Unexpected preparation of (Z)-chloromethyleneketals and their sulfur analogues by a novel three-component condensation*

Dedicated to the burning memory of Professor Heinz Gunter Viehe

Florian Schevenels and István E. Markó*

Université catholique de Louvain, Bâtiment Lavoisier, Place Louis Pasteur 1, B-1348 Louvain-la-Neuve, Belgium.

Experimental section

General: ¹H and ¹³C NMR spectra were recorded at room temperature with a Bruker Avance 300 instrument operating at a frequency of 300 MHz for ¹H and 75 MHz for ¹³C. In cases of ambiguous assignments, spectra were recorded with a Bruker 500. ¹H NMR spectra were recorded in CDCl₃ and referenced to CHCl₃ ($\delta = 7.26$) as an internal standard. ¹³C NMR spectra were referenced to the CDCl₃ ($\delta = 77.16$ ppm) signal. Mass spectra were recorded using Varian Matt 44S and Finnigan-Matt TSQ-70. High-resolution mass data were obtained with a Kratos MS50TC instrument. Infrared spectra were recorded on a SHIMATZU-FTIR-8400S spectrometer and recorded in cm⁻¹. Elemental analyses were carried out at the University of Stuttgart, Germany. X-Ray diffraction studies were carried out by Pr. B. Tinant (UCL) and Pr. J. Wouters (FUNDP).

General procedure for choloromethyleneketals

To 25 mL of anhydrous THF, the ketone 27 (10 mmol, 2 eq.), ethylene dichloride 9 (0.40 mL, 5.0 mmol, 1 eq.) and potassium tert-butoxide (1.12 g, 10 mmol, 2 eq.) were added sequentially. After 1 to 4 h, as indicated by tlc, the mixture was filtered through a pad of silica using 300 mL of a 3:1 mixture of petroleum ether : ethyl acetate. The solvents were removed under vacuum. If necessary, the product was purified by silicagel column chromatography.

Cyclohexyl-chloromethyleneketal (5)

No further purification was needed and 1.24g (4.8 mmol, 97%) of 5 were obtained as a yellowish oil.

R_f=0.88 (EP/EtOAc 5:1). ¹H NMR (300 MHz): δ = 4.90 (s, 1 H), 1.15 to 1.80 (m, 20 H) ppm. ¹³C NMR (75 MHz): δ = 159.0, 113.0, 85.6, 82.8, 38.8, 37.7, 25.0, 24.8, 23.7, 22.3 ppm. MS (ESI): *m*/*z* = 257. I.R. (neat): v 2934, 2858, 1682. Anal. Calcd for C₁₄H₂₁ClO₂; C, 65.49; H, 8.24; Cl, 13.81. Found: C, 65.29; H, 8.09; Cl, 13.88.

4-*tert*-butyl-cyclohexyl-chloromethyleneketal (21)

No further purification was needed and 1.70 g (4.6 mmol, 92%) of **21** were obtained as a white crystalline material. This consisted of a mixture of four diastereoisomers in a 1:2:10:3 ratio.

 R_f =0.88 (EP/EtOAc 5:1). ¹H NMR (300 MHz): δ = 4.89 (s, 1 H), 1.30 to 1.99 (m, 16 H), 1.03 (t, *J* = 12.0 Hz, 2 H), 0.86 (s, 18 H) ppm. ¹³C NMR (75 MHz): δ = 158.9, 113.3, 85.0, 82.4, 46.6, 46.4, 39.1, 37.5, 32.4, 32.2, 27.5, 27.4, 24.5, 23.2, ppm. MS (ESI): *m*/*z* = 369. I.R. (neat): v 2945, 2868, 1684. Anal. Calcd for C₂₂H₃₇ClO₂; C, 71.61; H, 10.11; Cl, 9.61. Found: C, 71.63; H, 10.30; Cl, 9.67. mp 76-80 °C.

4-NBoc-piperidyl-chloromethyleneketal (22)

The crude product was purified by column chromatography (silica, petroleum ether/ethyl acetate 3:1) to yield 2.16 g (4.7 mmol, 94%) of **22** as a white crystalline material.

