8:1, Petrol:EtOAc); $[\alpha]_{\rm D}^{22}$: -4.9° (*c*. 1.2, CHCl₃); **Mpt**: 96-98 °C (DCM); **MS** m/z (ES+) 308 (100%, M+Na⁺); **HRMS**: found 308.1094, M+Na⁺ requires 308.1080; **IR** $\nu_{\rm max}$ (film)/cm⁻¹ 1659 (C=O); ¹H-

NMR (CDCl₃, 400 MHz) δ 7.41 (d, *J* 8.0 Hz, 2H), 7.31 - 7.20 (m, 5H), 7.10 (d, *J* 8.0 Hz, 2H), 5.23 (s, 1H), 2.70 (d, *J* 4.4 Hz, 3H), 2.37 (s, 3H), 2.32 (s, 3H); ¹³**C-NMR** (CDCl₃, 75.5 MHz) δ 166.4, 145.6, 142.5, 136.6, 128.9, 128.1, 127.9, 127.8, 126.9, 59.6, 30.1, 27.5, 21.0; **HPLC**: er 96:4, General conditions II: *t*_r 11.6 (maj), 14.7 (min).

9b: (±)-Methylthiocarbamic acid 1-(4-methoxyphenyl)-1-phenylethyl ester

General procedure F was followed using **8b** (0.021 g, 0.07 mmol), diisopropylamine (0.03 cm³, 0.21 mmol), *n*-BuLi (0.09 cm³, 2.0 M, 0.18 mmol) and propionic acid (0.02 cm³, 0.27 mmol) with stirring for 4 hours. The crude product was purified by flash column chromatography (petrol/EtOAc, 8:1) to afford the title compound as an amorphous white solid (0.020 g, 94 %). $R_{\rm F}$: 0.09 (8:1, Petrol:EtOAc); **Mpt**: 93-95 °C (DCM); **MS** m/z (ES+) 324 (100%, M+Na⁺); **HRMS**: found 324.1018, M+Na⁺ requires 324.1029; **IR** $v_{\rm max}$ (film)/cm⁻¹ 1657 (C=O); '**H-NMR** (CDCl₃, 400 MHz) δ

7.43-7.40 (m, 2H), 7.35-7.22 (m, 5H), 6.84 (d, *J* 9.0 Hz, 2H), 5.21 (d, *J* 4.1 Hz, 1H), 3.80 (s, 3H), 2.74 (d, *J* 4.5 Hz, 3H), 2.38 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 158.3, 145.6, 137.4, 129.1, 128.1, 127.8, 126.9, 113.4, 59.4, 55.2, 30.2, 27.5.

9c: Methylthiocarbamic acid (S)-1-(2-methoxyphenyl)-1-phenylethyl ester

General procedure G was followed using *n*-BuLi (0.17 cm³, 0.42 mmol, 2.5 M in hexanes), TMP (0.09 cm³, 0.50 mmol), **8c** (0.049 g, 0.17 mmol) and propionic acid (0.04 cm³, 0.53 mmol). The crude product was purified by flash column chromatography (petrol/EtOAc, 8:1) and the title compound isolated as an amorphous white solid (0.044 g, 89%). $R_{\rm F}$: 0.07 (8:1, Petrol:EtOAc); $[\alpha]_{\rm D}^{21}$: -32.8° (*c*. 1.1, CHCl₃); **Mpt**: 125-127 °C (diethyl ether); **MS** m/z (ES+) 302 (35%, M+H⁺), 324

(45%, M+Na⁺); **HRMS**: found 324.1019, M+Na⁺ requires 324.1029; **IR** v_{max} (film)/cm⁻¹ 3324 (NH), 1652 (C=O); **¹H-NMR** (CDCl₃, 400 MHz) δ 7.73 (dd, *J* 7.8, 1.5 Hz, 1H), 7.33-7.16 (m, 6H), 7.02 (td, *J* 7.6, 1.3 Hz, 1H), 6.85 (dd, *J* 8.1, 1.0 Hz, 1H), 5.23 (br s, 1H), 3.43 (s, 3H), 2.75 (d, *J* 4.8 Hz, 3H), 2.40 (s, 3H); **¹³C-NMR** (CDCl₃, 100 MHz) δ 157.2, 146.2, 133.0, 128.9, 127.8, 126.4, 126.3, 120.2, 113.0, 59.2, 55.5, 28.5, 27.5; **HPLC**: er 91:9, General conditions II: *t_r* 9.6 (maj), 12.4 (min).

9d: Methylthiocarbamic acid (*S*)-1-(4 chlorophenyl)-1-phenylethyl ester

General procedure G was followed using *n*-BuLi (0.17 cm³, 0.41 mmol, 2.5 M in hexanes), TMP (0.08 cm³, 0.49 mmol), **8d** (0.046 g, 0.16 mmol) and propionic acid (0.04 cm³, 0.53 mmol). The crude product was purified by flash column chromatography (petrol/EtOAc, 8:1) and the title compound isolated as an amorphous white solid (0.044 g, 94%). $R_{\rm F}$: 0.07 (8:1, Petrol:EtOAc); $[\alpha]_{\rm D}^{20}$: -18.8° (*c*. 1.5, CHCl₃); **MS** m/z (ES+) 328 (100%, M+Na⁺); **HRMS**: found 328.0527, M+Na⁺ requires 328.0533; **IR** $\nu_{\rm max}$ (film)/cm⁻¹ 1660 (C=O); ¹**H-NMR** (CDCl₃, 400 MHz) δ

7.40-7.23 (m, 9H), 5.20 (br s, 1H), 2.76 (d, *J* 4.5 Hz, 3H), 2.37 (s, 3H); ¹³C-NMR (CDCl₃, 125 MHz) δ 145.1, 144.1, 132.7, 129.5, 128.2, 128.1, 127.6, 127.1, 59.2, 30.1, 27.5; HPLC: er 96:4, General conditions II: t_r 8.9 (maj), 10.7 (min).

