Supporting Information

For

KCN sensor: Unique Chromogenic and 'Turnon' Fluorescent Chemodosimeter: Rapid Response and High Selectivity

Hyun Jung Kim,^a Kyoung Chul Ko,^b Jae Hong Lee,^a Jin Yong Lee,^{*b} and Jong Seung Kim^{*a} ^aDepartment of Chemistry, Korea University, Seoul 136-701 Republic of Korea. ^bDepartment of Chemistry, Sungkyunkwan University, Suwon 440-746 Republic of Korea.

* Corresponding authors: jongskim@korea.ac.kr (J. S. Kim); jinylee@skku.edu (J. Y. Lee)

Table of contents

1.	Instruments and reagents	S2
2.	Spectroscopic Data	S2
3.	Calculation method	S2
4.	Synthesis	S3
5.	Supplementary spectral data	
	Figure S1	S4
	Figure S2	S4
	Figure S3	\$5
	Figure S4	\$5
	Figure S5	S6
	Figure S6	S6
	Table S1	S7
	Figure S7	S7
	Figure S8	S8
	Figure S9	89
	Figure S10	S10

1. Instruments and reagents

All fluorescence and UV/Vis absorption spectra were recorded in a Shimadzu RF-5301PC and a Shinco S-3100 spectrophotometer, respectively. NMR and mass spectra were recorded at Varian instrument (400 MHz) and JMS-700 MStation mass spectrometer, respectively. Infrared spectra were obtained from KBr windows with a Bomen MB-104 spectrometer. All analytes were purchased from Aldrich and used as received. All solvents were analytical reagents from Duksan Pure Chemical Co., Ltd.. CH₃CN for spectra detection was HPLC reagent without fluorescent impurity and H₂O was deionized water.

2. Spectroscopic Data

Stock solutions (0.1 M) of the anion potassium salts were prepared in water. Stock solutions of **1** (0.1 mM) were prepared in CH₃CN. For all measurements of fluorescence spectra, excitation was at 405 nm with all excitation slit widths is 1.5 nm, that of emission is 3 nm. UV/ vis and fluorescence titration experiments were performed using 20 μ M and 5 μ M, respectively, of **1** in H₂O/CH₃CN (5:95, v/v) solution with varying concentrations of the anion potassium salts at room temperature.

3. Calculation method

To understand the detailed mechanism for the fluorescence enhancement of **1** upon the addition of CN^- , we carried out density functional theory (DFT) calculations with 6-31G* basis set using a suite of Gaussian 03 programs. First, we obtained the optimized structures of **1** for several possible conformers. Using the lowest energy conformer of **1**, we obtained the optimized structure of **1**- CN^- . At the optimized geometry, we obtained the excitation properties such as excitation energies and the contribution of relevant orbital transitions to the excitation by the TDDFT calculations. The simulated UV-Vis absorption spectra were visualized by using the Gaussview (version 4.1) program.^{S1} The UV-vis peak half-width at half height was taken to be equal to 2685.83 cm⁻¹.

4. Synthesis

Compound 1: **2** (200 mg, 0.74 mmol) and indolium derivative **3** (160 mg, 0.74 mmol) were dissolved in 20 mL of EtOH, then pyrrolidine (61 μ L, 0.74 mmol) was added to the solution. The reaction mixture was refluxed with stirring for 1 day and then evaporated in vacuo. The resulting solid was dissolved in CH₂Cl₂, and the organic layer was washed three times with water, dried over anhydrous MgSO₄, and evaporated in vacuo. The residue was purified by column chromatography on silica (from DCM / MeOH, 90:1 v/v) to give compound **1** (142 mg, 41 %) as dark blue solid. Mp: 210-215 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.84 (s, 1H), 8.63 (d, 1H, *J* = 15.6 Hz), 7.98 (d, 1H, *J* = 15.6 Hz), 7.68 (s, 1H), 7.52-7.44 (m, 4H), 7.36-7.33 (d, 2H, *J* = 7.6 Hz), 4.66 (t, 2H, *J* = 6.7 Hz), 3.45-3.43 (t, 4H, *J* = 5.5 Hz), 2.90-2.86 (t, 2H, *J* = 6.3 Hz), 2.82-2.78 (t, 2H, *J* = 6.3 Hz), 2.03-1.89 (m, 8H), 1.86 (s, 6H), 1.04-0.99 (t, 3H, *J* = 7.1 Hz); ¹³C NMR (100 MHz, CDCl₃): 165.1, 154.0, 143.1, 141.2, 132.3, 132.0, 130.5, 129.2, 128.2, 122.9, 121.7, 121.1, 113.1, 111.7, 111.6, 109.1, 108.3, 107.9, 107.7, 106.1, 51.6, 51.3, 50.7, 46.9, 30.6, 30.1, 28.1, 27.3, 26.3, 21.1, 20.4, 20.0, 14.1 ppm; IR (film): v_{max} 1623, 1556, 1508, 1430, 1301, 1174 cm⁻¹; FAB-MS calc. for C₃₁H₃₅N₂O₂⁺ [M] 467.62, found 467.20.

5. Supplementary spectral data

Figure S1. ¹H NMR (CDCl₃, 400 MHz) spectrum of 1.

Figure S2. ¹³C (CDCl₃, 100 MHz) spectrum of 1.

Figure S3. FAB-Mass spectrum of 1.

Figure S4. FAB-Mass spectrum of 1+CN⁻.

Figure S5. Absorption spectra of 1 (20.0 μ M) with the addition of K⁺ salts of F⁻, Cl⁻, Br⁻, I⁻, CH₃CO₂⁻, HSO₄⁻, HPO₄²⁻, HCO₃⁻, NO₃⁻, ClO₄⁻, CN⁻, and SCN⁻ (10 equiv, respectively) in CH₃CN.

Figure S6. Fluorescence spectra of **1** (5.0 μ M) with the addition of K⁺ salts of F⁻, Cl⁻, Br⁻, I⁻, CH₃CO₂⁻, HSO₄⁻, HPO₄²⁻, HCO₃⁻, NO₃⁻, ClO₄⁻, CN⁻, and SCN⁻ (10 equiv, respectively) in CH₃CN.

		-				0, 0, 1
	Calcu	lated	Calcula	ted λ_{max}	Experime	ental λ_{max}
	HOMO-LU	JMO E gap				
	eV	nm	eV	nm	eV	nm
 1	2.41	515	2.43	511	2.03	610
1-CN-	3.37	368	3.31	374	3.03	409

$1 a D U D 1. Culculated and experimental M_{max} values and calculated 110100 D D 000000000000000000000000000$

Figure S7. Simulated UV-Vis absorption spectra for 1 and 1- CN.

Figure S8. ¹H-NMR spectral changes of **1** (1.0 mM) upon addition of CN^- . (a) **1** only, (b) **1** and 0.5 eq of K^+CN^- , and (c) **1** and 1 eq of K^+CN^- in CD_3CN .

Figure S9. Absorption (a) and fluorescence (b) spectra of 1, $1 + CN^-$, $1 + Cu^{2+}$, and $1 + CN^- + Cu^{2+}$ in H₂O/CH₃CN (5:95, v/v) solution. Excitation at 405 nm (slit 1.5/3).

Figure S10. The $[I_{min}-I]/[I_{min}-I_{max}]$ at 610 nm of 1 as a function of CN^{-} concentration.

References

S1. Frisch; R. D. II Dennington; T. A. Keith; J. Millam; A. B. Nielsen; A.J. Holder; J. Hiscocks; *Gauss view version 4.1 user manual*. Gaussian Inc, Wallingford, CT, 2007