Supplementary Information

Dynamic Kinetic Resolution in the Stereoselective Synthesis of 4,5-Diaryl Cyclic Sulfamidates by Using Chiral Rhodium-Catalyzed Asymmetric Transfer Hydrogenation

Juae Han, Soyeong Kang, and Hyeon-Kyu Lee*

Drug Discovery Division, Korea Research Institute of Chemical Technology, PO Box 107, Yuseong, Daejeon 305-600, KOREA; Medicinal and Pharmaceutical Chemistry Major, University of Science and Technology, 113 Gwahango, Yuseong, Daejeon 305-333, KOREA. Tel: +82-42-860-7016; Fax: +82-42-860-7160 e-mail: leehk@krict.re.kr

1

Table of Contents

General 6
1. General procedure for the synthesis of cyclic imine (6) from benzoin7
2. Optimization of the ATH-DKR reaction
2-1. ATH-DKR reaction of 6a with various catalysts
2-2. ATH-DKR reaction of 6a in various solvents
3. General procedure for asymmetric transfer hydrogenation of imines (6)
4. Synthesis of (1 <i>S</i> ,2 <i>S</i>)-2-Amino-2-(4-chlorophenyl)-1-(<i>N-Boc</i> -amino)-1-(4-methylphenyl)
ethane, (1 <i>S</i> ,2 <i>S</i>)-9m17
4-1.(4S,5R)-N-Boc-4-(4-methyl-phenyl)-5-(4-chloro-phenyl)-[1,2,3]oxathiazolidine 2,2-
dioxide, (4 <i>S</i> ,5 <i>R</i>)- <i>N-Boc</i> -7m18
4-2. (1 <i>S</i> ,2 <i>S</i>)- <i>N</i> - <i>Boc</i> -2-azido-2-(4-chloro-phenyl)-1-(4-methyl-phenyl)-ethyl amine, 15 18
4-3. (1S,2S)-2-Amino-2-(4-chlorophenyl)-1-(N-Boc-amino)-1-(4-methylphenyl) ethane,
(1 <i>S</i> ,2 <i>S</i>)-9m ·····18
5. Synthesis of (1 <i>S</i> ,2 <i>S</i>)-1-(<i>N-Boc</i> -amino)-1-(4-methylphenyl)-2-(4-chlorophenyl)-2-
benzoyloxy ethane, (1 <i>S</i> ,2 <i>S</i>)-10m
6. Synthesis of (5 <i>R</i>)-4,5-diphenyl-5H-[1,2,3]oxathiazole 2,2-dioxide [(5 <i>R</i>)-6a]20
6-1. Racemization of (5R)-4,5-diphenyl-5H-[1,2,3]oxathiazole 2,2-dioxide [(5R)-6a] in the
presence of HCO ₂ H/Et ₃ N21
6-2. Recemization of $(5R)$ -4,5-diphenyl-5H-[1,2,3]oxathiazole 2,2-dioxide [(5R)-6a] in the
presence of Et ₃ N22
7. Synthesis of <i>cis</i> - and <i>trans</i> -cyclic sulfamidates 1023
7-1. (4 <i>S</i> ,5 <i>R</i>)- <i>N</i> - <i>Boc</i> -4,5-Diphenyl-[1,2,3]oxathiazolidine 2,2-dioxide, (4 <i>S</i> ,5 <i>R</i>)-1423
7-2. (4 <i>R</i> ,5 <i>S</i>)- <i>N</i> - <i>Boc</i> -4,5-Diphenyl-[1,2,3]oxathiazolidine 2,2-dioxide, (4 <i>R</i> ,5 <i>S</i>)-1424
7-3. (4 <i>R</i> ,5 <i>R</i>)- <i>N</i> - <i>Boc</i> -4,5-Diphenyl-[1,2,3]oxathiazolidine 2,2-dioxide, (4 <i>R</i> ,5 <i>R</i>)-1424
8. Plausible mechanism and possible transition state for ATH of cyclic sulfamidate imine
with the Rh catalyst [(<i>R</i> , <i>R</i>)-Rh-1] to the corresponding cyclic sulfamidate25
9. X-ray crystallography analysis data of (4 <i>S</i> ,5 <i>R</i>)-7a27
10. References
11. Copies of ¹ H-NMR, ¹³ C-NMR spectra and chiral HPLC chromatograms
¹ H-NMR of 4,5-Diphenyl-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6a)29
¹³ C-NMR of 4,5-Diphenyl-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6a)
¹ H-NMR of 4,5-Bis-(2-chloro-phenyl)-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6b)31
¹³ C-NMR of 4,5-Bis-(2-chloro-phenyl)-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6b)

