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Methods

1. Model Dielectric Function

The raw data of Johnson and Christy has been &bhtanalytic model by Etchegokt al
[Etchegoin, 2006]. The main advantages of usingratytic model of the dielectric function are
smooth functions fo gr =-¢'7¢" andde, /dw Which will be discussed below. The original adicl
by Etchegoiret al slightly overestimates the local surface plasmetriey leading to an
overestimation of peak field enhancement. In 2@d7rrata was published [Etchegoin, 2007],
increasing the Drude scattering frequency (redneestattering wavelength, ) from the

original value of 17000 nm to 14500 nm. Here, ttegtering wavelength is reduced further to
14000 nm such that the calculated peak field erdrarats present a lower bound compared to
expected experimental values. A comparison of élaedata and the fit used here is presented in
Figure 1.

The use of optical constants by other authors,[@/gaver and Frederikse, 2002] results in
larger field enhancements than those reported(bereo 132).



20

10

-20

-30

-40

Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2011

€/10 (JC)
€” (JC)

€’/10 (7\"Y=14000nm)
€” (\,=14000nm)
1 }\‘Y_ 1

0.5

1

A (um)

—€'le”

2.5

0

T T
(A=145000m)
(A;=14000nm)

0.5

A (pum)

2.5

Figure 1. (Left) Model dielectric function of Etchegoet al (using the scattering wavelength of
14000 nm) and the experimental data of JohnsorCanidty [Johnson, 1972]. (Right) A
comparison of the local surface plasmon metricutated using the model function of Etchegoin
et al, 2007 (lines) and the experimental data of Johnson dn&ty (crosses).

2. Convergence behavior of the Field Enhancement

Depending on the medium index and particle sizetorespherical harmonics (VSH) up to order
45 are required in the expansion of the fields.aBise low medium index is associated with
larger particles, lown calculations required the largest number of VSH& convergence rate
of the field enhancement with the number of VSHgresented in Figure 2.

Figure 2. Field enhancement as a function of the number8Hi¥included in the exapansion of
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the fields form=1.50,r=24.5 nm =719 nm. The relative error ft\=45 is less than 0.1 %.
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Data
1. Simulation parameters for Peak Fields

Table 1. Simulation parameters that give maximum peak fgldancements for each medium
index.

m r (nm) Ap (hm) Qext Er (Peak)
1.00 41.0 631 7.06 664
1.25 30.5 672 8.06 721
1.50 24.5 719 8.59 726
1.75 21.0 774 8.68 690
2.00 19.0 837 8.44 627
2.25 18.4 913 8.05 578
2.50 20.0 1020 7.62 538
2.75 20.0 1110 7.26 503

2. Simulation parameters for Average Fields

For comparison with the peak fields, the averagiel$iare presented in Figure 3 and Table 2.
The fourth power of the field enhancement is caltad for 1369 positions situated 0.5 nm from
the surface. After taking the spatial averagefoleth root is taken for comparison with the peak
field enhancement.
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Figure 3. For each background medium refractive ind@y Epectra are calculated for a series
of sphere radii and the average field enhancemsesglected. These field maxima are presented
in the figure as a function of their respectiveoremnce position,.
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Table 2. Simulation parameters that give maximum peak fgldancements for each medium
index.

m r (nm) A, (nm) (E(@)* /Eo(@)*)*

1.00 40 626 128
125 30 670 140
150 24 716 143
175 21 775 138
2.00 19 835 128
225 18 916 119
250 19 1010 110

Derivations

In the following the dielectric function takes tloem ¢ = ¢ +ie,. Three topics are discussed, as
referenced to in the main text:

General surface plasmon metrics applicable to gptheners.
Explanation ofr,,

Proof thatae, /¢, =2
FWHM across the extinction efficieno@ex

WP

1. General surface plasmon metrics applicable to dimers
Here we show that the generic surface plasmon aristessentially a description of the

maximum polarizability of the system on resonafi@o metrics are derived assuming a
dielectric function of the form = ¢ +ie,, the first applicable to spheres and shells:

Qusp =-¢€1/€2,
and the second for ellipsoids:

Qisp=&f /¢,
Finally, we show that s, =-¢, /¢, provides a good approximation to the field enharexg of a
dimer of spheres.

