NMR evidence of the kinetic and thermodynamic products in the NIS promoted cyclization of 1-phenyl-4-pentenylamines. Synthesis and reactivity of *trans*-2-phenyl-5-iodopiperidines.

Faïza Diaba* and Josep Bonjoch*

Laboratori de Química Orgànica, Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII s/n, 08028-Barcelona, Spain

faiza.diaba@ub.edu, josep.bonjoch@ub.edu

Contents

Table 1. ¹³ C NMR Chemical shifts of piperidines 2	2
Table 2. ¹³ C NMR Chemical shifts of pyrrolidines 3 and 4	3
Table 3. ¹³ C NMR Chemical shifts of piperidines 5	4
I. Synthesis of 1-phenylpent-4-enamines 1c-h	5
II. Iodoaminocyclization of alkenylamines 1a-h	7
III. Evolution of 2a-g and 3h on alumina	10
IV. Copies of ¹ H NMR and ¹³ C NMR spectra of all new compounds	15

	2a	2b	2c	2d	2e	2f	2g
C-2	69.4	67.1	67.5	67.0	67.6	64.7	64.4
C-3	38.0	38.2	38.7	38.6	38.9	39.4	39.3
C-4	38.7	38.7	39.0	38.9	39.0	39.4	39.3
C-5	24.6	25.1	25.8	25.3	25.4	27.7	28.1
C-6	66.9	62.2	63.1	63.0	62.9	55.4	57.2
C-Ar	127.3	127.5	127.1	127.3	126.9	127.1	127.1
	128.5	128.6	127.5	127.4	127.3	127.4	127.4
	143.6	142.8	128.4	128.6	127.4	128.5	128.5
			144.0	143.6	128.2	144.0	144.0
					128.5		
					128.7		
					138.7		
					144.1		
Other	43.5 [♭]	10.5 ^b	11.6 ^b	57.3 ^c	58.6 ^c	12.5 ^b	24.1 ^c
		48.2 ^c	19.0 ^c	117.9 ^d		21.3 ^b	25.6 ^c
			56.1 ^c	134.4 ^e		48.4 ^{<i>f</i>}	26.2 ^c
							26.3 ^c
							31.4 ^c
							58.0 ^f

^aValues were assigned on the basis of gCOSY and gHSQC spectra. ^bCH₃, ^cCH₂, ^dCH₂=, ^eCH=, ^fCH.

Table 2. ¹³ C NMR Chemical shi	ifts of pyrrolidines 3 and 4 ^a
---	---

	4a	4b	4c	4d	4e	4h	3a ^h	3h
C-2	63.7	62.6	62.8	62.4	62.3	59.9	65.3	62.2
C-3	27.3	27.2	27.1	27.1	27.0	29.3	31.2	29.9
C-4	31.9	32.5	32.6	32.4	32.6	37.0	33.7	36.8
C-5	68.8	65.6	65.8	66.4	66.2	64.6	67.8	65.6
CH₂X [₺]	61.6	62.1	62.1	62.4	62.4	65.1	11.4	14.6
C-Ar	127.0	126.8	126.7	126.9	126.8	126.1	127.8	125.9
	127.9	127.7	127.7	127.9	126.9	128.3	128.2	126.1
	128.3	128.3	128.3	128.2	127.9	149.0	129.3	128.1
	142.6	143.3	143.5	143.2	128.2		145.1	148.8
					128.3			
					139.9			
					143.3			
Other	35.1 ^c	14.3 ^c	11.8 ^c	50.5 ^d	51.6 ^d	28.0 ^c	34.7 ^c	27.7 ^c
		41.2 ^d	21.9 ^d	116.1 ^{<i>e</i>}		55.4 ^g		54.9 ^g
			49.0 ^d	136.7 ^f				

^aValues were assigned on the basis of gCOSY and gHSQC spectra. ^bX = OH or I, ^cCH₃, ^dCH₂, ^eCH₂=, ^fCH=, ^gC, ^hSpectrum registered in C₆D₆.

	5a	5b	5c	5d	5e	5f	5g
C-2	64.3	59.5	60.0	60.1	60.1	51.8	53.8
C-3	67.7	68.1	67.8	67.9	67.9	68.5	68.7
C-4	34.3	34.5	34.4	34.4	34.3	34.7	34.7
C-5	33.9	34.4	34.4	34.4	34.7	34.7	34.8
C-6	69.8	67.3	67.8	67.4	67.9	64.9	64.4
C-Ar	127.2	127.0	127.0	127.2	126.8	127.0	126.9
	127.5	127.5	127.6	127.5	127.1	127.5	127.5
	128.5	128.4	128.4	128.5	127.5	128.5	128.4
	143.6	144.1	144.0	143.8	128.1	143.9	144.2
					128.6		
					128.7		
					139.1		
					144.4		
Other	44.2 ^b	10.7 ^b	11.6 ^b	58.0 ^c	59.3 ^c	12.2 ^b	23.7 ^c
		48.6 ^c	18.8 ^c	117.7 ^d		21.1 ^{<i>b</i>}	25.7 ^c
			56.6 ^c	134.7 ^e		48.4 ^{<i>f</i>}	26.4 ^c
							26.5 ^c
							31.5 ^c
							57.8 ^f

^aValues were assigned on the basis of gCOSY and gHSQC spectra. ^bCH₃, ^cCH₂, ^dCH₂=, ^eCH=, ^fCH.

General procedures. ¹H and ¹³C NMR spectra were recorded in CDCl₃ or C_6D_6 solution. Chemical shifts are reported as δ values (ppm) relative to internal Me₄Si. Infrared spectra were recorded on a Nicolet 320 FT-IR spectrophotometer. TLC was performed on SiO₂ (silica gel 60 F₂₅₄, Merck) or on Al₂O₃ (aluminium oxide 60 F254, Merck). The spots were located by UV light, a 1% KMnO₄ aqueous solution or a 1.5% K₂PtCl₆ aqueous solution. Chromatography refers to flash chromatography and was achieved on SiO₂ (silica gel 60, SDS, 230-400 mesh) or on Al₂O₃ (aluminium oxide activity II-III, 70-230 mesh). All reactions were carried out under an argon atmosphere with dry, freshly distilled solvents and under anhydrous conditions. Drying of the organic extracts during the work-up of reactions was performed over anhydrous Na₂SO₄.

