Spontaneous enrichment of one-handed helix by dissolution of quasiracemic crystals of a tetranuclear single helical complex

Shigehisa Akine,* Sayaka Hotate, Takashi Matsumoto, and Tatsuya Nabeshima*

A Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan

Supporting Information

Synthetic procedure for [LZn₃La(OAc)₃]

Synthesis of Ligand H₆L. A solution of *R*,*R*-cyclohexanediamine (17.8 mg, 0.156 mmol) in a small amount of ethanol/chloroform was added to a solution of aldehyde $1^{[1]}$ (129.8 mg, 0.312 mmol) in ethanol/chloroform (1:1, 10 mL) and the solution was heated for 3 h at 60 °C. After the solution was cooled to room temperature, the solvent was removed under reduced pressure and the crude product was purified by GPC (Japan Analytical Industry, LC908 equipped with JAIGEL 1H-2H columns; eluent, chloroform) to give H₆L (94 mg, 73%) as yellow solid, mp 91–92 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.46-1.52 (m, 2H), 1.70-1.78 (m, 2H), 1.91 (d, *J* = 9.1 Hz, 2H), 1.98 (d, *J* = 13.8 Hz, 2H), 3.32-3.38 (m, 2H), 3.90 (s, 6H), 4.47-4.49 (m, 8H), 6.64 (d, *J* = 8.2 Hz, 2H), 6.70 (d, *J* = 8.2 Hz, 2H), 6.79-6.86 (m, 4H), 6.89 (dd, *J* = 7.4, 2.1 Hz, 2H), 8.197 (s, 2H), 8.201 (s, 2H), 8.24 (s, 2H), 9.38 (s, 2H), 9.74 (s, 2H), 13.64 (brs, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 24.03, 32.89, 56.19, 72.08, 73.08, 73.11, 113.57, 116.48, 117.93, 118.55, 118.74, 119.45, 121.66, 122.42, 146.04, 147.11, 148.16, 151.07, 151.40, 151.96, 164.49. Anal. Calcd for C₄₂H₄₆N₆O₁₂•0.5H₂O: C, 60.35; H, 5.67; N,10.05. Found: C, 60.19; H, 5.60; N, 9.82.

Synthesis of [LZn₃La(OAc)₃]. Solutions of H₆L (8.26 mg, 0.010 mmol) in chloroform, zinc(II) acetate dihydrate (6.58 mg, 0.030 mmol) in methanol, and lanthanum(III) acetate sesquihydrate (3.44 mg, 0.010 mmol) were mixed and the solvent was evaporated under reduced pressure. The residue was recrystallized from chloroform/methanol/ether to give [LZn₃La(OAc)₃] (8.84 mg, 55%) as yellow crystals; ¹H NMR (600 MHz, CDCl₃/CD₃OD, 1:1, 303 K) major isomer (*R*,*R*,*M*): δ 1.54-1.57 (m, 4H), 1.74 (s, 9H), 2.08-2.12 (brm, 2H), 2.62-2.65 (brm, 2H), 3.59-3.62 (brm, 2H), 3.73 (s, 6H), 4.11 (brd, *J* = 13 Hz, 2H), 4.17 (brdd, *J* = 15, 3 Hz, 2H), 4.48-4.52 (m, 2H), 4.99 (brt, *J* = 12 Hz, 2H), 6.41 (dd, *J* = 7.9, 1.2 Hz, 2H), 6.51 (t, *J* = 7.9 Hz, 2H), 6.55 (d, *J* = 8.4 Hz, 2H), 6.737 (d, *J* = 8.4 Hz, 2H), 6.84 (dd, *J* = 7.9, 1.2 Hz, 2H), 7.87 (s, 2H), 8.35 (s, 2H), 8.43 (s, 2H); minor isomer (*R*,*R*,*P*): δ 1.54-1.57 (m, 4H), 1.74 (s, 9H), 2.08-2.12 (brm, 2H), 3.50-3.53 (brm, 2H), 3.78 (s, 6H), 4.13 (brd, *J* = 13 Hz, 2H), 4.20 (brdd, *J* = 15, 3 Hz, 2H), 4.48-4.52 (m, 2H), 4.92 (brt, *J* = 12 Hz, 2H), 6.42 (dd, *J* = 8.0, 1.1 Hz, 2H), 6.53 (t, *J* = 8.0 Hz, 2H), 6.55 (d, *J* = 8.3 Hz, 2H), 6.87 (dd, *J* = 8.0, 1.1 Hz, 2H), 7.86 (s, 2H), 8.36 (s, 2H), 8.43 (s, 2H). Anal. Calcd for C₅₁H₅₅Cl₆LaN₆O₁₉Zn₃ (= [LZn₃La(OAc)₃(MeOH)]•2CHCl₃): C, 38.19; H, 3.46; N, 5.24. Found: C, 38.65; H, 3.42; N, 5.28.

Figure S1. Part of the ¹H NMR spectrum of $[LZn_3La(OAc)_3]$ in CDCl₃/CD₃OD (1:1) at 600 MHz. Filled and open circles denote the signals of major (*R*,*R*,*M*) and minor (*R*,*R*,*P*) isomers, respectively.

Figure S2. ESI-mass spectrum of [LZn₃La(OAc)₃].

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Figure S3. CD spectra of $[LZn_3La(OAc)_3]$ in this study (0.006 mM) and (*M*)- $[L'Zn_3La(OAc)_3]^{[2]}$ (0.012 mM) in chloroform/methanol (1:1).

Figure S4. Change in the CD spectra of $[LZn_3La(OAc)_3]$ in this study (0.006 mM) in chloroform/methanol (1:1).

References

- [1] S. Akine, T. Taniguchi, T. Saiki, T. Nabeshima, J. Am. Chem. Soc., 2005, 127, 540-541
- [2] S. Akine, T. Matsumoto, T. Nabeshima, Chem. Commun., 2008, 4604-4606.