9e: Methylthiocarbamic acid (S)-1-(3-chlorophenyl)-1-phenylethyl ester

General procedure G was followed using *n*-BuLi (0.17 cm³, 0.41 mmol, 2.5 M in hexanes), TMP (0.08 cm³, 0.49 mmol), **8e** (0.049 g, 0.16 mmol) and propionic acid (0.04 cm³, 0.53 mmol). The crude product was purified by flash column chromatography (petrol/EtOAc, 8:1) and the title compound isolated as a colourless oil (0.038 g, 69%). **R**_F: 0.10 (8:1, Petrol:EtOAc); $[\alpha]_D^{22}$: -10.3° (c. 0.9, CHCl₃); **MS** m/z (ES+) 328 (100%, M+Na⁺); **HRMS**: found 328.0531, M+Na⁺ requires 328.0533;

IR ν_{max} (film)/cm⁻¹ 1651 (C=O); ¹H-NMR (CDCl₃, 400 MHz) δ 7.43-7.45 (m, 1H), 7.37-7.21 (m, 8H), 5.21 (br s, 1H), 2.76 (d, *J* 4.8 Hz, 3H), 2.38 (s, 3H); ¹³C-NMR (CDCl₃, 75.5 MHz) δ 165.7, 147.6, 144.9, 134.0, 129.2, 128.3, 128.2, 127.7, 127.2, 127.1, 126.2, 59.2, 30.0, 27.6; HPLC: er 96:4, General conditions II: *t_r* 11.0 (min), 15.9 (maj).

9f: Methylthiocarbamic acid (S)-1-(4-cyanophenyl)-1-phenylethyl ester

General procedure G was followed using *n*-BuLi (0.17 cm³, 0.42 mmol, 2.5 M in hexanes), TMP (0.09 cm³, 0.51 mmol), **8f** (0.048 g, 0.17 mmol) and propionic acid (0.04 cm³, 0.53 mmol). The crude product was purified by flash column chromatography (petrol/EtOAc, 8:1) and the title compound isolated as an amorphous white solid (0.037 g, 78%). $R_{\rm F}$: 0.04 (8:1, Petrol:EtOAc); $[\alpha]_{\rm D}^{22}$: -3.8° (*c*. 1.6, CHCl₃); **MS** m/z (ES+) 319 (80%, M+Na⁺); **HRMS**: found 319.0875, M+Na⁺ requires 319.0876; **IR** $v_{\rm max}$ (film)/cm⁻¹ 2227 (CN), 1674 (C=O); ¹**H-NMR** (CDCl₃,

500 MHz) δ 7.61 (s, 4H), 7.34-7.24 (m, 5H), 5.25 (br s, 1H), 2.76 (d, *J* 4.5 Hz, 3H), 2.38 (s, 3H); ¹³C-NMR (CDCl₃, 125 MHz) δ 151.0, 144.5, 131.8, 129.0, 128.4, 127.5, 118.8, 110.6, 59.3, 29.8, 27.6; HPLC: er 97:3, General conditions II: *t_r* 12.3 (min), 13.8 (maj).

9h: Methylthiocarbamic acid (S)-1-naphthalen-1-yl-1-phenylethyl ester

General procedure G was followed using *n*-BuLi (0.19 cm³, 0.40 mmol, 2.12 M in hexanes), TMP (0.08 cm³, 0.48 mmol), **8h** (0.052 g, 0.16 mmol) and propionic acid (0.04 cm³, 0.53 mmol). The crude product was purified by flash column chromatography (petrol/EtOAc, 8:1) and the title compound isolated as an amorphous white solid (0.051 g, 98%). $R_{\rm F}$: 0.07 (8:1, Petrol:EtOAc); $[\alpha]_{\rm D}^{21}$: -218.6° (c. 0.3, CHCl₃); Mpt: 59-61 °C (DCM); MS m/z (ES+) 344 (100%, M+Na⁺);

HRMS: found 322.1252, M+H⁺ requires 322.1260; IR v_{max}(film)/cm⁻¹ 1667 (C=O); ¹H-NMR (CDCl₃,

500 MHz) δ 7.96 (d, *J* 7.3 Hz, 1H), 7.84 (ap t, *J* 8.6 Hz, 2H), 7.71 (d, *J* 8.8 Hz, 1H), 7.54 (ap t, *J* 7.7 Hz, 1H), 7.36-7.30 (m, 3H), 7.27-7.15 (m, 4H), 5.11 (br s, 1H), 2.61 (d, *J* 4.1 Hz, 3H), 2.52 (s, 3H); ¹³C-NMR (CDCl₃, 125 MHz) δ 165.8, 147.0, 138.9, 135.0, 130.5, 129.3, 129.0, 128.5, 128.1, 126.8, 126.6, 124.9, 124.6, 124.5, 60.2, 33.0, 27.4; **HPLC**: er 96:4, General conditions II: t_r 9.1 (maj), 10.0 (min).