¹ H-NMR of 4,5-Bis-(3-chloro-phenyl)- $5H$ -[1,2,3]oxathiazole 2,2-dioxide (6c)33
¹³ C-NMR of 4,5-Bis-(3-chloro-phenyl)-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6c)34
¹ H-NMR of 4,5-Bis-(4-chloro-phenyl)-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6d)35
¹³ C-NMR of 4,5-Bis-(4-chloro-phenyl)-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6d)36
¹ H-NMR of 4,5-Bis-(4-fluoro-phenyl)-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6e)37
¹³ C-NMR of 4,5-Bis-(4-fluoro-phenyl)-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6e)
¹ H-NMR of 4,5-Bis-(4-trifluoromethyl-phenyl)-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6f)
¹³ C-NMR of 4,5-Bis-(4-trifluoromethyl-phenyl)-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6f)40
¹ H-NMR of 4,5-Bis-(3-methoxy-phenyl)-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6 g)41
¹³ C-NMR of 4,5-Bis-(3-methoxy-phenyl)-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6g)42
¹ H-NMR of 4,5-Bis-(4-methoxy-phenyl)-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6 h)······43
¹³ C-NMR of 4,5-Bis-(4-methoxy-phenyl)-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6h)44
¹ H-NMR of 4,5-Bis-(3-methyl-phenyl)-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6 i)45
¹³ C-NMR of 4,5-Bis-(3-methyl-phenyl)-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6 i)46
¹ H-NMR of 4,5-Bis-(4-methyl-phenyl)-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6j)47
¹³ C-NMR of 4,5-Bis-(4-methyl-phenyl)-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6j)48
¹ H-NMR of 4-(4-Chloro-phenyl)-5-phenyl-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6 k)······49
¹ H-NMR of 4-(4-Chloro-phenyl)-5-phenyl-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6 k) \cdots 49 ¹³ C-NMR of 4-(4-Chloro-phenyl)-5-phenyl-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6 k) \cdots 50
¹ H-NMR of 4-(4-Chloro-phenyl)-5-phenyl-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6k) \cdots 49 ¹³ C-NMR of 4-(4-Chloro-phenyl)-5-phenyl-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6k) \cdots 50 ¹ H-NMR of (6) \cdots 51
$^{1}\text{H-NMR of 4-(4-Chloro-phenyl)-5-phenyl-5}H-[1,2,3] oxathiazole 2,2-dioxide (6k)49$ $^{13}\text{C-NMR of 4-(4-Chloro-phenyl)-5-phenyl-5}H-[1,2,3] oxathiazole 2,2-dioxide (6k)50$ $^{1}\text{H-NMR of (6l)51}$ $^{13}\text{C-NMR of (6l)52}$
¹ H-NMR of 4-(4-Chloro-phenyl)-5-phenyl-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6k) 49 ¹³ C-NMR of 4-(4-Chloro-phenyl)-5-phenyl-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6k) 50 ¹ H-NMR of (6l) 51 ¹³ C-NMR of (6l) 52 ¹ H-NMR of (6h) 53
¹ H-NMR of 4-(4-Chloro-phenyl)-5-phenyl-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6k) 49 ¹³ C-NMR of 4-(4-Chloro-phenyl)-5-phenyl-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6k) 50 ¹ H-NMR of (6l) 51 ¹³ C-NMR of (6l) 52 ¹ H-NMR of (6h) 53 ¹³ C-NMR of (6m) 53
