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Methods 

1. Model Dielectric Function 
The raw data of Johnson and Christy has been fit to an analytic model by Etchegoin  et al 
[Etchegoin, 2006]. The main advantages of using an analytic model of the dielectric function are 
smooth functions for εε ′′′−= /LSPQ  and ωε d/d 1  which will be discussed below. The original article 
by Etchegoin et al slightly overestimates the local surface plasmon metric, leading to an 
overestimation of peak field enhancement. In 2007, an errata was published [Etchegoin, 2007], 
increasing the Drude scattering frequency (reduce the scattering wavelength, γλ ) from the 

original value of 17000 nm to 14500 nm. Here, the scattering wavelength is reduced further to 
14000 nm such that the calculated peak field enhancements present a lower bound compared to 
expected experimental values. A comparison of the raw data and the fit used here is presented in 
Figure 1. 
The use of optical constants by other authors, e.g. [Weaver and Frederikse, 2002] results in 
larger field enhancements than those reported here (up to 1012). 
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Figure 1. (Left) Model dielectric function of Etchegoin et al (using the scattering wavelength of 
14000 nm) and the experimental data of Johnson and Christy [Johnson, 1972]. (Right) A 
comparison of the local surface plasmon metric calculated using the model function of Etchegoin 
et al, 2007 (lines) and the experimental data of Johnson and Christy (crosses).  
 

2. Convergence behavior of the Field Enhancement 
Depending on the medium index and particle size, vector spherical harmonics (VSH) up to order 
45 are required in the expansion of the fields. Because low medium index is associated with 
larger particles, low m calculations required the largest number of VSHs. The convergence rate 
of the field enhancement with the number of VSHs is presented in Figure 2. 
 

 
Figure 2. Field enhancement as a function of the number of VSHs included in the exapansion of 
the fields for m=1.50, r=24.5 nm, λ=719 nm. The relative error for N=45 is less than 0.1 %.  
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Data 

1. Simulation parameters for  Peak Fields 
 
Table 1. Simulation parameters that give maximum peak field enhancements for each medium 
index. 

m r (nm) λp (nm) Qext EF (Peak) 
1.00 41.0 631 7.06 664 
1.25 30.5 672 8.06 721 
1.50 24.5 719 8.59 726 
1.75 21.0 774 8.68 690 
2.00 19.0 837 8.44 627 
2.25 18.4 913 8.05 578 
2.50 20.0 1020 7.62 538 
2.75 20.0 1110 7.26 503 

 

2. Simulation parameters for Average Fields 
 
For comparison with the peak fields, the average fields are presented in Figure 3 and Table 2. 
The fourth power of the field enhancement is calculated for 1369 positions situated 0.5 nm from 
the surface. After taking the spatial average, the fourth root is taken for comparison with the peak 
field enhancement.  

 
Figure 3. For each background medium refractive index (m), spectra are calculated for a series 
of sphere radii and the average field enhancement is selected. These field maxima are presented 
in the figure as a function of their respective resonance position λp. 
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Table 2. Simulation parameters that give maximum peak field enhancements for each medium 
index. 

m r (nm) λp (nm) 
4

1
4

L0
4

L )(/)( ωω EE  

1.00 40 626 128 
1.25 30 670 140 
1.50 24 716 143 
1.75 21 775 138 
2.00 19 835 128 
2.25 18 916 119 
2.50 19 1010 110 

 

Derivations 
In the following the dielectric function takes the form 2εεε i+= 1 . Three topics are discussed, as 
referenced to in the main text: 
 

1. General surface plasmon metrics applicable to sphere dimers. 
2. Explanation of ωΓ  
3. Proof that 2/ 21 =∆ εε  
4. FWHM across the extinction efficiency, Qext 

 

1. General surface plasmon metrics applicable to dimers 
Here we show that the generic surface plasmon metric is essentially a description of the 

maximum polarizability of the system on resonance. Two metrics are derived assuming a 

dielectric function of the form 2εεε i+= 1 , the first applicable to spheres and shells: 

 21LSP / εε−=Q , 
and the second for ellipsoids: 
 2

2
1LSP / εε=′Q . 

Finally, we show that 21LSP / εε−=Q  provides a good approximation to the field enhancement of a 
dimer of spheres. 

Derivation of 21LSP / εε−=Q  

The polarizability of a sphere in a background medium with dielectric constant mε  is: 

 
m

m

V εε
εεα
2+

−=  (1.1) 

In the quasistatic limit, the extinction is )Im(
2

ext α
λ
π=C , and so we select the imaginary part of the 

polarizability (1.1): 
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There are two equivalent resonance conditions for (1.2), either the frequency is changed such 
that mεωε 2)(1 −= , or alternatively, the background medium index is varied to coincide with the 
real part of the dielectric function at a given frequency: 
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Substituting (1.3) into (1.2) gives: 
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Resulting in a frequency dependent metric for the localized resonance on a sphere. A similar 
derivation can be performed for shells (see e.g. [Arnold, 2009] ). 