R_f=0.40 (EP/EtOAc 5:1). ¹H NMR (300 MHz): δ = 5.01 (s, 1 H) 4.03 (m, 2 H), 3.56 (t, *J* = 5.7 Hz, 4 H), 3.04 (t, *J* = 12.0 Hz, 2 H), 1.57 to 1.86 (m, 8 H), 1.45 (s, 18 H) ppm. ¹³C NMR (75 MHz): δ = 157.1, 154.8, 154.7, 111.7, 87.7, 81.3, 80.0, 79.9, 41.5, 41.3, 38.2, 37.3, 28.5 ppm. MS (ESI): *m*/*z* = 459. I.R. (neat): v 2972, 1690. Anal. Calcd for C₂₂H₃₅ClN₂O₆; C, 57.57; H, 7.69; N, 6.10; Cl, 7.72. Found: C, 57.58; H, 7.70; N, 5.81; Cl, 7.84. mp 69-73 °C.

Tetraethyl-chloromethyleneketal (17)

Crude mixture was purified on column chromatography (silica, petroleum ether/ethyl acetate 10:1) to yield 530 mg (2.3 mmol, 45%) of **17** as a colourless oil.

 R_f =0.81 (EP/EtOAc 10:1). ¹H NMR (300 MHz): δ = 4.87 (s, 1 H) 1.58 to 1.82 (m, 8 H), 0.90 to 0.98 (m, 12 H) ppm. ¹³C NMR (75 MHz): δ = 157.2, 116.2, 87.2, 85.8, 31.7, 30.7, 8.5, 8.4 ppm. MS (ESI): *m*/*z* = 184. I.R. (neat): v 2974, 2941, 1682. Anal. Calcd for C₁₂H₂₁ClO₂; C, 61.92; H, 9.09; Cl, 15.23. Found: C, 61.76; H, 8.94; Cl, 15.23.

1-chloroethynyl-cyclohexanol (12)

A mixture of 12 mL of THF and 0.78 mL (5.5 mmol, 2.2 eq.) of diisopropylamine was cooled to 0°C. At this temperature, 2.2 mL (5.5 mmol, 2.2 eq.) of BuLi 2.5 M in hexane were added dropwise. After 20 minutes under stirring, the mixture was cooled to -78° C and 0.22 mL (2.75 mmol, 1.1 eq.) of ethylene dichloride were added. The temperature was slowly raised to 0°C and 0.26 mL (2.5 mmol, 1 eq.) of cyclohexanone were added. After 1 hour at 0°C, the reaction was quenched with 10 mL of saturated aqueous NH₄Cl. The aqueous phase was extracted with 3 x 10 mL of diethylether. The organic layers were pooled, dried over magnesium sulphate, filtered and concentrated to yield 390 mg (2.45 mmol, 98%) of **12** as a yellowish oil.

R_f=0.52 (EP/EtOAc 5:1). ¹H NMR (300 MHz): δ = 2.40 (s, 1 H) 1.84 (m, 2 H), 1.67 (m, 2 H), 1.24 (m, 5 H), 1.08 (m, 1 H) ppm. ¹³C NMR (75 MHz): δ = 73.0, 69.2, 62.7, 39.9, 25.2, 23.2 ppm. MS (CI): *m*/*z* = 158. I.R. (neat): v 3339, 2934, 2858, 2224. Anal. Calcd for C₈H₁₁ClO; C, 60.57; H, 6.99; Cl, 22.35. Found: C, 60.44; H, 6.82; Cl, 22.39.

1-chloro-3-ethylpent-1-yn-3-ol (14)

A mixture of 120 mL of THF and 7.8 mL (55 mmol, 2.2 eq.) of diisopropylamine was cooled to 0°C. At this temperature, 22 mL (55 mmol, 2.2 eq.) of BuLi 2.5 M in hexane were added dropwise. After 20 minutes under stirring, the mixture was cooled to -78° C and 2.2 mL (27.5 mmol, 1.1 eq.) of ethylene dichloride were added. The temperature was slowly raised to 0°C and 2.7 mL (25 mmol, 1 eq.) of 3-pentanone were added. After 1 hour at 0°C, the reaction was quenched with 100 mL of saturated aqueous NH₄Cl. The aqueous phase was extracted with 3 x 100 mL of diethylether. The organic layers were pooled, dried over magnesium sulphate, filtered and concentrated to yield 3.60 g (24.5 mmol, 98%) of **14** as a yellowish oil.