9j: Methylthiocarbamic acid (R)-1-phenyl-1-p-tolylbutyl ester

General procedure G was followed using *n*-BuLi (0.16 cm³, 0.41 mmol, 2.5 M in hexanes), TMP (0.08 cm³, 0.49 mmol), **8j** (0.051 g, 0.16 mmol) and propionic acid (0.04 cm³, 0.49 mmol). The crude product was purified by flash column chromatography (petrol/EtOAc, 8:1) and the title compound isolated as an amorphous white solid (0.038 g, 74%). $R_{\rm F}$: 0.12 (8:1, Petrol:EtOAc); $[\alpha]_{\rm D}^{20}$: -2.0° (*c*. 1, CHCl₃); **Mpt**: 97-99 °C (petrol); **MS** m/z (ES+) 336 (100%, M+Na⁺); **HRMS**: found 336.1401, M+Na⁺ requires 336.1393; **IR** $\nu_{\rm max}$ (film)/cm⁻¹ 1659 (C=O); ¹H-

NMR (CDCl₃, 400 MHz) δ 7.39 (d, *J* 8.1 Hz, 2H), 7.31-7.20 (m, 5H), 7.10 (d, *J* 8.1 Hz, 2H), 5.13 (br s, 1H), 2.65 (m, 5H), 2.33 (s, 3H), 1.29-1.19 (m, 2H), 0.89 (t, *J* 7.31 Hz, 3H); ¹³**C-NMR** (CDCl₃, 100 MHz) δ 145.2, 142.0, 136.3, 128.4, 128.3, 127.7, 126.6, 63.6, 42.7, 21.0, 18.8, 14.3; **HPLC**: er 98:2, General conditions II: *t*_r 10.5 (min), 11.5 (maj).

9k: Methylthiocarbamic acid (S)-1-phenyl-1-(3-trifluoromethylphenyl)ethyl ester

General procedure G was followed using *n*-BuLi (0.15 cm³, 0.37 mmol, 2.5 M in hexanes), TMP (0.08 cm³, 0.44 mmol), **8k** (0.053 g, 0.15 mmol) and propionic acid (0.04 cm³, 0.53 mmol). The crude product was purified by flash column chromatography (petrol/EtOAc, 8:1) and the title compound isolated as an amorphous white solid (0.045 g, 85%). $R_{\rm F}$: 0.06 (8:1, Petrol:EtOAc); $[\alpha]_{\rm D}^{20}$: -5.4° (*c*. 1.4, CHCl₃); Mpt: 82-84 °C (DCM); MS m/z (ES+) 362 (100%,

M+Na⁺); **HRMS**: found 340.0976, M+H⁺ requires 340.0977; **IR** ν_{max} (film)/cm⁻¹ 1659 (C=O); **¹H-NMR** (CDCl₃, 400 MHz) δ .74 (br s, 1H), 7.64 (d, *J* 7.8 Hz, 1H), 7.51 (d, *J* 7.8 Hz, 1H), 7.43 (ap t, *J* 7.8 Hz, 1H), 7.35-7.25 (m, 5H), 5.24 (br s, 1H), 2.75 (d, *J* 4.3 Hz, 3H), 2.42 (s, 3H); ¹³C-NMR (CDCl₃, 75.5 MHz) δ 165.6, 146.6, 144.8, 131.5, 130.5, 130.1, 128.5, 128.3, 127.6, 127.3, 124.7, 124.7, 123.8, 123.7, 59.3, 30.0, 27.6; **HPLC**: er 67:33, General conditions II: *t*_r 5.6 (min), 6.6 (maj).

91: (±)-Methylthiocarbamic acid 1-(4-methoxyphenyl)-1-*p*-tolylethyl ester

General procedure E was followed using *n*-BuLi (0.22 cm³, 0.40 mmol, 1.8 M in hexanes), diisopropylamine (0.07 cm³, 0.48 mmol), **8**I (0.040 g, 0.16 mmol) and propionic acid (0.04 cm³, 0.53 mmol). The crude product was purified by flash column chromatography (petrol/EtOAc, 8:1) and the title compound isolated as a slightly yellow amorphous solid (0.034 g, 86%). $R_{\rm F}$: 0.06 (8:1, Petrol:EtOAc); **Mpt**: 91-93 °C (DCM); **MS** m/z (ES+) 225 (100%, M-(SCONHCH₃)), 338 (45%, M+Na⁺); **HRMS**: found 338.1190, M+Na⁺ requires

338.1186; **IR** ν_{max}(film)/cm⁻¹ 1656 (C=O); ¹**H-NMR** (CDCl₃, 400 MHz) δ 7.35-7.29 (m, 4H), 7.12 (d, *J* 8.1 Hz, 2H), 6.84 (d, *J* 8.8 Hz, 2H), 5.20 (br d, *J* 3.5 Hz, 1H), 3.80 (s, 3H), 2.73 (d, *J* 4.5 Hz, 3H), 2.36 (s, 3H), 2.33 (s, 3H); ¹³**C-NMR** (CDCl₃, 75.5 MHz) δ 166.6, 158.3, 142.7, 137.6, 136.6, 129.1, 128.8, 127.7, 113.4, 59.2, 55.2, 30.3, 27.5, 21.0.

