Electronic supplementary information

Phosphine Ligand Triggered Oxidative Decarbonylative

Homocoupling of Aromatic Aldehydes: Selectively

Generating Biaryls and Diarylketones

Luo Yang, Tieqiang Zeng, Qi Shuai, Xiangyu Guo, and Chao-Jun Li*

Department of Chemistry, McGill University, Montreal, QC, Canada H3A 2K6

E-mail: cj.li@mcgill.ca

Table of Contents

1.	General information	S1		
2.	The influence of solvents and concentrations to the homocoupling	S2		
3.	General experimental procedure for the homocoupling and charact	terization		
da	ta	S3-S7		
4.	References	S7-S8		
5.	Copies of ¹ H and ¹³ C NMR spectra of products 2a-6l, 3a-3c, 3e-3h, 3k, 3n			
		S9-S32		

1. General information

Thin-layer chromatography (TLC) was performed using E. Merck silica gel 60 F254 precoated plates (0.25 mm) or Sorbent Silica Gel 60 F254 plates. The developed chromatography was analyzed by UV lamp (254 nm). GCMS analysis was conducted on an Agilent GCMS-6890N instrument equipped with a HP-5 column (30 m \times 0.25 mm, Hewlett-Packard) and Agilent 5973 Mass Selective Detector. High-resolution mass spectra (HRMS) were obtained from a JEOL JMS-700 instrument (ESI). IR spectra were recorded by a Nexus 670 Avator FTIR spectrometer. Nuclear magnetic resonance (NMR) spectra were recorded on Varian MERCURY plus spectrometer (¹H 500 MHz, ¹³C 125 MHz or ¹³C 75 MHz) spectrometer. NMR yield was calculated based on the integration using nitromethane as internal standard. Chemical shifts for ¹H NMR spectra are reported in parts per million (ppm) from tetramethylsilane with

2.

the solvent resonance as the internal standard (chloroform: δ 7.26 ppm). Chemical shifts for ¹³C NMR spectra are reported in parts per million (ppm) from tetramethylsilane with the solvent as the internal standard (CDCl₃: δ 77.23 ppm). Data are reported as following: chemical shift, multiplicity (s = singlet, d = doublet, dd = doublet of doublets, t = triplet, q = quartet, m = multiplet, br = broad signal), coupling constant (Hz), and integration.

Reagents: Unless stated otherwise, liquid aromatic aldehydes were used after distillation under vacuum. Solid aromatic aldehydes, rhodium catalysts and phosphine ligands were used without further purification. Benzene was dried by sodium metal using benzophenone as the indicator.

		Rh], TBP	<u> </u>		0		
	solv	ent, 150 °C		- Ar-Ar		+ Ar Ar	
	1a ^{Ar =}	p-CH ₃ OC ₆	H ₄	2a		3a	
entry	Rh (mol%)	ligand	Solver	nt	Temp	yield	ratio ^b
		(mol%)	/mL		/ °C	2a + 3a	2a / 3a
1	[(CO) ₂ RhCl] ₂ (1.25)	PPh ₃ (6)	PhCl	0.4	150	55	52 : 48
2	[(CO) ₂ RhCl] ₂ (1.25)	PPh ₃ (6)	dioxane	0.4	150	44	59 : 41
3	[(CO) ₂ RhCl] ₂ (1.25)	PPh ₃ (6)	DCE	0.4	150	69	62 : 38
4	[(CO) ₂ RhCl] ₂ (1.25)	PPh ₃ (6)	benzene	0.8	150	73	72 : 28
5	[(CO) ₂ RhCl] ₂ (1.25)	PPh ₃ (6)	benzene	0.4	140	76	84 : 16
6	[(CO) ₂ RhCl] ₂ (1.25)	dppe (3)	PhCl	0.4	150	45	19 : 81
7	[(CO) ₂ RhCl] ₂ (1.25)	dppe (3)	dioxane	0.4	150	33	<2 : 98
8	[(CO) ₂ RhCl] ₂ (1.25)	dppe (3)	benzene	0.8	150	44	<2 : 98
9	[(CO) ₂ RhCl] ₂ (1.25)	dppe (3)	benzene	0.4	140	56	<2 : 98
10	[(CH ₂ =CH ₂) ₂ RhCl] ₂ (1.25)	PPh ₃ (6)	benzene	0.4	150	65	71 : 29
11	[(CH ₂ =CH ₂) ₂ RhCl] ₂ (1.25)	dppe (3)	benzene	0.4	160	58	57 : 43