I. Synthesis of 1-phenylpent-4-enamines (1c-h)¹

Representative example, preparation of 1g: A solution of 1-phenylpent-4-en-1-one² (0.3 g, 1.87 mmol) and cyclohexylamine (0.85 ml, 7.48 mmol) in 10 mL of dry diethylether was cooled to 0°, and TiCl₄ (0.12 mL, 1.12 mmol) was added dropwise. The mixture was stirred overnight allowing the temperature to rise to rt then it was guenched with aqueous 0.5 M NaOH solution and extracted with ether. The combined organic layers were dried and concentrated. The residue was dissolved in MeOH (10 mL), cooled to 0° and then NaBH₄ (0.088 g, 2.24 mmol) was added portionwise. The mixture was stirred at rt for 1h then the solvent was removed under vacuum, water was added and the aqueous extracted with CH₂Cl₂. The organic layers were dried, concentrated and purified by chromatography (SiO₂, CH₂Cl₂-CH₂Cl₂/MeOH 95:5) to yield **1g** (0.35 g, 78%) as a colourless oil.

N-Cyclohexyl-1-phenylpent-4-en-1-amine (1g)

IR (NaCl, neat): 3321, 3062, 3024, 2926, 2851, 1640, 1492, 1450, 1366, 1124, 993, 909, 759, 700 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.90-1.20 (m, 5H), 1.53 (brs, 1H), 1.60-1.84 (m, 5H), 1.96 (m, 3H), 2.23 (tt, 1H, J = 10, 3.6 Hz), 3.76 (t, 1H, J = 6.8 Hz), 4.95 (m, 2H, =CH₂), 5.78 (ddt, 1H, J = 16.8, 10.4, 6.4 Hz, =CH), 7.20-7.35 (m, 5H, ArH); ¹³C NMR (CDCl₃, 100 MHz) δ 24.8 (CH₂), 25.2 (CH₂),

26.2 (CH₂), 30.6 (CH₂), 33.0 (CH₂), 34.7 (CH₂), 37.7 (CH₂), 53.5 (CH), 59.0 (CH), 114.6 (=CH₂), 126.7, 127.1, 128.3 (Ar-CH), 138.4 (=CH), 144.8 (ipso-C). HRMS (ESI-TOF) calcd. for $C_{17}H_{26}N$ 244.2059 [M+H]⁺, found 244.2064.

¹ G. Verniest, E. Van Hende, R. Surmont and N. De Kimpe, *Org. Lett.*, 2006, **8**, 4767. For the preparation of the imine in the synthesis of 1a and 1b see: J. S. M. Samec, A. H. Ell, J. B. Aaberg, T. Privalov, L. Eriksson, J.-E. Bäckvall, *J. Am. Chem. Soc.*, 2006, **128**, 14293. ² D. V. Gribkov, K. C. Hultzsch, F. Hampel, *J. Am. Chem. Soc.*, 2006, **128**, 3748.

N-Methyl-1-phenylpent-4-en-1-amine (1a)

Yield: 47%; IR (NaCl, neat): 3330, 3077, 3063, 3025, 2973, 2933, 2848, 2788, 1640, 1492, 1475, 1450, 1354, 1133, 994, 911, 760, 701 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.65-2.05 (m, 5H), 2.27 (s, 3H, CH₃), 3.47 (dd, 1H, *J* = 8, 6 Hz), 4.95 (m, 2H, =CH₂), 5.78 (ddt, 1H, *J* = 16.8, 10, 6.8 Hz, =CH), 7.22-7.36 (m, 5H, ArH); ¹³C NMR (CDCl₃, 100 MHz) δ 30.5 (CH₂), 34.4 (CH₃), 36.8 (CH₂), 64.9 (CH), 114.7 (=CH₂), 127.0, 127.3, 128.4 (Ar-CH), 138.3 (=CH), 143.5 (*ipso*-C). HRMS (ESI-TOF) calcd. for C₁₂H₁₈N 176.1434 [M+H]⁺, found 176.1432.

N-Ethyl-1-phenylpent-4-en-1-amine (1b)

Yield : 30% ; IR (NaCl, neat): 3321, 3077, 3063, 3025, 2967, 2930, 2870, 2847, 1640, 1492, 1452, 1379, 1127, 993, 910, 760, 700 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.05 (t, 3H, *J* = 7.2 Hz, CH₃), 1.50 (brs, 1H, NH), 1.65-2.05 (m, 4H), 2.47 (m, 2H, CH₂), 3.60 (dd, 1H, *J* = 8, 5.6 Hz), 4.96 (m, 2H, =CH₂), 5.78 (ddt, 1H, *J* = 16.8, 10, 6.8 Hz, =CH), 7.21-7.35 (m, 5H, ArH); ¹³C NMR (CDCl₃, 100 MHz) δ 15.4 (CH₃), 30.5 (CH₂), 37.1 (CH₂), 41.9 (CH₂), 62.8 (CH), 114.6 (=CH₂), 126.9, 127.3, 128.3 (Ar-CH), 138.4 (=CH), 144.1 (*ipso*-C). HRMS (ESI-TOF) calcd. for C₁₃H₂₀N 190.1590 [M+H]⁺, found 190.1591.

1-Phenyl-*N*-propylpent-4-en-1-amine (1c)

Yield: 75%; IR (NaCl, neat): 3327, 3079, 3063, 3025, 2958, 2930, 2872, 2802, 1640, 1492, 1453, 1379, 1357, 1125, 993, 910, 759, 701 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.86 (t, 3H, *J* = 7.6 Hz, CH₃), 1.45 (m, 2H), 1.73 (m, 1H), 1.82 (m, 1H), 1.96 (m, 2H), 2.39 (m, 2H), 3.58 (dd, 1H, *J* = 8.0, 6.4 Hz), 4.96 (m, 2H, =CH₂), 5.78 (ddt, 1H, *J* = 16.8, 10.4, 6.4 Hz, =CH), 7.20-7.36 (m, 5H, ArH); ¹³C NMR (CDCl₃, 100 MHz) δ 11.8 (CH₃), 23.3 (CH₂), 30.5 (CH₂), 37.2 (CH₂), 49.6 (CH₂), 62.9 (CH), 114.6 (=CH₂), 126.9, 127.3, 128.3 (Ar-CH), 138.4 (=CH), 144.2 (*ipso*-C). HRMS (ESI-TOF) calcd. for C₁₄H₂₂N 204.1746 [M+H]⁺, found 204.1746.