9m: Methylthiocarbamic acid (R)-1- p-tolylindan-1-yl ester

General procedure G was followed using *n*-BuLi (0.18 cm³, 0.40 mmol, 2.3 M in hexanes), TMP (0.06 cm³, 0.48 mmol), 8m (0.056 g, 0.16 mmol) and propionic acid $(0.04 \text{ cm}^3, 0.50 \text{ mmol})$. The crude product was purified by flash column chromatography (petrol/EtOAc, 8:1) and the title compound isolated as an amorphous white solid (0.049 g, 87%). $R_{\rm F}$: 0.05 (8:1, Petrol:EtOAc); $[\alpha]_{\rm D}^{22}$: -4.7° (c. 0.9, CHCl₃); **Mpt**: 96-98 °C (DCM); **MS** m/z (ES+) 320 (100%, M+Na⁺); **HRMS**: found 320.1086,

M+Na⁺ requires 320.1080; IR v_{max} (film)/cm⁻¹ 1654 (C=O); ¹H-NMR (CDCl₃, 400 MHz) δ 7.41-7.37 (m, 3H), 7.30-7.20 (m, 3H), 7.13 (d, J 8.0 Hz, 2H), 5.20 (br s, 1H), 3.14-2.89 (m, 3H), 2.82-2.73 (m, 4H), 2.33 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 145.7, 143.6, 140.8, 136.5, 128.9, 127.9, 127.3, 126.7, 125.7, 124.8, 66.1, 42.8, 30.5, 27.5, 21.0; HPLC: er 74:26, General conditions II: t_r 8.0 (min), 10.4 (maj).

10a: (S)-1-(4-Methylphenyl)-1-phenylethanethiol

General procedure I was followed using sodium ethoxide solution (0.08 cm³, 0.21 mmol) and 9a (0.029 g, 0.10 mmol). The crude product was purified by flash column chromatography (n-pentane) and the title compound isolated as a colourless oil (0.015 g, 63 %). $R_{\rm F}$: 0.63 (9:1 Petrol/EtOAc); $[\alpha]_{\rm D}^{21}$: -3.6° (c. 1.3, CHCl₃); MS m/z (ES-) 227 (100%, M-H⁺); **HRMS**: found 227.0915, M-H⁺ requires 227.0900; **IR** v_{max} (film)/cm⁻¹ 2565 (w, SH); ¹H-NMR (CDCl₃, 300 MHz) & 7.42-7.38 (m, 2H), 7.19-7.30 (m, 5H), 7.08 (d, J 8.0 Hz, 2H), 2.45 (s, 1H), 2.30 (s, 3H), 2.11 (s, 3H); ¹³C-NMR (CDCl₃, 125 MHz) δ

148.5, 145.4, 136.3, 128.8, 128.1, 127.1, 127.0, 126.6, 53.4, 34.8, 20.9.

10b: (±)-1-(4-Methoxyphenyl)-1-phenylethanethiol

General procedure I was followed using sodium ethoxide solution (0.02 cm³, 0.07 mmol) and **9b** (0.018 g, 0.06 mmol). The crude product was purified by flash column chromatography (*n*-pentane) and the title compound isolated as a colourless oil (0.013 g)94 %). $R_{\rm F}$: 0.53 (8:1, Petrol:EtOAc); MS m/z (EI) 211 (100%, M-SH⁻); HRMS: found 211.1123, M-SH⁻ requires 211.1117; IR v_{max}(film)/cm⁻¹ 2558 (w, SH); ¹H-NMR (CDCl₃, 400 MHz) & 7.46-7.43 (m, 2H), 7.37-7.21 (m, 5H), 6.84 (d, J 8.8 Hz, 2H), 3.81 (s, 3H), 2.50 (s, 1H), 2.15 (s, 1H); ¹³C-NMR (CDCl₃, 100 MHz) δ 158.2, 148.6, 140.5, 128.3, 128.1, 127.1, 126.6, 113.3, 55.3, 53.2, 35.0.

10c: (S)-1-(2-Methoxyphenyl)-1-phenylethanethiol

General procedure I was followed using sodium ethoxide solution (0.04 cm³, 0.12 mmol) and 9c (0.031 g, 0.10 mmol). The crude product was purified by flash column chromatography (n-pentane) and the title compound isolated as a colourless oil (0.024 g, 97 %). $\vec{R}_{\rm F}$: 0.49 (8.1, Petrol:EtOAc); $[\alpha]_{\rm D}^{21}$: -53.0° (c. 1.7, CHCl₃); MS m/z (ES-) 243 (100%, M-H⁺); **HRMS**: found 244.0922, M-H⁺ requires 244.0916; **IR** v_{max} (film)/cm⁻¹ 2589 (w, SH); ¹H-NMR (CDCl₃, 400 MHz) δ 7.63 (dd, J 7.8, 1.8 Hz, 1H), 7.43-7.40 (m,

2H), 7.31-7.15 (m, 4H), 7.03 (td, J 7.6, 1.3 Hz, 1H), 6.87 (dd, J 8.1, 1.0 Hz, 1H), 3.46 (s, 3H), 3.17 (q, J 1.3 Hz, 1H), 2.04 (d, J 1.3 Hz, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 157.0, 149.4, 136.5, 128.6, 127.7, 126.5, 125.8, 125.7, 120.5, 112.7, 55.3, 51.7, 32.9.