Table S1. Detailed Optimization of the Oxidative Decarbonylative Homocoupling

The influence of solvents and concentrations to the homocoupling ^a

^{*a*} Conditions: **1a** (0.2 mmol), [Rh], phosphine ligand, TBP (0.5 mmol) and solvent, sealed and stirred for 12 h under argon, unless otherwise noted. ^{*b*} Determined by 1H NMR analysis of the crude reaction mixture using an internal standard.

3. General experimental procedure for the oxidative decarbonylative homocoupling of aromatic aldehydes and characterization data

A general experimental procedure for the decarbonylative coupling is described as following: An oven-dried reaction vessel was charged with $[(CO)_2RhCl]_2$ (0.9 mg, 0.0025 mmol, 1.25 mol%), PPh₃ (0.9 mg, 0.012 mmol, 6.0 mol%) and benzene (dried over Na) (0.4 mL). After stirring the mixture at r.t. for 12 h under argon, 4-methoxybenzaldehyde **1a** (25 μ L, 29.8 mg, 0.2 mmol) was added by syringe and the vessel was sealed and heated at 150 °C (oil bath temperature). After 12 h, the resulting mixture was cooled to room temperature, filtered through a short silica gel pad and washed by ethyl acetate. The above solution was evaporated under vacuum and the ratio of the two products was determined by ¹H NMR using nitromethane as the internal standard. Then the mixture was transferred to silica gel column directly and eluted with hexanes and ethyl acetate (90:10) to give products **2a** and **3a** (36 mg, 82% yield).

2a^[1]: white solid, mp 160 °C; ¹H NMR (500 MHz, CDCl₃, TMS) δ (ppm) 7.48 (d, *J*=8.5 Hz, 4H), 6.96 (d, *J*=8.5 Hz, 4H), 3.85 (s, 6H); ¹³C NMR (125 MHz, CDCl₃, TMS) δ (ppm) 158.9, 133.7, 128.0, 114.4, 55.6.

3a^[6]: white solid, mp 142 °C; ¹H NMR (500 MHz, CDCl₃, TMS) δ (ppm) 7.79 (dt, *J*=3.0, 8.5 Hz, 4H), 6.96 (dt, *J*=3.0, 8.5 Hz, 4H), 3.88 (s, 6H); ¹³C NMR (125 MHz, CDCl₃, TMS) δ (ppm) 194.7, 163.0, 132.4, 131.0, 113.6, 55.7.

2b^[2]: colorless oil; ¹H NMR (500 MHz, CDCl₃, TMS) δ (ppm) 7.35 (t, *J*=8.0 Hz, 2H),

7.18 (ddd, *J*=1.0, 1.5, 8.0 Hz, 2H), 7.12 (t, *J*=2.5 Hz, 2H), 6.91 (ddd, *J*=1.0, 3.0, 8.0 Hz, 4H), 3.87 (s, 6H); ¹³C NMR (125 MHz, CDCl₃, TMS) δ (ppm) 160.1, 142.9, 129.9, 119.9, 113.2, 113.0, 55.5.

3b^[10]: colorless oil; ¹H NMR (500 MHz, CDCl₃, TMS) δ (ppm) 7.39-7.33 (m, 6H), 7.13 (ddd, *J*=1.5, 3.0, 8.0 Hz, 2H), 3.86 (s, 6H); ¹³C NMR (125 MHz, CDCl₃, TMS) δ (ppm) 195.5, 159.8, 139.1, 129.4, 123.1, 119.1, 114.5, 55.7.