R_f=0.72 (EP/EtOAc 2:1). ¹H NMR (300 MHz): δ = 2.90 (s, 1 H) 1.59 (q, *J* = 7.8 Hz, 4 H), 0.94 (t, *J* = 7.5 Hz, 6 H) ppm. ¹³C NMR (75 MHz): δ = 72.6, 71.9, 62.4, 34.2, 8.4 ppm. MS (CI): *m*/*z* = 147. I.R. (neat): v 3394, 2970, 2227. Anal. Calcd for C₇H₁₁ClO; C, 57.35; H, 7.56; Cl, 24.18. Found: C, 57.50; H, 7.74; Cl, 24.41.

Cyclohexyl-thiophenylmethyleneketal (23)

To 25 mL of THF, 1.05 mL (10 mmol, 2 eq.) of cyclohexanone, 860 mg (5 mmol, 1 eq.) of (E)-(2-chlorovinyl)(phenyl)sulfane and 1.12 g (10 mmol, 2 eq.) of potassium *tert*-butoxide were added sequentially. After 2 hours at room temperature, the crude mixture was filtered through a pad of silica using 300 mL of a 3:1 mixture of petroleum ether : ethyl acetate to yield 1.48 g (4.5 mmol, 90%) of **23** as a yellowish oil.

R_f=0.84 (EP/EtOAc 5:1). ¹H NMR (300 MHz): δ = 7.21 to 7.38 (m, 4 H) 7.04 to 7.18 (m, 1 H), 4.90 (s, 1 H), 1.88 (m, 2 H), 1.52 to 1.80 (m, 16 H), 1.30 to 1.48 (m, 2 H) ppm. ¹³C NMR (75 MHz): δ = 165.4, 138.3, 128.8, 126.6, 125.0, 113.1, 83.3, 82.3, 38.9, 37.9, 25.2, 24.9, 23.8, 22.4 ppm. MS (CI): *m*/*z* = 330. I.R. (neat): v 2932, 2857, 1636, 1583. Anal. Calcd for C₂₀H₂₆O₂S; C, 72.69; H, 7.93; S, 9.70. Found: C, 72.40; H, 7.98; S, 9.98.

4-NBoc-piperidinyl-thiophenylmethyleneketal (24)

To 12 mL of THF, 1.00 g (5.0 mmol, 2 eq.) of Bocpiperidone, 430 mg (2.5 mmol, 1 eq.) of (E)-(2-chlorovinyl)(phenyl)sulfane and 0.56 g (5 mmol, 2 eq.) of potassium *tert*-butoxide were added sequentially. After 4 hours, the reaction mixture was filtered through a pad of silica gel using 300 mL of a 2:1 mixture of petroleum ether : ethyl acetate. Purification over column chromatography (silica, petroleum ether/ethyl acetate) provided 1.17 g (2.2 mmol, 88%) of **24** as a white crystalline material.

 R_f =0.44 (EP/EtOAc 5:1). ¹H NMR (300 MHz): δ = 7.27 (m, 4 H) 7.15 (m, 1 H), 5.01 (s, 1 H), 4.11 (br, 2 H), 3.53 (s, 4 H), 3.08 (br, 2 H), 1.78 (m, 8 H), 1.48 (s, 9 H), 1.46 (s, 9 H) ppm. ¹³C NMR (75 MHz): δ = 161.3, 154.7, 154.6, 137.2, 129.0, 127.3, 125.6, 111.3, 85.9, 81.5, 79.9, 79.8, 41.3, 40.2, 38.1, 37.2, 28.5 ppm. MS (ESI): *m/z* = 532. I.R. (neat): v 2974, 2930, 2872, 1693, 1674. H.R.M.S. (ESI): Calcd for C₂₈H₄₀N₂O₆SNa; 555.2505. Found: 555.2529. mp 59-63 °C.