10d: (S)-1-(4-Chlorophenyl)-1-phenylethanethiol

General procedure I was followed using sodium ethoxide solution (0.06 cm³, 0.16 mmol) and **9d** (0.016 g, 0.05 mmol). The crude product was purified by flash column chromatography (*n*-pentane) and the title compound isolated as a colourless oil (0.012 g, 97 %). $R_{\rm F}$: 0.63 (8:1, Petrol:EtOAc); $[\alpha]_{\rm D}^{22}$: 5.1° (*c*. 0.8, CHCl₃); **MS** m/z (EI) 215 (100%, M-SH⁻); **HRMS**: found 215.0622, M-SH⁻ requires 215.0622; **IR** $\nu_{\rm max}$ (film)/cm⁻¹ 2557 (w, SH); ¹**H-NMR** (CDCl₃, 400 MHz) δ 7.41-7.22 (m, 9H), 2.48 (s, 1H), 2.13 (s, 3H); ¹³C-**NMR** (CDCl₃, 100 MHz) δ 146.7, 145.9, 131.5, 127.6, 127.2, 127.1, 125.9, 52.1, 33.7.

10e: (S)-1-(3-Chlorophenyl)-1-phenylethanethiol

General procedure H was followed using **8e** (0.046 g, 0.16 mmol), *n*-butyllithium (0.26 cm³, 0.41 mmol, 1.6 M in hexanes), TMP (0.08 cm³, 0.49 mmol), propionic acid (0.03 cm³, 0.47 mmol) and sodium ethoxide (0.25 cm³, 0.82 mmol, 21 % w/w in ethanol). The crude product was purified by column chromatography (petrol/EtOAc, 20:1) and the title compound isolated as a colourless oil (0.016 g, 41 %). $R_{\rm F}$: 0.53 (8:1, Petrol:EtOAc); $[\alpha]_{\rm D}^{22}$: 7.3° (*c*. 0.2, CHCl₃); **MS** m/z (ES-) 247 (100%, M-H⁺); **HRMS**: found 247.0361,

M-H⁺ requires 247.0353; **IR** v_{max} (film)/cm⁻¹ 2292 (CH); ¹H-NMR (CDCl₃, 500 MHz) δ 7.47 (s, 1H), 7.41 (d, *J* 7.9 Hz, 2H), 7.34-7.21 (m, 6H), 2.50 (s, 1H), 2.14 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 150.6, 147.5, 134.0, 129.4, 128.3, 127.4, 127.0, 126.9, 125.6, 53.3, 34.5;

10f: 4-((S)-1-phenyl-1-sulfanylethyl)benzonitrile

General procedure I was followed using sodium ethoxide solution (0.05 cm³, 0.17 mmol) and **9f** (0.017 g, 0.06 mmol). The crude product was purified by flash column chromatography (*n*-pentane) and the title compound isolated as a colourless oil (0.013 g, 98 %). $R_{\rm F}$: 0.40 (8:1, Petrol:EtOAc); $[\alpha]_{\rm D}^{21}$: 7.8° (*c*. 1.3, CHCl₃); **MS** m/z (EI) 206 (100%, M-SH⁻); **HRMS**: found 206.0967, M-SH⁻ requires 206.0964; **IR** $\nu_{\rm max}$ (film)/cm⁻¹ 2228 (w, SH); ¹**H-NMR** (CDCl₃, 400 MHz) δ 7.61 (d, *J* 8.8 Hz, 2H), 7.56 (d, *J* 8.8 Hz, 2H), 7.40-7.25 (m, 5H), 2.51 (s, 1H), 2.15 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 153.9, 146.8, 128.0, 127.2, 126.9, 118.7, 110.6, 53.4, 34.3

132.0, 128.4, 128.0, 127.2, 126.9, 118.7, 110.6, 53.4, 34.3.

10h: (S)-1-Naphthalen-1-yl-1-phenylethanethiol

General procedure I was followed using sodium ethoxide solution (0.04 cm³, 0.09 mmol) and **9h** (0.015 g, 0.05 mmol). The crude product was purified by flash column chromatography (*n*-pentane) and the title compound isolated as a colourless oil (0.006 g, 51 %). $R_{\rm F}$: 0.58 (8:1, Petrol:EtOAc); $[\alpha]_{\rm D}^{22}$: -11.4° (*c*. 0.8, CHCl₃); **MS** m/z (EI) 231 (100%, M-SH⁻); **HRMS**: found 231.1165, M-SH⁻ requires 231.1168; **IR** $v_{\rm max}$ (film)/cm⁻¹ 2568 (w, SH); ¹**H-NMR** (CDCl₃, 400 MHz) δ 7.92-7.90 (m, 1H), 7.84 (d, *J* 7.8 Hz, 2H),

7.62 (d, J 8.1 Hz, 1H), 7.54-7.50 (m, 1H), 7.44-7.42 (m, 2H), 7.38-7.34 (m, 1H), 7.27-7.17 (m, 4H), 2.78 (s, 1H), 2.26 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 148.9, 142.5, 135.1, 130.4, 128.9, 128.4, 127.8, 126.4, 126.1, 125.1, 124.8, 123.8, 53.8, 37.5.