N-Allyl-1-phenylpent-4-en-1-amine (1d)

Yield: 72%; IR (NaCl, neat): 3328, 3077, 3025, 2977, 2924, 2844, 1640, 1492, 1452, 1357, 1114, 993, 913, 760, 701 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.50 (brs, 1H, NH), 1.67-1.88 (m, 2H), 1.97 (m, 2H), 3.05 (m, 2H), 3.63 (dd, 1H, *J* = 8, 6.4 Hz), 4.90-5.15 (m, 4H, =CH₂), 5.72-5.92 (m, 2H, =CH), 7.21-7.35 (m, 5H, ArH); ¹³C

NMR (CDCl₃, 100 MHz) δ 30.5 (CH₂), 37.1 (CH₂), 50.1 (CH₂), 62.0 (CH), 114.7 (=CH₂), 115.7 (=CH₂), 127.0, 127.3, 128.4 (Ar-CH), 137.0 (=CH), 138.3 (=CH), 143.8 (*ipso*-C). HRMS (ESI-TOF) calcd. for C₁₄H₂₀N 202.1590 [M+H]⁺, found 202.1589.

N-Benzyl-1-phenylpent-4-en-1-amine (1e)

Yield: 71%; IR (NaCl, neat): 3326, 3062, 3026, 2975, 2924, 2844, 1639, 1601, 1492, 1452, 1115, 1026, 994, 910, 744, 699 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.60 (brs, 1H, NH), 1.68-1.88 (m, 2H), 1.98 (m, 2H), 3.53 (d, 1H, J = 13.2 Hz), 3.63 (t, 1H, J = 6.4 Hz), 3.64 (d, 1H, J = 13.2 Hz), 4.94 (m, 2H, =CH₂), 5.76 (ddt, 1H, J = 16.8, 10.4, 6.4 Hz, =CH), 7.20-7.38 (m, 10H, ArH); ¹³C NMR (CDCl₃, 100 MHz) δ 30.5 (CH₂), 37.3 (CH₂), 51.5 (CH₂), 62.0 (CH), 114.6 (=CH₂), 126.8, 127.0, 127.4, 128.2, 128.3, 128.4 (Ar-CH), 138.4 (=CH), 140.6 (*ipso*-C), 144.0 (*ipso*-C). HRMS (ESI-TOF) calcd. for C₁₈H₂₂N 252.1746 [M+H]⁺, found 252.1749.

N-IsopropyI-1-phenyIpent-4-en-1-amine (1f)

Yield: 71%; IR (NaCl, neat): 3324, 3077, 3064, 3025, 2962, 2930, 2862, 1640, 1491, 1469, 1451, 1378, 1366, 1171, 1124, 994, 910, 760, 701 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.96 (d, 3H, *J* = 6.4 Hz, CH₃), 1.00 (d, 3H, *J* = 6.4 Hz, CH₃), 1.28 (brs, 1H, NH), 1.69 (m, 1H), 1.79 (m, 1H), 1.95 (m, 2H), 2.58 (sept, 1H, *J* = 6.4 Hz), 3.69 (t, 1H, *J* = 7.2 Hz), 4.95 (m, 2H, =CH₂), 5.78 (ddt, 1H, *J* = 16.8, 10.0, 6.8 Hz, =CH), 7.20-7.35 (m, 5H, ArH); ¹³C NMR (CDCl₃, 100 MHz) δ 22.0 (CH₃), 24.2 (CH₃), 30.6 (CH₂), 37.6 (CH₂), 45.4 (CH), 59.6 (CH), 114.6 (=CH₂), 126.8, 127.1, 128.3 (Ar-CH), 138.4 (=CH), 144.6 (*ipso*-C). HRMS (ESI-TOF) calcd. for C₁₄H₂₂N 204.1746 [M+H]⁺, found 204.1747.

N-(tert-Butyl)-1-phenylpent-4-en-1-amine (1h)

Yield: 64%; IR (NaCl, neat): 3341, 3077, 3024, 2962, 2929, 2864, 1640, 1480, 1452, 1388, 1363, 1228, 993, 910, 758, 701 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.99 (s, 9H, CH₃), 1.17 (brs, 1H, NH), 1.68 (m, 2H), 1.84-2.04 (m, 2H), 3.72 (t, 1H, *J* = 6.8 Hz), 4.96 (m, 2H, =CH₂), 5.78 (ddt, 1H, *J* = 16.8, 10.0, 6.8 Hz, =CH), 7.16-7.34 (m, 5H, ArH); ¹³C NMR (CDCl₃, 100 MHz) δ 30.2 (CH₃), 30.9 (CH₂), 39.6 (CH₂), 51.3 (C), 57.0 (CH), 114.6 (=CH₂), 126.4, 127.0, 128.1 (Ar-CH), 138.5 (=CH), 147.7 (*ipso*-C). HRMS (ESI-TOF) calcd. for C₁₅H₂₄N 218.1903 [M+H]⁺, found 218.1903.

II. Iodoaminocyclization of alkenylamines 1a-h³

General procedure: To a solution of alkenylamine **1a-h** (0.28 mmol) in CH_2CI_2 (3 mL) or $CDCI_3$ (1 mL) was added N-iodosuccinimide (0.28 mmol) and the mixture was stirred at room temperature for 10-15 min. The mixture was then purified on a short silicagel pad (CH_2CI_2) to yield iododerivatives **2a-g** from **1a-g** and **3h** from **1h**.

 $^{^3}$ lodocyclizations using CDCl₃ or C₆D₆ as solvent were carried out in an NMR tube.

(2RS,5SR)-5-lodo-1-methyl-1-phenylpiperidine (2a)

N CH₃ Yield: 75%; IR (NaCl, neat): 3027, 2989, 2938, 2840, 2781, 1490, 1452, 1195, 1153, 1118, 1079, 1044, 1003, 980, 952, 890, 779, 759, 700, 537 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.62-1.76 (m, 2H, CH₂-3), 1.99 (s, 3H, CH₃), 2.01 (m, 1H, H-4ax), 2.48 (m, 1H, H-4eq), 2.59 (t, 1H, J = 11.2 Hz, H-6ax),

2.88 (dd, 1H, J = 10, 4.4, H-2), 3.43 (ddd, 1H, J = 11.2, 4, 2 Hz, H-6eq), 4.33 (tt, 1H, J = 12, 4 Hz, H-5), 7.22-7.34 (m, 5H, ArH); ¹³C NMR (CDCl₃, 100 MHz) δ 24.6 (C-5), 38.0 (C-3), 38.7 (C-4), 43.5 (CH₃), 66.9 (C-6), 69.4 (C-2), 127.3, 128.5 (Ar-CH), 143.6 (*ipso*-C). HRMS (ESI-TOF) calcd. for C₁₂H₁₇IN 302.0400 [M+H]⁺, found 302.0400.