Derivation of 2
2
1LSP / εε=′Q  

The polarizability of a prolate ellipsoid is given by: 
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L

V  (1.5) 

Where L is a depolarization factor that depends on the aspect ratio of the ellipsoid (length/width). 
The depolarization factor is described by [Bohren, 2004]:  
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Where e is the eccentricity of the particle (a is the radius of the long axis, b is the radius of the 
short axis: 

 )/(1 22 abe −=  (1.7) 
Following the same argument as above, we select the imaginary part of the polarizability: 
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By setting the denominator in (1.8) to zero and solving for L, we get: 
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Through the definitions (1.6) and (1.7), L is a real quantity, and so we omit 2ε from the resonance 

condition: 
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Substituting (1.9b) into (1.8) gives: 
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By removing the dependence on the medium refractive index, we can define a local surface 
plasmon metric applicable to ellipsoids: 
 2

2
1LSP / εε=′Q  (1.11) 

From equation 1.10, it is clear that increasing the medium index for ellipsoids reduces the 
polarizability. But because the depolarization can be made arbitrarily small by increasing the 
length of the ellipsoid, this additional tuning mechanism is unnecessary. 

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2011



Generalization to sphere dimers 
The polarizability for a sphere dimer can be written down in terms of two unknown geometry 
dependent coefficients, namely a dipole strength coefficient, A, and a depolarization factor L (see 
[Arnold, 2010; Raether, 1988]): 

 
)( mm

m
dimer εεε

εεα
−+

−
=

L
AV . (1.12) 

The value of A varies between 0 and 1 depending on the gap fraction (given by g/2r, where g is 
the gap.) The depolarization factor is also proportional to the gap fraction of the sphere dimer 
and governs the position of the resonance.  
Treating (1.12) in the same fashion as the ellipsoid indicates that for very small gaps, or very 
large particles, the resonance wavelength will shift continuously to the red, and the resonance 
strength will grow rapidly. However, for small gaps, non-locality in Maxwell’s equations causes 
the field enhancement to be reduced. And, for large particles, radiative damping reduces the field 
enhancement.  
To avoid non-local effects, we constrain the gap to 1nm, limiting the values that the 
depolarization factor can take.  For the case of m=1.00 the gap fraction takes values between 
1/40 and 1/120, corresponding to spheres of radius 20 nm and 60 nm respectively. The limits of 
the depolarization factor can be determined empirically by recording the value of the permittivity 
at the resonance frequency via: 
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where 00.1=mε . This function is plotted for gap fractions between  1/40 and 1/120 in Figure 4. 
 

 
Figure 4. Relationship between the depolarization factor and the gap fraction for sphere dimers 
in a background medium with m=1.00 and g=1.00. The position of the resonance was extracted 

from the peaks in the inset of Figure 1 in the main text. Radius decreases from left to right. 
 
Given a range of values for the depolarization factor, we determine the resonance condition for 
(1.12) by assuming that the medium index can be matched to the depolarization factor: 

 
1

1
m −

=
L

Lεε  (1.14) 

Substituting (1.14) into (1.12) and selecting the imaginary part gives: 
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For bound values of the depolarization factor, (1.15) reduces to 21LSP / εε−=Q . Of course, L varies 
depending on the medium index, and hence it also varies as a function of wavelength. As such, 
the discrepancy between the exact values of QLSP and the field enhancement values in Figure 1 of 
the main article varies by more than a multiplicative constant. However, the trend is clear. 
 

2. Explanation of 
1
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In the quasistatic limit, the resonance condition for the polarizability of a sphere / ellipsoid / shell 
is wavelength independent. As such, the width of the resonance can be written in terms of the 
difference across the FWHM of the real part of the dielectric function. The LSPR frequency is 

Rω , and the frequencies corresponding to the low and high frequency bounds of the FWHM are 

aω  and bω  respectively. In order to determine the width in frequency, we assume that the 
derivative of the permittivity varies slowly with frequency: 
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Which rearranges to give: 
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Although the derivative is easily determined from experimental optical constants, the value of 

1εΓ  is not constant, and depends on the value of the imaginary part of the dielectric function. We 

show below that 21
/ εεΓ  is constant, and therefore introduce this term into the above equation: 
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Now, assuming knowledge of 21
/ εεΓ  (see below), the quasistatic linewidth can be determined 

without reference to particle geometry or any specific model for the dielectric function: 
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A figure showing the validity of this expression is given in section 3. 

3. Proof that 2
2

1 =
∆
ε
ε . 

Figure 5 presents the FWHM across the extinction efficiency for sphere dimers in a series of 
different medium refractive indices. It is essentially the same as Figure 2 in the manuscript, 
except that the FWHM is measured across the extinction efficiency instead of the field 
enhancement. 
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Figure 5. FWHM across the extinction efficiency of sphere dimmers. 

 
In order to justify the use of 2/ 21 =∆ εε  we start from equation (1.2) and use the resonance 

condition for a sphere, mεε 21 −= . The polarizability can now be written: 

 
2
2

23)(

ε
εεεα m

iV
=  (3.1) 

Because the polarizability is symmetric (in terms of 1ε ) around mεε 21 −= , the FWHM across the 

real part of the dielectric function is: 

 )(2 111 babs εεε −=∆  (3.2) 
Where bε is the value of the dielectric function which gives half the polarizability on resonance: 
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Or, in full (via Equation 1.2): 
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Solving for b1ε  gives: 

 mbbb εεεεε 22 2
2221 −−=  (3.5) 

For “good” metals, where the plasma frequency is much larger than the phenomenological 

scattering rate, the derivative of 2ε  with respect to frequency is much smaller than the derivative 

of 1ε , and so we assume 22 εε =b . Substituting this into (3.5) gives: 

 mb εεε 221 −=  (3.6) 
Substituting (3.6) into (3.2) gives: 

 )2(2 211 mabs εεεε +−=∆  (3.7) 
Substituting in the resonance condition, mεε 21 −= , gives: 
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This methodology gives the same result for the polarizability of an ellipsoid. 
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