10j: (R)-1-Phenyl-1-p-tolylbutane-1-thiol

General procedure I was followed using sodium ethoxide solution (0.02 cm³, 0.05 mmol) and **9j** (0.009 g, 0.03 mmol). The crude product was purified by flash column chromatography (*n*-pentane) and the title compound isolated as a colourless oil (0.007 g, 98 %). $R_{\rm F}$: 0.72 (8:1, Petrol:EtOAc); $[a]_{\rm D}^{20}$: -5.6° (*c*. 0.5, CHCl₃); **MS** m/z (EI) 223 (100%, M-SH⁻), 256 (5 %, M); **HRMS**: found 256.1284, M requires 256.1280; **IR** $v_{\rm max}$ (film)/cm⁻¹ 2565 (w, SH); ¹**H-NMR** (CDCl₃, 500 MHz) δ 7.40-7.37 (m, 2H), 7.31-7.28 (m, 2H), 7.25-7.19 (m, 3H), 7.10 (d, *J* 8.1 Hz, 2H), 2.43-2.39 (m, 2H), 2.33 (s, 3H), 2.29 (s, 1H), 1.26-

1.19 (m, 4H); ¹³C-NMR (CDCl₃, 100 MHz) δ 146.7, 143.7, 135.1, 127.6, 126.9, 126.6, 126.5, 125.4, 45.6, 28.7, 19.9, 17.8, 13.3.

10k: (S)-1-Phenyl-1-(3-trifluoromethylphenyl)ethanethiol

General procedure I was followed using sodium ethoxide solution (0.06 cm³, 0.16 mmol) and **9k** (0.027 g, 0.08 mmol). The crude product was purified by flash column chromatography (*n*-pentane) and the title compound isolated as a colourless oil (0.018 g, 76 %). $R_{\rm F}$: 0.58 (8:1, Petrol:EtOAc); $[\alpha]_{\rm D}^{20}$: 2.5° (c. 1.8, CHCl₃); MS m/z (ES-) 281 (100%, M-H⁺); HRMS: found 281.0614, M-H⁺ requires 281.0617; IR $v_{\rm max}$ (film)/cm⁻¹ 2557 (w, SH); ¹H-NMR (CDCl₃, 400 MHz) δ 77.79 (s, 1H), 7.58 (d,

J 7.8 Hz, 1H), 7.51 (d, J 7.6 Hz, 1H), 7.44-7.40 (m, 3H), 7.33 (t, J 7.4 Hz, 2H), 7.28-7.25 (m, 1H), 2.54 (s, 1H), 2.18 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 149.5, 147.3, 130.9, 130.3, 128.6, 128.4, 127.1, 127.0, 123.7, 123.6, 122.8, 53.3, 34.6, 29.7.

101: (±)-1-(4-Methoxyphenyl)-1-*p*-tolylethanethiol

General procedure I was followed using sodium ethoxide solution (0.05 cm³, 0.13 mmol) and **91** 0.020 g, 0.06 mmol). The crude product was purified by flash column chromatography (*n*-pentane) and the title compound isolated as a colourless oil (0.012 g, 75 %). $R_{\rm F}$: 0.59 (8:1, Petrol:EtOAc); **MS** m/z (EI) 224 (90%, M-SH₂); **HRMS**: found 224.1199, M-SH₂ requires 224.1196; **IR** $v_{\rm max}$ (film)/cm⁻¹ 2553 (w, SH); **'H-NMR** (CDCl₃, 400 MHz) δ 7.36 (d, *J* 8.8 Hz, 2H), 7.33 (d, *J* 8.3 Hz, 2H), 7.12 (d, *J* 8.1 Hz, 2H), 6.83 (d, *J* 9.1 Hz, 2H), 3.81 (s, 3H), 2.48 (s, 1H), 2.34 (s, 3H), **MP** (CDCl = 100 MHz) δ 1571 + 144 (= 120 (c, 125 2, 1277, 1272, 1272, 1272) (d, 20 (c, 125 0, 1122)).

2.14 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 157.1, 144.6, 139.6, 135.2, 127.7, 127.2, 125.9, 112.2, 54.2, 52.0, 34.0, 19.9.

10m: (R)-1-p-Tolylinadan-1-thiol

General procedure I was followed using sodium ethoxide solution (0.05 cm³, 0.12 mmol) and **9m** (0.018 g, 0.06 mmol). The crude product was purified by flash column chromatography (*n*-pentane) and the title compound isolated as a colourless oil (0.013 g, 89 %). $R_{\rm F}$: 0.57 (8:1, Petrol:EtOAc); $[\alpha]_{\rm D}^{20}$: -10.0° (c. 1.3, CHCl₃); **MS** m/z (EI) 206 (100%, M-H₂S); **HRMS**: found 206.1090, M-H₂S requires 206.1090; **IR** $v_{\rm max}$ (film)/cm⁻¹ 2563 (w, SH); ¹**H-NMR** (CDCl₃, 400 MHz) δ 7.37-7.24 (m, 6H), 7.12 (d, J 8.1 Hz, 2H), 3.07 (ddd, J

15.6, 7.6, 6.8 Hz, 1H), 2.88 (ddd, *J* 15.6, 7.3, 6.3 Hz, 1H), 2.73 (ddd, *J* 13.1, 7.6, 6.3 Hz, 1H), 2.57 (ddd, *J* 13.6, 7.8, 6.1 Hz, 1H), 2.36 (s, 1H), 2.34 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 149.2, 143.1, 142.5, 136.5, 128.8, 127.5, 127.1, 127.0, 124.9, 124.7, 60.2, 48.0, 30.4, 20.9.