(2RS,5SR)-1-Ethyl-5-iodo-1-phenylpiperidine (2b)

Yield: 70%; IR (NaCl, neat): 3027, 2967, 2937, 2796, 2717, 2660, 1491, 1452, 1383, 1187, 1151, 1120, 1080, 1014, 979, 758, 736, 701, 540 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.94 (t, 3H, *J* = 7.2 Hz, CH₃), 1.64-1.83 (m, 2H, CH₂-3), 2.03 (qd, 1H, *J* = 12.8, 4.8 Hz, H-4ax), 2.14 (m, 1H, CH₂), 2.50 (m, 2H), 2.64 (t,

1H, J = 10 Hz, H-6ax), 3.22 (brs, 1H, H-2), 3.57 (d, 1H, J = 10 Hz, H-6eq), 4.40 (brs, 1H, H-5), 7.22-7.36 (m, 5H, ArH); ¹³C NMR (CDCl₃, 100 MHz) δ 10.5 (CH₃), 25.1 (C-5), 38.2 (C-3), 38.7 (C-4), 48.2 (CH₂), 62.2 (C-6), 67.1 (C-2), 127.5, 128.6 (Ar-CH), 142.8 (*ipso*-C). HRMS (ESI-TOF) calcd. for C₁₃H₁₉IN 316.0557 [M+H]⁺, found 316.0555.

(2RS,5SR)-5-lodo-2-phenyl-1-propylpiperidine (2c)

Yield: 69%; IR (NaCl, neat): 3081, 3060, 3027, 2958, 2973, 2869, 2798, 1491, 1453, 1385, 1339, 1307, 1190, 1148, 1120, 1078, 1027, 978, 893, 759, 700, 537 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.70 (t, 3H, *J* = 7.6 Hz, CH₃), 1.37 (m, 2H), 1.66 (m, 2H, CH₂-3), 1.95 (m, 1H), 2.00 (m, 1H, H-4ax), 2.31 (dt, 1H, *J* =

 CH_2 -3), 1.95 (III, 1H), 2.00 (III, 1H, H-4aX), 2.31 (dt, 1H, J = 12.8, 8.4 Hz), 2.46 (m, 1H, H-4eq), 2.55 (t, 1H, J = 11.6 Hz, H-6ax), 3.12 (t, 1H, J = 6.8 Hz, H-2), 3.54 (dm, 1H, J = 11.2 Hz, H-6eq), 4.32 (tm, 1H, J = 11.6 Hz, H-5), 7.20-7.33 (m, 5H, ArH); ¹³C NMR (CDCl₃, 100 MHz) δ 11.6 (CH₃), 19.0 (CH₂), 25.8 (C-5), 38.7 (C-3), 39.0 (C-4), 56.1 (CH₂), 63.1 (C-6), 67.5 (C-2), 127.1, 127.5, 128.4 (Ar-CH), 144.0 (*ipso*-C). HRMS (ESI-TOF) calcd. for C₁₄H₂₁IN 330.0713 [M+H]⁺, found 330.0713.

(2RS,5SR)-1-Allyl-5-iodo-2-phenylpiperidine (2d)

Yield: 66%; IR (NaCl, neat): 3062, 3026, 2939, 2793, 1641, 1601, 1490, 1451, 1360, 1332, 1189, 1147, 1100, 1080, 983, 920, 795, 758, 700, 537 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.68 (m, 2H, CH₂-3), 2.01 (m, 1H, H-4ax), 2.47 (dm, 1H, *J* = 12.8, H-4eq), 2.52 (m, 1H), 2.53 (t, 1H, *J* = 11.6 Hz, H-6ax), 3.08 (ddt, 1H, *J* = 14, 4.8, 1.6 Hz), 3.16 (t, 1H, *J* = 7 Hz, H-2), 3.52 (ddd,

1H, J = 11.6, 4, 2 Hz, H-6eq), 4.30 (tt, 1H, J = 12, 4 Hz, H-5), 5.07 (m, 2H, =CH₂), 5.72 (m, 1H, =CH), 7.20-7.33 (m, 5H, ArH); ¹³C NMR (CDCl₃, 100 MHz) δ 25.3 (C-5), 38.6 (C-3), 38.9 (C-4), 57.3 (CH₂), 63.0 (C-6), 67.0 (C-2), 117.9 (=CH₂), 127.3, 127.4, 128.6 (Ar-CH), 134.4 (=CH), 143.6 (*ipso*-C). HRMS (ESI-TOF) calcd. for C₁₄H₁₉IN 328.0556 [M+H]⁺, found 328.0560.

(2RS,5SR)-1-Benzyl-5-iodo-2-phenylpiperidine (2e)

Yield: 79%; IR (NaCl, neat): 3060, 3027, 2939, 2793, 1492, 1451, 1376, 1336, 1306, 1190, 1148, 1104, 1077, 1027, 990, 910, 795, 758, 737, 698, 536 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.73 (m, 2H, CH₂-3), 2.03 (m, 1H, H-4ax), 2.45 (t, 1H, *J* = 11.6 Hz, H-6ax), 2.47 (m, 1H, H-4eq), 2.88 (d, 1H, *J* = 13.6 Hz), 3.22

(m, 1H, H-2), 3.35 (ddd, 1H, J = 11.2, 4, 2 Hz, H-6eq), 3.70 (d, 1H, J = 13.6 Hz), 4.22 (tt, 1H, J = 12, 4 Hz, H-5), 7.18-7.43 (m, 10H, ArH); ¹³C NMR (CDCl₃, 100 MHz) δ 25.4 (C-5), 38.9 (C-3), 39.0 (C-4), 58.6 (CH₂), 62.9 (C-6), 67.6 (C-2), 126.9, 127.3, 127.4, 128.2, 128.5, 128.7 (Ar-CH), 138.7 (*ipso*-C), 144.1 (*ipso*-C). HRMS (ESI-TOF) calcd. for C₁₈H₂₁IN 378.0713 [M+H]⁺, found 378.0714.