Cyclohexyl-phenylmethyleneketal (27)

A solution of THF (17 mL) and NMP (12 mL), containing 220 mg (0.3 mmol, 0.2 eq.) of $Fe(acac)_3$ and 380 mg (1.48 mmol, 1 eq.) of ketal **5**, was cooled to -10°C. At this temperature, 1.6 mL (4.44 mmol, 3 eq.) of phenylmagnesium bromide (2.8 M in diethylether) were added dropwise. The temperature was raised to 20°C. After stirring for 1 hour, 40ml of saturated

aqueous NaCl (brine) were added carefully. The aqueous phase was extracted 3 times with 40 mL of ether. The organic layers were pooled, dried over magnesium sulphate, filtered and concentrated. The crude product was purified by column chromatography (silica, petroleum ether/ethyl acetate 50:1) to yield 430 mg (1.44 mmol, 97%) of **27** as a greenish oil.

R_f=0.63 (EP/EtOAc 40:1) ¹H NMR (300 MHz): δ = 7.61 (d, *J* = 7.2 Hz, 2 H) 7.45 (t, *J* = 7.5 Hz, 2 H), 7.36 (t, *J* = 7.2 Hz, 1 H), 4.95 (s, 1 H), 1.80 (t, *J* = 12.9 Hz, 2 H), 1.57 to 1.74 (m, 14 H), 1.34 to 1.51 (m, 3 H), 1.10 to 1.32 (m, 1 H) ppm. ¹³C NMR (75 MHz): δ = 159.2, 141.4, 128.9, 127.4, 127.3, 113.3, 85.7, 83.0, 39.0, 37.9, 25.1, 24.9, 23.9, 22.5 ppm. MS (CI): *m*/*z* = 298. I.R. (neat): v 2931, 2858, 1682. HRMS (ESI): Calcd for C₂₀H₂₆O₂: 298.1927. Found: 298.1932.

Cyclohexyl-allylsilanemethyleneketal (25)

A solution of 3 mL of THF, 115 mg (0.21 mmol, 0.05 eq.) of NiCl₂(dppp), and 1.10 g (4.28 mmol, 1 eq.) of ketal **5** was cooled to 0°C. At this temperature, 3.6 mL (4.7 mmol, 1.1 eq.) of ((trimethylsilyl)methyl)magnesium chloride (1.3 M in THF) were added dropwise. The reaction mixture was then refluxed during 3 hours. After this time, 0.05 eq. of catalyst and 1.1 eq. of the Grignard reagent were added. After 3 hours under reflux, 0.3 equivalent of the Grignard reagent were added every hour until the starting material fully disappeared. Then, 20 mL of water and 20 mL of 1 M HCl were added. The aqueous phase was extracted with 3 x 40 mL of ether. The organic layers were pooled, dried over magnesium sulphate, filtered and concentrated. The crude reaction product was purified by column chromatography (silica, petroleum ether/ethyl acetate 50:1) to yield 1.06 g (3.44 mmol, 80%) of **25** as a yellowish oil.

R_f=0.75 (EP/EtOAc 40:1). ¹H NMR (300 MHz): δ = 4.07 (t, *J* = 8.4 Hz, 1 H) 1.53 to 1.76 (m, 15 H), 1.32 to 1.48 (m, 4 H), 1.42 (d, *J* = 8.4 Hz, 2 H), 1.12 to 1.28 (m, 1 H), -0.01 (s, 9 H) ppm. ¹³C NMR (75 MHz): δ = 156.3, 109.9, 89.7, 81.2, 39.3, 38.0, 25.4, 25.2, 24.0, 22.8, 14.8, -1.7 ppm. MS (CI): *m*/*z* = 308. I.R. (neat): v 2931, 2858, 1697. Anal. Calcd for C₁₈H₃₂SiO₂; C, 70.07; H, 10.45. Found: C, 69.86; H, 10.32.