11: 4-Nitrothiobenzoic acid S-((S)-1-phenyl-1-p-tolylethyl) ester

Sodium hydride (0.004 g, 0.10 mmol, 60 % in mineral oil) was added to a solution of **10a** (0.015 g, 0.06 mmol) in THF (3 cm³) at 0 °C. The mixture was stirred for 3 minutes and 4-nitro-benzoyl chloride (0.024 g, 0.13 mmol) was added. The mixture was warmed to room temperature and stirred for 18 hours. The mixture was cooled to 0 °C and water (2 cm³) was added with care. The mixture was partitioned between saturated aqueous ammonium chloride and EtOAc and the phases separated. The aqueous fraction was

extracted with EtOAc (3 x 10 cm³). The combined organic fractions were dried over magnesium sulfate, filtered and the solvent removed under reduced pressure. The crude product was purified by flash column chromatography (petrol/EtOAc, 15:1) and the title compound isolated as colourless prisms (0.016 g, 66 %). $R_{\rm F}$: 0.43 (8:1, Petrol:EtOAc); **Mpt**: 85-87 °C (DCM); $[\alpha]_{\rm D}^{22}$: -7.2° (*c*. 0.9, CHCl₃); **MS** m/z (ES+) 400 (60%, M+Na⁺); **HRMS**: found 400.0964, M+Na⁺ requires 400.0978; **IR** $\nu_{\rm max}$ (film)/cm⁻¹ 1664 (C=O), 1529 (NO₂ sy), 1350 (NO₂ as); ¹**H-NMR** (CDCl₃, 400 MHz) δ 8.26 (d, J 8.8 Hz, 2H), 8.06 (d, J 8.8 Hz, 2H), 7.44 (d, J 8.6 Hz, 2H), 7.36-7.26 (m, 5H), 7.15 (d, J 8.3 Hz, 2H), 2.46 (s, 3H), 2.35 (s, 3H); ¹³C-NMR (CDCl₃, 75.5 MHz) δ 188.8, 150.3, 144.6, 142.2, 141.5, 137.1, 129.0, 128.3, 128.2, 127.7, 127.6, 127.3, 123.8, 61.3, 28.7, 21.0.

DEUTERATION EXPERIMENTS

n-Butyllithium (solution in hexanes, 2.5 eq) was added to a solution of diisopropylamine (3 eq) in THF (1 cm³) at 0 °C. This was stirred for 15 minutes and then cooled to -78 °C. This solution was added by cannular to a cooled (-78 °C) solution of **8a** (0.05 g, 1 eq) in THF (1.5 cm³). The mixture was allowed to stir for the time specified in the table (below). CD₃OD (3 eq) was added dropwise followed immediately by propionic acid (5 eq) and the mixture allowed to warm to room temperature. Water (10 cm³) and diethyl ether (10 cm³) were added and the phases separated. The aqueous fraction was extracted with diethyl ether (2 x 10 cm³) and the combined organic fractions dried over magnesium sulfate, filtered and concentrated under reduced pressure. The crude product was then purified by flash column chromatography as required.

	Α				В				
Reaction time (min)	Yield	er	%D NMR ^a	%D MS ^b	Yield	er	%D NMR ^a	%D MS⁵	
2	nd	95:5	11	7	-	-	-	-	
10	72	80:20	39	40	18	94:6	10	0	
20	64	77:23	41	42	19	63:7	2	1	
30	-	-	-	-	64	88:12	3	0	
40	15	54:46	35	33	76	88:12	2	2	

^a% deuteration calculated by integration in ¹H NMR.

^b% deuteration measured in mass spectrometry (ES+) with correction for ¹³C.