(2RS,5SR)-5-lodo-1-isopropyl-2-phenylpiperidine (2f)

Yield: 63%; IR (NaCl, neat): 3081, 3061, 3027, 2963, 2934, 2869, 2796, 1491, 1453, 1385, 1368, 1193, 1162, 1116, 1076, 1042, 1027, 971, 884, 759, 701, 540 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.77 (d, 3H, *J* = 6.4 Hz, CH₃), 0.97 (d, 3H, *J* = 6.8 Hz, CH₃), 1.66 (m, 2H, CH₂-3), 2.00 (m, 1H, H-4ax), 2.46 (brd, 1H,

J = 11.6 Hz, H-4eq), 2.62 (t, 1H, J = 11.6 Hz, H-6ax), 2.74 (m, 1H), 3.38 (m, 2H, H-2 and H-6eq), 4.27 (brt, 1H, J = 11.6 Hz, H-5), 7.18-7.37 (m, 5H, ArH); ¹³C NMR (CDCl₃, 100 MHz) δ 12.5 (CH₃), 21.3 (CH₃), 27.7 (C-5), 39.4 (C-3 and C-4), 48.4 (CH), 55.4 (C-6), 64.7 (C-2), 127.1, 127.4, 128.5 (Ar-CH), 144.0 (*ipso*-C). HRMS (ESI-TOF) calcd. for C₁₄H₂₁IN 330.0713 [M+H]⁺, found 330.0716.

(2RS,5SR)-1-Cyclohexyl-5-iodo-2-phenylpiperidine (2g)

Yield: 55%; IR (NaCl, neat): 3061. 3027, 2930, 2853, 2795, 1491, 1450, 1188, 1141, 1116, 1077, 1010, 909, 758, 732, 700, 540 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.80-1.85 (m, 13H), 1.99 (brs, 1H, H-4ax), 2.25 (brs, 1H), 2.46 (brs, 1H, H-4eq), 2.73 (brs, 1H, H-6ax), 3.48 (brs, 2H, H-2 and H-6eq), 4.28 (brs, 1H, H-5), 7.15-7.45 (m, 5H, ArH); ¹³C NMR (CDCl₃, 100 MHz) δ

24.1 (CH₂), 25.6 (CH₂), 26.2 (CH₂), 26.3 (CH₂), 28.1 (C-5), 31.4 (CH₂), 39.3 (C-3 and C-4), 57.2 (C-6), 58.0 (CH), 64.4 (C-2), 127.1, 127.4, 128.5 (Ar-CH), 144.0

(*ipso*-C). HRMS (ESI-TOF) calcd. for $C_{17}H_{25}IN$ 370.1026 [M+H]⁺, found 370.1024.

(2RS,5RS)-1-tert-Butyl-2-iodomethyl-5-phenyl-pyrrolidine (3h)

Yield: 50%; IR (NaCl, neat): 3059, 3023, 2966, 2870, 1489, 1450, 1422, 1392, 1366, 1222, 1200, 1160, 1100, 1031, 976, 944, 909, 757, 701, 580 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.97 (s, 9H, CH₃), 1.65 (m, 1H, H-4), 1.78 (m, 1H, H-3), 2.00 (m, 1H, H-3), 2.14 (m, 1H, H-4), 3.13 (dd, 1H, *J* = 11.6, 9.6 Hz, CH₂I), 3.25 (ddd, 1H, *J* = 9.6, 3.2, 1.6 Hz, CH₂I), 3.54 (m, 1H, H-2), 4.13 (dd, 1H, *J* = 9, 7 Hz, H-5), 7.10-7.50 (m, 5H, ArH); ¹³C NMR (CDCl₃, 100 MHz) δ 14.6 (CH₂I), 27.7 (CH₃), 29.9 (C-3), 36.8 (C-4), 54.9 (C), 62.2 (C-2), 65.6 (C-5), 125.9, 126.1, 128.1 (Ar-CH), 148.8 (*ipso*-C). HRMS (ESI-TOF) calcd. for C₁₅H₂₃IN 344.0870 [M+H]⁺, found 344.0873.

III. Evolution of 2a-g and 3h on alumina

General procedure: lodo derivatives **2a-g** or **3h** (20-50 mg) were adsorbed on alumina (2 g) overnight then the formed alcohols were separated by chromatography on Al_2O_3 (CH₂Cl₂/NH₃-CH₂Cl₂/MeOH 99:1).⁴

(2RS,5RS)-1-Methyl-5-phenyl-2-pyrrolidinemethanol (4a)

IR (NaCl, neat): 3069, 3085, 3061, 3027, 2945, 2873, 2794, 1601, 1491, 1452, 1363, 1285, 1200, 1163, 1057, 1032, 974, 933, 855, 757, 701 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.86 (m, 1H, H-4), 1.96 (m, 1H, H-3), 2.15 (s, 3H,

CH₃), 2.19-2.34 (m, 2H, H-3 and H-4), 2.40 (brs, 1H, OH), 3.13 (m, 1H, H-2), 3.57 (dd, 1H, J = 10.8, 2.4 Hz, CH₂OH), 3.69 (dd, 1H, J = 10.8, 3.6 Hz, CH₂OH), 4.15 (dd, 1H, J = 7.6, 4 Hz, H-5), 7.18-7.36 (m, 5H, ArH); ¹³C NMR (CDCl₃, 100 MHz) δ 27.3 (C-3), 31.9 (C-4), 35.1 (CH₃), 61.6 (CH₂OH), 63.7 (C-2), 68.8 (C-5), 127.0, 127.9, 128.3 (Ar-CH), 142.6 (*ipso*-C). HRMS (ESI-TOF) calcd. for C₁₂H₁₈NO 192.1383 [M+H]⁺, found 192.1383.

(3RS,6SR)-1-Methyl-6-phenylpiperidin-3-ol (5a)

IR (NaCl, neat): 3327, 3061, 3028, 2938, 2854, 2781, 1492, 1451, 1251, 1199, 1126, 1103, 1076, 1011, 974, 962, 881, 759, 701 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.36 (dddd, 1H, *J* = 13.3, 12.1, 11, 4 Hz, H-4ax), 1.60 (brs, 1H, OH), 1.66 (tdd, 1H, *J* = 13.6, 11.2, 3.6 Hz, H-5ax), 1.80 (ddt, 1H, *J* = 13.6, 4,

⁴ For the yields of **4** and **5** obtained in each case see the article.