Derivation of Qgp=-5/¢,
The polarizability of a sphere in a background raedwith dielectric constang,, is:

a_ &7 %m (1.1)

V.  e+2¢,
In the quasistatic limit, the extinction ¢3,, 2277Tlm(a) , and so we select the imaginary part of the

polarizability (1.1):
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a) _.  3&¢m

V - 822 +(‘€1+2€m)2 (1-2)
There are two equivalent resonance conditionslf@)( either the frequency is changed such
that ¢, (w) = -2¢,,,, Or alternatively, the background medium indexased to coincide with the
real part of the dielectric function at a givengiuency:

== 218 (1.3)
Substituting (1.3) into (1.2) gives:
ae) _ 34 (1.4)
v 2¢,

Resulting in a frequency dependent metric for dualized resonance on a sphere. A similar
derivation can be performed for shells (see e.cnghd, 2009] ).

Derivation of Q¢p=¢2/¢,
The polarizability of a prolate ellipsoid is givew:

Qellipsoid :Vm (1.5)
WherelL is a depolarization factor that depends on theasgjatio of the ellipsoid (length/width).
The depolarization factor is described by [Boh2004]:

L=1_ez [—1+ilnﬁ) (1.6)

e2 2 1l-e

Wheree is the eccentricity of the particla (s the radius of the long axisjs the radius of the

short axis:
e=,/1-(b%/a?) 2.7)

Following the same argument as above, we selectrtaginary part of the polarizability:

Qellipsoid _ E2Em 1.8
VB (et L)) 19
By setting the denominator in (1.8) to zero andisgi for L, we get:
L=—— fm (1.9a)
& + 1&€5 + Em

Through the definitions (1.6) and (1.E)is a real quantity, and so we onaitfrom the resonance
condition:

L=-—fm (1.9b)
&+ &ny
Substituting (1.9b) into (1.8) gives:
Telipsoid _; (61— €m)? (1.10)
v E2Em

By removing the dependence on the medium refraatidex, we can define a local surface
plasmon metric applicable to ellipsoids:

Qisp =41 /¢, (1.11)
From equation 1.10, it is clear that increasingrtteglium index for ellipsoids reduces the
polarizability. But because the depolarization barmade arbitrarily small by increasing the
length of the ellipsoid, this additional tuning rhaaism is unnecessary.
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Generalization to sphere dimers

The polarizability for a sphere dimer can be wnittewn in terms of two unknown geometry
dependent coefficients, namely a dipole strengdifimdent, A, and a depolarization factbr(see
[Arnold, 2010; Raether, 1988])):

gimer = Av% . (1.12)
The value ofA varies between 0 and 1 depending on the gapdrafdiven byg/2r, whereg is
the gap.) The depolarization factor is also prapodl to the gap fraction of the sphere dimer
and governs the position of the resonance.
Treating (1.12) in the same fashion as the ellghgudicates that for very small gaps, or very
large particles, the resonance wavelength wilk glohtinuously to the red, and the resonance
strength will grow rapidly. However, for small gap®n-locality in Maxwell’s equations causes
the field enhancement to be reduced. And, for |lpayécles, radiative damping reduces the field
enhancement.
To avoid non-local effects, we constrain the gaprim, limiting the values that the
depolarization factor can take. For the caseaf.00 the gap fraction takes values between
1/40 and 1/120, corresponding to spheres of ré&busm and 60 nm respectively. The limits of
the depolarization factor can be determined enadlyidy recording the value of the permittivity
at the resonance frequency via:

e

L—gl_gm, (1.13)

where ¢, = 100. This function is plotted for gap fractions betwe#/40 and 1/120 in Figure 4.
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Figure 4. Relationship between the depolarization factar thie gap fraction for sphere dimers
in a background medium witin=1.00 andy=1.00. The position of the resonance was extracted
from the peaks in the inset of Figure 1 in the maxi. Radius decreases from left to right.