1-(1-hydroxycyclohexyl)-3-(trimethylsilyl)propan-1-one (26)

Pyridine was added dropwise to an aqueous solution of CAN (1.40 g, 2.59 mmol, 1 eq.) until the pH reached 3.0-3.5. The resulting solution was then added to a mixture of 10 mL of acetonitrile and 800 mg (2.59 mmol, 1 eq.) of cyclohexyl-allylsilylmethyleneketal **25**. The reaction mixture was heated to 60°C during 1 hour. Then, 10 mL of saturated aqueous NH₄Cl were added. The aqueous phase was extracted with 3 x 20 mL of diethylether. The organic layers were pooled, dried over magnesium sulphate, filtered and concentrated. The crude reaction product was purified by column chromatography (silica, petroleum ether/ethyl acetate 10:1) to yield 530 mg (2.33 mmol, 90%) of **26** as a colourless oil.

R_f=0.67 (EP/EtOAc 5:1). ¹H NMR (300 MHz): δ = 3.57 (s, 1 H) 2.52 (t, *J* = 8.1 Hz, 2 H), 1.58 to 1.80 (m, 7 H), 1.39 to 1.56 (m, 2 H), 1.18 to 1.36 (m, 1 H), 0.76 (t, *J* = 8.1 Hz, 2 H), - 0.01 (s, 9 H) ppm. ¹³C NMR (75 MHz): δ = 215.7, 78.2, 34.3, 30.3, 25.4, 21.3, 10.2, -1.7 ppm. MS (CI): *m*/*z* = 228. I.R. (neat): v 3489, 2934, 1699. Anal. Calcd for C₁₂H₂₄O₂Si; C, 63.10; H, 10.59. Found: C, 63.10; H, 10.94.

2-chloro-1-(1-hydroxycyclohexyl)ethanone (7)

Pyridine was added dropwise to an aqueous solution of CAN (1.80 g, 3.23 mmol, 1 eq.) until pH reached 3.0-3.5. The resulting solution was added to a mixture of 12 mL of acetonitrile and 830 mg (3.23 mmol, 1 eq.) of cyclohexyl-chloromethyleneketal **5**. The reaction mixture was heated to 60°C during 5 hours. Then, 10 mL of saturated aqueous NH₄Cl were added. The aqueous phase was extracted with 3 x 10 mL of diethylether. The organic layers were pooled, dried over magnesium sulphate, filtered and concentrated. The crude product was purified by column chromatography (silica, petroleum ether/ethyl acetate 5:1). A mixture of cyclohexanone and the desired product was carefully heated under vacuum to yield 455 mg (2.58 mmol, 80%) of **7** as colourless crystals.

 R_f =0.40 (EP/EtOAc 5:1). ¹H NMR (300 MHz): δ = 4.56 (s, 2 H) 2.72 (s, 1 H), 1.52 to 1.82 (m, 9 H), 1.19 to 1.39 (m, 1 H) ppm. ¹³C NMR (75 MHz): δ = 206.3, 79.0, 46.1, 34.2, 25.0, 20.9 ppm. MS (EI): *m*/*z* = 177. I.R. (neat): v 3481, 2941, 2867, 1726. Anal. Calcd for C₈H₁₃ClO₂; C, 54.40; H, 7.42; Cl, 20.07. Found: C, 54.40; H, 7.35; Cl, 20.12. mp 51-53 °C.

Dicyclohexyl-lactoketal (6)

A solution of 80 mL of dichloromethane and 2.30 g (9.0 mmol, 1 eq.) of cyclohexylchloromethyleneketal **5** was cooled to -78° C. Ozone was bubbled until the appearance of a blue-purple colour. Nitrogen was then bubbled through the solution until the colour disappeared. Then, 2.82 g (10.8 mmol, 1.2 eq.) of PPh₃ were added. The mixture was stirred 3 hours at room temperature. The dichloromethane was evaporated under vacuum and the crude product was purified by column chromatography (silica, petroleum ether/ethyl acetate 100:1) to yield 600 mg (2.65 mmol, 30%) of **6** as a colourless oil, identical to an authentic sample.

¹H NMR (300 MHz): δ = 1.30 to 1.87 (m, 20 H) ppm. ¹³C NMR (75 MHz): δ = 174.9, 109.7, 78.0, 38.1, 34.9, 24.6, 24.3, 23.0, 21.2 ppm. MS (EI): m/z = 224.