3.2 Hz, H-5eq), 2.02 (t, 1H, J = 10.4 Hz, H-2ax), 2.02 (s, 3H, CH₃), 2.11 (dm, 1H, J = 12,0 Hz, H-4eq), 2.76 (dd, 1H, J = 11.2, 3.2 Hz, H-6), 3.21 (ddd, 1H, J = 10.4, 4.4, 2 Hz, H-2eq), 3.93 (tt, 1H, J = 10.4, 4.4 Hz, H-3), 7.22-7.34 (m, 5H, ArH); ¹³C NMR (CDCl₃, 100 MHz) δ 33.9 (C-5), 34.3 (C-4), 44.2 (CH₃), 64.3 (C-2), 67.7 (C-3), 69.8 (C-6), 127.2, 127.5, 128.5 (Ar-CH), 143.6 (*ipso*-C). HRMS (ESI-TOF) calcd. for C₁₂H₁₈NO 192.1383 [M+H]⁺, found 192.1382.

(2RS,5RS)-1-Ethyl-5-phenyl-2-pyrrolidinemethanol (4b)

IR (NaCl, neat): 3367, 3084, 3061, 3026, 2966, 2874, 2834, 1600, 1491, 1452, 1385, 1306, 1196, 1067, 1033, 758, 701 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.99 (t, 3H, *J* = 7.2 Hz, CH₃), 1.76 (m, 1H, H-4), 1.92 (m, 1H, H-3), 2.21-

2.33 (m, 2H, H-3 and H-4), 2.41 (dq, 1H, J = 12.4, 7.2 Hz), 2.56 (dq, 1H, J = 12.4, 7.2 Hz), 2.65 (brs, 1H, OH), 3.34 (m, 1H, H-2), 3.52 (dd, 1H, J = 10.8, 2 Hz, CH₂OH), 3.67 (dd, 1H, J = 10.4, 4 Hz, CH₂OH), 4.31 (dd, 1H, J = 7.2, 2.8 Hz, H-5), 7.17-7.35 (m, 5H, ArH); ¹³C NMR (CDCl₃, 100 MHz) δ 14.3 (CH₃), 27.2 (C-3), 32.5 (C-4), 41.2 (CH₂), 62.1 (CH₂OH), 62.6 (C-2), 65.6 (C-5), 126.8, 127.7, 128.3 (Ar-CH), 143.3 (*ipso*-C). HRMS (ESI-TOF) calcd. for C₁₃H₂₀NO 206.1539 [M+H]⁺, found 206.1536.

(3RS,6SR)-1-Ethyl-6-phenylpiperidin-3-ol (5b)

IR (NaCl, neat): 3343, 3061, 3027, 2968, 2935, 2872, 2800, 1601, 1492, 1452, 1382, 1233, 1184, 1130, 1103, 1075, 1060, 1022, 973, 860, 758, 701 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0,92 (t, 3H, *J* = 7.2 Hz, CH₃), 0.92 (t, 3H, *J* = 7.2 Hz, CH₃), 1.35 (dddd, 1H, *J* = 13.3, 12.2, 11, 4.4 Hz, H-4ax), 1.62

(tdd, 1H, J = 13.4, 11.2, 4 Hz, H-5ax), 1.63 (brs, 1H, OH), 1.79 (ddt, 1H, J = 13.6, 4.4, 3.2 Hz, H-5eq), 1.97 (t, 1H, J = 10.4 Hz, H-2ax), 2.06 (dq, 1H, J = 12.8, 7.2 Hz), 2.09 (m, 1H, H-4eq), 2.51 (dq, 1H, J = 13.2, 7.2 Hz), 3.01 (dd, 1H, J = 11.2, 3.2 Hz, H-6), 3.31 (ddd, 1H, J = 10.4, 4.4, 2 Hz, H-2eq), 3.89 (tt, 1H, J = 10.4, 4.4 Hz, H-3), 7.20-7.34 (m, 5H, ArH); ¹³C NMR (CDCl₃, 100 MHz) δ 10.7 (CH₃), 34.4 (C-5), 34.5 (C-4), 48.6 (CH₂), 59.5 (C-2), 67.3 (C-6), 68.1 (C-3), 127.0, 127.5, 128.4 (Ar-CH), 144.1 (*ipso*-C). HRMS (ESI-TOF) calcd. for C₁₃H₂₀NO 206.1539 [M+H]⁺, found 206.1537.

(2RS,5RS)-5-Phenyl-1-propyl-2-pyrrolidinemethanol (4c)

IR (NaCl, neat): 3380, 3083, 3061, 3027, 2958, 2934, 2872, 2829, 1491, 1454, 1384, 1284, 1222, 1189, 1071, 1032, 758, 701 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.81 (t, 3H, *J* = 7.2 Hz, CH₃), 1.40 (m, 2H), 1.75 (m, 1H, H-4), 1.92

(m, 1H, H-3), 2.20-2.32 (m, 2H, H-3 and H-4), 2.39 (m, 2H), 3.32 (m, 1H, H-2), 3.51 (dd, 1H, J = 10.8, 1.6 Hz, CH₂OH), 3.67 (dd, 1H, J = 10.8, 3.6 Hz, CH₂OH), 4.28 (dd, 1H, J = 7.2, 2.4 Hz, H-5), 7.15-7.34 (m, 5H, ArH); ¹³C NMR (CDCl₃, 100 MHz) δ 11.8 (CH₃), 21.9 (CH₂), 27.1 (C-3), 32.6 (C-4), 49.0 (CH₂), 62.1 (CH₂OH), 62.8 (C-2), 65.8 (C-5), 126.7, 127.7, 128.3 (Ar-CH), 143.5 (*ipso*-C), HRMS (ESI-TOF) calcd. for C₁₄H₂₂NO 220.1696 [M+H]⁺, found 220.1695.