s1: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

s2: 1H-NMR: 400 MHz, 13C-NMR: 100 MHz

s3: ¹**H-NMR**: 400 MHz, ¹³**C-NMR**: 100 MHz

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

s4: 1H-NMR: 400 MHz, 13C-NMR: 100 MHz

s5: ¹**H-NMR**: 400 MHz, ¹³**C-NMR**: 100 MHz

s6: 1H-NMR: 300 MHz, 13C-NMR: 100 MHz

s7: ¹**H-NMR**: 300 MHz, ¹³**C-NMR**: 75 MHz

s8: ¹**H-NMR**: 400 MHz, ¹³**C-NMR**: 100 MHz

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

s9: ¹**H-NMR**: 400 MHz, ¹³**C-NMR**: 100 MHz

s10: ¹**H-NMR**: 400 MHz, ¹³**C-NMR**: 100 MHz

s11: 1H-NMR: 400 MHz, 13C-NMR: 100 MHz

s12: ¹H-NMR: 300 MHz, ¹³C-NMR: 100 MHz

s13: 1H-NMR: 400 MHz, 13C-NMR: 100 MHz

s14: 1H-NMR: 400 MHz, 13C-NMR: 100 MHz

s15: ¹**H-NMR**: 300 MHz, ¹³**C-NMR**: 100 MHz

s16: 1H-NMR: 400 MHz, 13C-NMR: 100 MHz

s17: 1H-NMR: 400 MHz, 13C-NMR: 100 MHz

s18: 1H-NMR: 400 MHz, 13C-NMR: 100 MHz

s19: ¹**H-NMR**: 400 MHz, ¹³**C-NMR**: 100 MHz

s20: 1H-NMR: 500 MHz, 13C-NMR: 100 MHz

s21: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

s22: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

s23: 1H-NMR: 300 MHz, 13C-NMR: 75 MHz

s24: 1H-NMR: 400 MHz, 13C-NMR: 100 MHz

s25: 1H-NMR: 400 MHz, 13C-NMR: 100 MHz

s26: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

s27: ¹**H-NMR**: 400 MHz, ¹³**C-NMR**: 100 MHz

5a: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

5b: ¹**H-NMR**: 400 MHz, ¹³**C-NMR**: 100 MHz

5c: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

5d: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

6a: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

6b: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

6c: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

7a: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

7b: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

7c: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

7d: 1H-NMR: 400 MHz, 13C-NMR: 100 MHz

8a: 1H-NMR: 400 MHz, 13C-NMR: 100 MHz

8b: ¹H-NMR: 500 MHz, ¹³C-NMR: 100 MHz

8c: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

8d: 1H-NMR: 400 MHz, 13C-NMR: 100 MHz

8e: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

8f: 1H-NMR: 400 MHz, 13C-NMR: 100 MHz

8g: 1H-NMR: 400 MHz, 13C-NMR: 100 MHz

8h: 1H-NMR: 500 MHz, 13C-NMR: 75.5 MHz

8i: 1H-NMR: 400 MHz, 13C-NMR: 100 MHz

8j: 1H-NMR: 400 MHz, 13C-NMR: 100 MHz

8k: ¹H-NMR: 500 MHz, ¹³C-NMR: 75.5 MHz

81: 1H-NMR: 400 MHz, 13C-NMR: 75.5 MHz

8m: 1H-NMR: 400 MHz, 13C-NMR: 100 MHz

9a: ¹H-NMR: 400 MHz, ¹³C-NMR: 75.5 MHz

9b: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

9c: 1H-NMR: 400 MHz, 13C-NMR: 100 MHz

9d: 1H-NMR: 400 MHz, 13C-NMR: 125 MHz

9e: ¹H-NMR: 400 MHz, ¹³C-NMR: 75.5 MHz

9f: 1H-NMR: 500 MHz, 13C-NMR: 125 MHz

9h: 1H-NMR: 500 MHz, 13C-NMR: 125 MHz

9j: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

9k: ¹**H-NMR**: 400 MHz, ¹³**C-NMR**: 75.5 MHz

91: 1H-NMR: 400 MHz, 13C-NMR: 75.5 MHz

9m: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

10a: ¹H-NMR: 300 MHz, ¹³C-NMR: 125 MHz

10b: ¹**H-NMR**: 400 MHz, ¹³**C-NMR**: 100 MHz

10c: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

10d: 1H-NMR: 400 MHz, 13C-NMR: 100 MHz

10e: ¹H-NMR: 500 MHz, ¹³C-NMR: 100 MHz

10f: 1H-NMR: 400 MHz, 13C-NMR: 100 MHz

10h: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

10j: 1H-NMR: 500 MHz, 13C-NMR: 100 MHz

10k: ¹H-NMR: 400 MHz, ¹³C-NMR: 100 MHz

10I: ¹**H-NMR**: 400 MHz, ¹³**C-NMR**: 100 MHz

10m: ¹**H-NMR**: 400 MHz, ¹³**C-NMR**: 100 MHz

11: ¹H-NMR: 400 MHz, ¹³C-NMR: 75.5 MHz

2

7.113 PB

694.90533

50.0344

537.80151

49.9941

2 14.898 BB

9a

8c

Ŧ	9.004 VB	0.2027	/20.4/180	54.69103	30.4221
2	10.729 BBA	0.2425	708.40808	45.52840	49.5779

9d

e

9e

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	14.403	BB	0.4536	2.68337e4	872.99139	98.0062
2	18.904	BB	0.4643	545.90295	15.00963	1.9938

Racemic standard:

2 9.213 PP 0.3895 4403.55371 179.94400 49.7604

8h

	-					
1	9.100	vv	0.2093	4950.50195	367.16678	95.9788
2	9.952	vv	0.2350	207.40828	13.22181	4.0212

Racemic standard:

Signal 1: VWD1 A, Wavelength=210 nm

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	9.237	BV	0.2038	1666.59631	124.76659	49.9382
2	10.092	vv	0.2262	1670.71814	114.49640	50.0618

[mAU*s] [mAU] [min] [min] -----| ____ ----| 1 10.579 VV 49.9320 0.2179 6279.26855 441.47629 2 11.520 VB 0.2422 6296.37646 403.20587 50.0680

9j

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Signal 1: DAD1 C, Sig=214,4 Ref=550,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	5.943	BP	0.1258	195.42192	24.31819	3.6047
2	6.539	VB	0.1403	5225.90430	563.06769	96.3953

Racemic standard:

			~ ~ ~ ~ ~			
#	[min]		[min]	[mAU*s]	[mAU]	*
1	6.798	VV	0.1499	1.59813e4	1636.77844	49.8660
2	7.557	vv	0.1671	1.60672e4	1475.05676	50.1340

Signal 1: DAD1 C, Sig=214,4 Ref=550,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	5.627	vv	0.1141	7327.46387	948.82990	33.2815
2	6.621	VB	0.1425	1.46892e4	1609.44104	66.7185

Racemic standard:

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	5.656	VV	0.1212	1.70870e4	2139.42187	49.1248
2	6.657	VB	0.1480	1.76959e4	1843.32483	50.8752

10

mi

Signal 1: DAD1 C, Sig=214,4 Ref=550,100

0

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Àrea ∛
1	7.193	PB	0.1693	9327.82520	841.88147	50.1032
2	8.611	BV	0.2195	9289.38281	646.97845	49.8968

8m

11

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	21.082	VP	0.4046	5660.93848	214.01173	50.3711
2	23.270	BV	0.4411	5577.53418	195.33821	49.6289

9b

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	*
1	13.795	PV	0.2982	1.17253e4	604.75543	49.9900
2	16.454	PB	0.3665	1.17300e4	498.55902	50.0100