2c^[1]: white solid, mp 116 °C; ¹H NMR (500 MHz, CDCl₃, TMS) δ (ppm) 7.48 (dt, *J*=2.0, 8.0 Hz, 4H), 7.24 (dt, *J*=2.0, 8.0 Hz, 4H), 2.39 (s, 6H); ¹³C NMR (125 MHz, CDCl₃, TMS) δ (ppm) 138.5, 136.9, 129.6, 127.0, 21.3.

3c^[6]: white solid, mp 92 °C; ¹H NMR (500 MHz, CDCl₃, TMS) δ (ppm) 7.70 (d, *J*=8.0 Hz, 4H), 7.28 (d, *J*=8.0 Hz, 4H), 2.44 (s, 6H); ¹³C NMR (125 MHz, CDCl₃, TMS) δ (ppm) 196.3, 142.9, 135.2, 130.2, 128.9, 21.6.

2d^[4]: white solid, mp 150 °C; ¹H NMR (500 MHz, CDCl₃, TMS) δ (ppm) 7.55 (dt, *J*=2.5, 8.0 Hz, 4H), 7.16 (dt, *J*=2.5, 8.0 Hz, 4H), 2.33 (s, 6H); ¹³C NMR (125 MHz, CDCl₃, TMS) δ (ppm) 169.8, 150.4, 138.4, 128.4, 122.1, 21.4.

2e^[1]: white solid, mp 70 °C; ¹H NMR (500 MHz, CDCl₃, TMS) δ (ppm) 7.59-7.61 (m, 4H), 7.43-7.46 (m, 4H), 7.34-7.37 (m, 2H); ¹³C NMR (125 MHz, CDCl₃, TMS) δ (ppm) 141.5, 129.0, 127.5, 127.4.

3e^[6]: white solid, mp 48 °C; ¹H NMR (500 MHz, CDCl₃, TMS) δ (ppm) 7.80-7.82 (m, 4H), 7.57-7.61 (m, 2H), 7.47-7.50 (m, 4H); ¹³C NMR (125 MHz, CDCl₃, TMS) δ (ppm) 196.9, 137.8, 132.6, 130.2, 128.4.

2f^[1]: white solid, mp 86 °C; ¹H NMR (500 MHz, CDCl₃, TMS) δ (ppm) 7.48-7.50 (m, 4H), 7.10-7.14 (m, 4H); ¹³C NMR (125 MHz, CDCl₃, TMS) δ (ppm) 162.6 (d, *J*=245.0 Hz), 136.6 (d, *J*=3.2 Hz), 128.8 (d, *J*=7.9 Hz), 115.9 (d, *J*=21.2 Hz).

3f^[7]: white solid, mp 104 °C; ¹H NMR (500 MHz, CDCl₃, TMS) δ (ppm) 7.80-7.84 (m, 4H), 7.15-7.20 (m, 4H); ¹³C NMR (125 MHz, CDCl₃, TMS) δ (ppm) 194.0, 165.6 (d, *J*=253.5 Hz), 133.9 (d, *J*=3.2 Hz), 132.7 (d, *J*=9.2 Hz), 115.8 (d, *J*=21.8 Hz).

2g^[3]: white solid, mp 145 °C; ¹H NMR (500 MHz, CDCl₃, TMS) δ (ppm) 7.56 (dt, *J*=2.0, 8.0 Hz, 4H), 7.42 (dt, *J*=2.0, 8.0 Hz, 4H); ¹³C NMR (125 MHz, CDCl₃, TMS) δ (ppm) 138.6, 134.0, 129.3, 128.4.

3g^[11]: white solid, mp 144 °C; ¹H NMR (500 MHz, CDCl₃, TMS) δ (ppm) 7.73 (dt, *J*=2.0, 8.5 Hz, 4H), 7.47 (dt, *J*=2.0, 8.5 Hz, 4H); ¹³C NMR (125 MHz, CDCl₃, TMS) δ (ppm) 194.5, 135.7, 131.5, 129.0.