(3RS,6SR)-6-Phenyl-1-propylpiperidin-3-ol (5c)

IR (NaCl, neat): 3295, 3062, 3028, 2959, 2935, 2871, 2798, 1492, 1452, 1378, 1237, 1179, 1102, 1059, 1015, 975, 759, 701 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.72 (t, 3H, *J* = 7.2 Hz, CH₃), 1.35 (m, 1H, H-4ax), 1.41 (sext, 2H, *J* = 7.2 Hz, CH₂), 1.64 (qd, 1H, *J* = 13.6, 3.2 Hz, H-5ax), 1.79 (ddt, 1H, *J* = 13.6,

4, 3.2 Hz, H-5eq), 1.94 (m, 1H), 1.96 (t, 1H, J = 10.4 Hz, H-2ax), 2.09 (brd, 1H, J = 12.4 Hz, H-4eq), 2.37 (dt, 1H, J = 12.8, 8.4 Hz), 3.01 (dd, 1H, J = 11.6, 3.2 Hz, H-6), 3.35 (dm, 1H, J = 10.4 Hz, H-2eq), 3.90 (tt, 1H, J = 10.4, 4.8 Hz, H-3), 7.18-7.34 (m, 5H, Ar-H), ¹³C NMR (CDCl₃, 100 MHz) δ 11.6 (CH₃), 18.8 (CH₂), 34.4 (C-5 and C-4), 56.6 (CH₂), 60.0 (C-2), 67.8 (C-3 and C-6), 127.0, 127.6, 128.4 (Ar-CH), 144.0 (*ipso*-C). HRMS (ESI-TOF) calcd. for C₁₄H₂₂NO 220.1696 [M+H]⁺, found 220.1696.

(2RS,5RS)-1-Allyl-5-phenyl-2-pyrrolidinemethanol (4d)

IR (NaCl, neat): 3395, 3078, 3027, 2953, 2876, 1491, 1452, 1418, 1356, 1285, 1149, 1070, 1032, 994, 916, 757, 701 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.70 (brs, 1H, OH), 1.79 (m, 1H, H-4), 1.93 (m, 1H, H-3), 2.21-2.33 (m, 2H, H-3 and H-4), 3.02 (dd, 1H, *J* = 14.4, 6.8 Hz), 3.14 (ddt, 1H, *J* =

14.4, 5.6, 2 Hz), 3.35 (m, 1H, H-2), 3.54 (dd, 1H, J = 10.8, 2.4 Hz, CH₂OH), 3.68 (dd, 1H, J = 10.8, 4 Hz, CH₂OH), 4.27 (dd, 1H, J = 7.2, 3.2 Hz, H-5), 5.01 (m, 2H, =CH₂), 5.76 (m, 1H, =CH), 7.17-7.34 (m, 5H, ArH); ¹³C NMR (CDCl₃, 100 MHz) δ 27.1 (C-3), 32.4 (C-4), 50.5 (CH₂), 62.4 (C-2 and CH₂OH), 66.4 (C-5), 116.1 (=CH₂), 126.9, 127.9, 128.2 (Ar-CH), 136.7 (=CH), 143.2 (*ipso*-C). HRMS (ESI-TOF) calcd. for C₁₄H₂₀NO 218.1539 [M+H]⁺, found 218.1537.

(3RS,6SR)-1-Allyl-6-phenylpiperidin-3-ol (5d)

IR (NaCl, neat): 3340, 3077, 3027, 2936, 2857, 2794, 1492, 1452, 1418, 1373, 1333, 1239, 1123, 1098, 1058, 1024, 996, 919, 759, 701 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.35 (dddd, 1H, *J* = 13.4, 12.1, 11, 4.4 Hz, H-4ax), 1.60 (brs, 1H, OH), 1.63 (tdd, 1H, *J* = 14, 11, 3.6 Hz, H-5ax), 1.81 (ddt, 1H, *J* = 13.6, 4, 3.6 Hz, H-5eq), 1.94 (t, 1H, *J* = 10.8 Hz, H-2ax),

2.10 (dm, 1H, J = 12 Hz, H-4eq), 2.53 (dd, 1H, J = 13.6, 8 Hz), 3.02 (dd, 1H, J = 10.8, 3.2 Hz, H-6), 3.12 (ddt, 1H, J = 13.6, 4.8, 2 Hz), 3.31 (ddd, 1H, J = 10.8, 4.4, 2 Hz, H-2eq), 3.87 (tt, 1H, J = 10.4, 4.4 Hz, H-3), 5.06 (m, 2H, =CH₂), 5.76 (m, 1H, =CH), 7.21-7.34 (m, 5H, ArH); ¹³C NMR (CDCl₃, 100 MHz) δ 34.4 (C-4 and C-5), 58.0 (CH₂), 60.1 (C-2), 67.4 (C-6), 67.9 (C-3), 117.7 (=CH₂), 127.2, 127.5, 128.5 (Ar-CH), 134.7 (=CH), 143.8 (*ipso*-C). HRMS (ESI-TOF) calcd. for C₁₄H₂₀NO 218.1539 [M+H]⁺, found 218.1538.

(2RS,5RS)-1-Benzyl-5-phenyl-2-pyrrolidinemethanol (4e)

IR (NaCl, neat): 3367, 3060, 3027, 2942, 2874, 1492, 1452, 1361, 1131, 1072, 1028, 757, 736, 699 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.76 (brs, 1H, OH), 1.80 (m, 1H,

H-4), 1.97 (m, 1H, H-3), 2.29 (m, 2H, H-3 and H-4), 3.41 (m, 1H, H-2), 3.51 (d, 1H, J = 14 Hz, CH₂Ar), 3. 55 (dd, 1H, J = 10.8, 2 Hz, CH₂OH), 3.67 (dd, 1H, J = 10.8, 4 Hz, CH₂OH), 3.72 (d, 1H, J = 14 Hz, CH₂Ar), 4.18 (dd, 1H, J = 7.2, 3.2 Hz, H-5), 7.12-7.38 (m, 10H, ArH); ¹³C NMR (CDCl₃, 100 MHz) δ 27.0 (C-3), 32.6 (C-4), 51.6 (CH₂Ar), 62.3 (C-2), 62.4 (CH₂OH), 66.2 (C-5), 126.8, 126.9, 127.9, 128.2, 128.3 (Ar-CH), 139.9 (*ipso*-C), 143.3 (*ipso*-C). HRMS (ESI-TOF) calcd. for C₁₈H₂₂NO 268.1696 [M+H]⁺, found 268.1696.