Given a range of values for the depolarizationdgatre determine the resonance condition for
(1.12) by assuming that the medium index can bemeatto the depolarization factor:

. :%Ll (1.14)
Substituting (1.14) into (1.12) and selecting tmaginary part gives:
Qdimer = & (115)

v £,(1-L)L
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For bound values of the depolarization factor, §Lreduces t@, ¢ = -, /¢,. Of coursel varies
depending on the medium index, and hence it alses/as a function of wavelength. As such,
the discrepancy between the exact valug3 g and the field enhancement values in Figure 1 of
the main article varies by more than a multiplieattonstant. However, the trend is clear.

2. Explanation of rw:AS_sg,,{E}-l

" dw
In the quasistatic limit, the resonance conditionthe polarizability of a sphere / ellipsoid / Bhe
is wavelength independent. As such, the width efrésonance can be written in terms of the
difference across the FWHM of the real part ofdiedectric function. The LSPR frequency is
ar , and the frequencies corresponding to the lowragll frequency bounds of the FWHM are
w, and «, respectively. In order to determine the widthregiency, we assume that the
derivative of the permittivity varies slowly witlhefiquency:

A& _ £1(ap) —€1(wa) Eﬂzdi (2.1)
Aw Wy, — 0y Mo 00 gy, '
Which rearranges to give:
-1
M= As{%} 2.2)

Although the derivative is easily determined fromperimental optical constants, the value of
r,, Is not constant, and depends on the value ofhtlaginary part of the dielectric function. We

show below that,, /¢, is constant, and therefore introduce this term ihe above equation:
-1
Mo :ﬂfz[&} (2.3)

Now, assuming knowledge of, /¢, (see below), the quasistatic linewidth can berdstesd
without reference to particle geometry or any sjpeanodel for the dielectric function:

M= 252{ﬁr (2.4)

dw
A figure showing the validity of this expressiorgisen in section 3.

3. Proof that %:z.

2
Figure 5 presents the FWHM across the extinctifiniefcy for sphere dimers in a series of
different medium refractive indices. It is essdhtithe same as Figure 2 in the manuscript,
except that the FWHM is measured across the eidmefficiency instead of the field
enhancement.
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Figure5. FWHM across the extinction efficiency of sphersdiers.

In order to justify the use afe, /¢, =2 we start from equation (1.2) and use the resonance
condition for a sphereg = -2¢,,. The polarizability can now be written:

a(€) _36x¢m
V= (3.1)

Because the polarizability is symmetric (in termhs;Q arounds, = -2¢,,, the FWHM across the

real part of the dielectric function is:

A&, = 2abs(e; — &) (3.2)
Where ¢, is the value of the dielectric function which givesf the polarizability on resonance:

1a(e) _ale) (3.3)

2 iV iV '
Or, in full (via Equation 1.2):

1352‘9m - 3Eahém (34)

2 & &+ (et 2
Solving for ¢, gives:

Eu =4 26080 — €5y — 26, (3.5)
For “good” metals, where the plasma frequency isimarger than the phenomenological

scattering rate, the derivative ef with respect to frequency is much smaller thandémévative
of ¢, and so we assumg, =¢,. Substituting this into (3.5) gives:

£ = E5 — 26 (3.6)
Substituting (3.6) into (3.2) gives:

A&, = 2abs(g; — £, + 2¢,,) (3.7)
Substituting in the resonance conditiens -2¢,,,, gives:
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Ber_, (3.8)

&2

This methodology gives the same result for thenpahility of an ellipsoid.
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