2h^[3]: colorless oil; ¹H NMR (500 MHz, CDCl₃, TMS) δ (ppm) 7.55 (t, *J*=2.0Hz, 2H), 7.44 (dt, *J*=1.5, 8.0 Hz, 2H), 7.38 (t, *J*=8.0Hz, 2H), 7.35 (dt, *J*=1.5, 8.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃, TMS) δ (ppm) 141.8, 135.0, 130.3, 128.1, 127.5, 125.5.

3h^[8]: white solid, mp 170 °C; ¹H NMR (500 MHz, CDCl₃, TMS) δ (ppm) 7.74 (t, *J*=2.0Hz, 2H), 7.65 (dt, *J*=1.0, 8.0 Hz, 2H), 7.59 (ddd, *J*=1.0, 2.0, 8.0Hz, 2H), 7.35 (t, *J*=8.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃, TMS) δ (ppm) 194.0, 138.8, 135.0, 133.0, 130.05, 130.0, 128.3.

2i^[5]: white solid, mp 170 °C; ¹H NMR (500 MHz, CDCl₃, TMS) δ (ppm) 7.62 (d, *J*=2.5Hz, 2H), 7.52 (d, *J*=8.5 Hz, 2H), 7.36 (dd, *J*=3.0, 11.0Hz, 2H); ¹³C NMR (125 MHz, CDCl₃, TMS) δ (ppm) 138.9, 133.4, 132.7, 131.2, 129.0, 126.3.

2j^[1]: white solid, mp 220 °C; ¹H NMR (500 MHz, CDCl₃, TMS) δ (ppm) 7.78 (dt, *J*=2.0, 8.5Hz, 4H), 7.69 (dt, *J*=2.0, 8.5 Hz, 4H); ¹³C NMR (125 MHz, CDCl₃, TMS) δ (ppm) 143.7, 133.1, 128.2, 118.6, 112.7.

$$\mathsf{F}_3\mathsf{C} - \swarrow \mathsf{C}\mathsf{F}_3$$

2k^[2]: white solid, mp 80 °C; ¹H NMR (500 MHz, CDCl₃, TMS) δ (ppm) 7.74 (d, *J*=8.5Hz, 4H), 7.71 (d, *J*=8.5 Hz, 4H); ¹³C NMR (125 MHz, CDCl₃, TMS) δ (ppm) 143.5, 130.5 (d, *J*=32.3Hz), 127.9, 126.2 (q, *J*=3.6Hz), 124.3 (d, *J*=270.6Hz).

3k^[10]: white solid, mp 110 °C; ¹H NMR (500 MHz, CDCl₃, TMS) δ (ppm) 7.91 (d, *J*=8.5Hz, 4H), 7.79 (d, *J*=8.5 Hz, 4H); ¹³C NMR (125 MHz, CDCl₃, TMS) δ (ppm) 194.6, 140.0, 134.6 (d, *J*=32.9Hz), 130.4, 125.8 (q, *J*=3.8Hz), 123.7 (d, *J*=271.1Hz).

$$H_3CO_2C$$
 CO_2CH_3

2l^[1]: white solid, mp 210 °C; ¹H NMR (500 MHz, CDCl₃, TMS) δ (ppm) 8.13 (dt, *J*=2.0, 8.5Hz, 4H), 7.69 (dt, *J*=2.0, 8.5 Hz, 4H), 3.95 (s, 6H); ¹³C NMR (125 MHz,

CDCl₃, TMS) δ (ppm) 167.0, 144.6, 130.4, 129.9, 127.5, 52.4.