(3RS,6SR)-1-Benzyl-6-phenylpiperidin-3-ol (5e)

IR (NaCl, neat): 3324, 3060, 3027, 2933, 2857, 2791, 1492, 1451, 1376, 1273, 1179, 1123, 1101, 1074, 1022, 759, 740, 699 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.38 (m, 2H, H-4ax and OH), 1.67 (tdd, 1H, *J* = 13.8, 11, 4 Hz, H-5ax), 1.84 (t, 1H, *J* = 10.4 Hz, H-2ax), 1.86 (m, 1H, H-5eq), 2.09 (dm, 1H, *J*

= 11.6 Hz, H-4eq), 2.86 (d, 1H, J = 13.2 Hz, CH₂Ar), 3.11 (m, 2H, H-2eq and H-6), 3.75 (d, 1H, J = 13.6 Hz, CH₂Ar), 3.79 (brs, 1H, H-3), 7.18-7.46 (m, 10H, ArH); ¹³C NMR (CDCl₃, 100 MHz) δ 34.3 (C-4), 34.7 (C-5), 59.3 (CH₂Ar), 60.1 (C-2), 67.9 (C-3 and C-6), 126.8, 127.1, 127.5, 128.1, 128.6, 128.7 (Ar-CH), 139.1 (*ipso*-C), 144.4 (*ipso*-C). HRMS (ESI-TOF) calcd. for C₁₈H₂₂NO 268.1696 [M+H]⁺, found 268.1696.

(3RS,6SR)-1-IsopropyI-6-phenyIpiperidin-3-ol (5f)

IR (NaCl, neat): 3324, 3061, 3027, 2965, 2934, 2869, 2794, 1492, 1452, 1362, 1242, 1187, 1162, 1122, 1062, 1007, 972, 879, 760, 701 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.77 (d, 3H, J = 6.4 Hz, CH₃), 0.98 (d, 3H, J = 6.8 Hz, CH₃), 1.32 (tdd, 1H, J = 13.6, 12.4, 4.4 Hz, H-4ax), 1.47 (brs, OH), 1.60 (m, 1H, H-

5ax), 1.77 (ddt, 1H, J = 13.6, 4, 3.2 Hz, H-5eq), 2.03 (t, 1H, J = 10.4 Hz, H-2ax), 2.08 (m, 1H, H-4eq), 2.77 (sept, 1H, J = 6.8 Hz), 3.15 (ddd, 1H, J = 10.4, 4.4, 2 Hz, H-2eq), 3.25 (dd, 1H, J = 10.8, 2.8 Hz, H-6), 3.81 (brt, 1H, J = 10 Hz, H-3), 7.20-7.33 (m, 5H, Ar-H), ¹³C NMR (CDCl₃, 100 MHz) δ 12.2 (CH₃), 21.1 (CH₃), 34.7 (C-5 and C-4), 48.4 (CH), 51.8 (C-2), 64.9 (C-6), 68.5 (C-3), 127.0, 127.5, 128.5 (Ar-CH), 143.9 (*ipso*-C). HRMS (ESI-TOF) calcd. for C₁₄H₂₂NO 220.1696 [M+H]⁺, found 220.1695.

(3RS,6SR)-1-Cyclohexyl-6-phenylpiperidin-3-ol (5g)

IR (NaCl, neat): 3308, 3027, 2930, 2854, 2793, 1492, 1451, 1265, 1126, 1073, 1057, 1019, 973, 758, 701 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.79 (qt, 1H, *J* = 12.8, 3.2 Hz), 0.98 (m, 2H), 1.09 (qd, 1H, *J* = 12, 3.2 Hz), 1.31 (m, 1H, H-4ax), 1.37-1.76 (m, 8H), 1.77 (ddt, 1H, *J* = 13.6, 4.4, 3.2 Hz, H-5eq), 2.08 (m, 1H, H-4eq), 2.14 (t, 1H, *J* = 10.4 Hz, H-2ax), 2.29 (tt,

1H, J = 11.6, 3.2 Hz), 3.24 (ddd, 1H, J = 10.4, 4.4, 2 Hz, H-2eq), 3.39 (dd, 1H, J = 10.8, 2.8 Hz, H-6), 3.84 (tt, 1H, J = 10.8, 4.4 Hz, H-3), 7.21-7.33 (m, 5H, Ar-H), ¹³C NMR (CDCl₃, 100 MHz) δ 23.7 (CH₂), 25.7 (CH₂), 26.4 (CH₂), 26.5 (CH₂), 31.5 (CH₂), 34.7 (C-4), 34.8 (C-5), 53.8 (C-2), 57.8 (CH), 64.4 (C-6), 68.7 (C-3),

126.9, 127.5, 128.4 (Ar-CH), 144.2 (*ipso*-C). HRMS (ESI-TOF) calcd. for $C_{17}H_{26}NO$ 260.2008 [M+H]⁺, found 260.2016.

(2RS,5RS)-1-tert-Butyl-5-phenyl-2-pyrrolidinemethanol (4h)

IR (NaCl, neat): 3355, 3059, 3023, 2964, 2870, 1491, 1470, 1451, 1391, 1366, 1223, 1122, 1073, 1027, 757, 701 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.02 (s, 9H, CH₃), 1.66 (m, 2H, H-3 and H-4), 1.79 (m, 1H, H-3), 2.19 (m, 1H, H-4),

3.38 (dd, 1H, J = 8.8, 7.6 Hz, CH₂OH), 3.44 (dt, 1H, J = 6.8, 6.4 Hz, H-2), 3.55 (dd, 1H, J = 8.8, 6.4 Hz, CH₂OH), 4.19 (t, 1H, J = 8.4 Hz, H-5), 7.14-7.38 (m, 5H, ArH); ¹³C NMR (CDCl₃, 100 MHz) δ 28.0 (CH₃), 29.3 (C-3), 37.0 (C-4), 55.4 (C), 59.9 (C-2), 64.6 (C-5), 65.1 (CH₂OH), 126.1, 128.3 (Ar-CH), 149.0 (*ipso*-C). HRMS (ESI-TOF) calcd. for C₁₅H₂₄NO 234.1852 [M+H]⁺, found 234.1854.

1.011 0.995 0.973 0.957

H1 / s2pul / Marcury-400F cdcl3 / Temp: 25C / N.Reg: XXXXXXXXXXXXXX Ususri: san / Mostra: G03f18 Nom: FAIZA DIABA Data: 18/09/08 / Ope.: F.DIABA