3m: colorless oil; ¹H NMR (500 MHz, CDCl₃, TMS) δ (ppm) 8.05 (dt, *J*=2.5, 9.5Hz, 4H), 6.93 (dt, *J*=2.5, 9.5 Hz, 4H), 4.03 (t, *J*=6.5 Hz, 4H), 1.80-1.84 (m, 4H), 1.37-1.47 (m, 8H), 0.94 (t, *J*=6.5 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃, TMS) δ (ppm) 170.8, 163.9, 132.5, 121.4, 114.4, 68.5, 29.0, 28.3, 22.6, 14.2. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₃H₃₀O₃Na, 377.2087; found: 377.2096.

3n^[9]: colorless oil; ¹H NMR (500 MHz, CDCl₃, TMS) δ (ppm) 7.63 (s, 2H), 7.57 (d, *J*=7.5 Hz, 2H), 7.34-7.41 (m, 4H), 2.42 (s, 6H); ¹³C NMR (125 MHz, CDCl₃, TMS) δ (ppm) 197.4, 138.3, 138.0, 133.3, 130.6, 128.2, 127.6, 21.6.

30^[9]: white solid, mp 64 °C; ¹H NMR (500 MHz, CDCl₃, TMS) δ (ppm) 7.39 (td, *J*=1.5, 7.5 Hz, 2H), 7.31 (dd, *J*=1.5, 7.5 Hz, 2H), 7.28 (dd, *J*=1.0, 7.5 Hz, 2H), 7.20 (td, *J*=1.0, 7.5 Hz, 2H), 2.44 (s, 6H); ¹³C NMR (125 MHz, CDCl₃, TMS) δ (ppm) 201.0, 139.2, 138.4, 131.6, 131.3, 130.5, 125.6, 20.9.

3p: colorless oil; ¹H NMR (500 MHz, CDCl₃, TMS) δ (ppm) 7.21 (d, *J*=2.5Hz, 2H), 7.08 (s, 2H), 6.99 (d, *J*=2.5 Hz, 2H), 2.41 (s, 6H), 2.36 (s, 6H); ¹³C NMR (125 MHz, CDCl₃, TMS) δ (ppm) 200.4, 141.3, 138.3, 136.5, 132.2, 130.6, 127.6. HRMS (ESI) m/z: [M+1]⁺ calcd for C₁₇H₁₉O, 239.1430; found: 239.1433.

4. References

- [1] V. Percec, J.-Y. Bae, M. Zhao, D. H. Hill, J. Org. Chem. 1995, 60, 176.
- [2] N. Ma, Z. Zhu, Y. Wu, Tetrahedron 2007, 63, 4625.
- [3] K. Mitsudo, T. Shiraga, D. Kagen, D. Shi, J. Y. Becker, H. Tanaka, *Tetrahedron* 2009, 65, 8384.
- [4] N. Nishimura, K. Yoza, K. Kobayashi, J. Am. Chem. Soc. 2010, 132, 777.
- [5] I. Kania-Korwe, S. Parkin, L. W. Robertson, H.-J. Lehmler, *Chemosphere* 2004, 56, 735.
- [6] M. L. N. Rao, V. Venkatesh, D. Banerjee, Tetrahedron 2007, 63, 12917.
- [7] D. Bottalico, V. Fiandanese, G. Marchese, A. Punzi, Synthesis 2009, 2316.
- [8] N. Imai, Okayama Rika Daigaku Kiyo, A: Shizen Kagaku 2003, 39A, P47-55.
- [9] K. Kikukawa, T. Idemoto, A. Katayama, K. Kono, F, Wada, T, Matsuda, J. Chem. Soc., Perkin Trans. I, 1987, 1511.
- [10] T. H. H. Hsieh, V. M. Dong, Tetrahedron 2009, 65, 3062.
- [11] W.-B., Yi, C. Cai, J. Fluor. Chem. 2005, 126, 1191.
- 5. Copies of ¹H and ¹³C NMR spectra of products 2a-6l, 3a-3c, 3d-3h, 3k, 3m-3p

2f

S14

ppm

180 160 140 120 100 80 60 40 20 ppm

OBE IN UN