¹ H-NMR of 4-(4-Chloro-phenyl)-5-phenyl-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6k) 49 ¹³ C-NMR of 4-(4-Chloro-phenyl)-5-phenyl-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6k) 50 ¹ H-NMR of (6l) 51 ¹³ C-NMR of (6l) 52 ¹ H-NMR of (6l) 53 ¹³ C-NMR of (6m) 53 ¹³ C-NMR of (6m) 54 ¹ H-NMR of 4,5-Diphenyl-[1,2,3]oxathiazolidine 2,2-dioxide, (4 <i>S</i> ,5 <i>R</i>)-7 a 55
¹ H-NMR of 4-(4-Chloro-phenyl)-5-phenyl-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6k) 49 ¹³ C-NMR of 4-(4-Chloro-phenyl)-5-phenyl-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6k) 50 ¹ H-NMR of (6l) 51 ¹³ C-NMR of (6l) 52 ¹ H-NMR of (6l) 53 ¹³ C-NMR of (6m) 53 ¹³ C-NMR of (6m) 54 ¹ H-NMR of 4,5-Diphenyl-[1,2,3]oxathiazolidine 2,2-dioxide, (4 <i>S</i> ,5 <i>R</i>)-7a 55 ¹³ C-NMR of 4,5-Diphenyl-[1,2,3]oxathiazolidine 2,2-dioxide, (4 <i>S</i> ,5 <i>R</i>)-7a 55
¹ H-NMR of 4-(4-Chloro-phenyl)-5-phenyl-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6k) 49 ¹³ C-NMR of 4-(4-Chloro-phenyl)-5-phenyl-5 <i>H</i> -[1,2,3]oxathiazole 2,2-dioxide (6k) 50 ¹ H-NMR of (6l) 51 ¹³ C-NMR of (6l) 52 ¹ H-NMR of (6n) 53 ¹³ C-NMR of (6m) 53 ¹³ C-NMR of (6m) 53 ¹³ C-NMR of (6m) 54 ¹⁴ -NMR of 4,5-Diphenyl-[1,2,3]oxathiazolidine 2,2-dioxide, (4 <i>S</i> ,5 <i>R</i>)-7 a 55 ¹³ C-NMR of 4,5-Diphenyl-[1,2,3]oxathiazolidine 2,2-dioxide, (4 <i>S</i> ,5 <i>R</i>)-7 a 56 Chiral HPLC of 4,5-Diphenyl-[1,2,3]oxathiazolidine 2,2-dioxide, (4 <i>S</i> ,5 <i>R</i>)-7 a 57
$\label{eq:14} ^{1} \text{H-NMR of 4-(4-Chloro-phenyl)-5-phenyl-5} H-[1,2,3] oxathiazole 2,2-dioxide (6k)$
$\label{eq:14-chloro-phenyl} ^{-5-phenyl-5H-[1,2,3]} oxathiazole 2,2-dioxide (6k) $$^{-13}C-NMR of 4-(4-Chloro-phenyl)-5-phenyl-5H-[1,2,3]} oxathiazole 2,2-dioxide (6k) $$^{-50} $$^{-14-NMR of (6l) $$^{-51} $$^{-52} $$^{-13}C-NMR of (6n) $$^{-52} $$^{-14-NMR of (6m) $$^{-52} $$^{-13}C-NMR of (6m) $$^{-54} $$^{-14-NMR of (6m) $$^{-54} $$^{-14-NMR of (6m) $$^{-54} $$^{-14-NMR of (6m) $$^{-55} $$^{-13}C-NMR of 4,5-Diphenyl-[1,2,3]} oxathiazolidine 2,2-dioxide, (4S,5R)-7a $$^{-56} $$^{-13}C-NMR of 4,5-Diphenyl-[1,2,3]} oxathiazolidine 2,2-dioxide, (4S,5R)-7a $$^{-56} $$^{-14-NMR of 4,5-Diphenyl-[1,2,3]} oxathiazolidine 2,2-dioxide, (4S,5R)-7a $$^{-56} $$^{-14-NMR of 4,5-Diphenyl-[1,2,3]} oxathiazolidine 2,2-dioxide, (4S,5R)-7a $$^{-56} $$^{-14-NMR of 4,5-Diphenyl-[1,2,3]} oxathiazolidine 2,2-dioxide, (4R,5S)-7a $$^{-58} $$^{-13}C-NMR of 4,5-Diphenyl-[1,2,3]} oxathiazolidine 2,2-dioxide, (4R,5S)-7a $$^{-59} $$^{$
$\label{eq:14-chloro-phenyl} ^{-5-phenyl-5H-[1,2,3]oxathiazole 2,2-dioxide (6k)$
$\label{eq:14-2} ^{1} \text{H-NMR of 4-(4-Chloro-phenyl)-5-phenyl-5} H-[1,2,3] oxathiazole 2,2-dioxide (6k)$
$\label{eq:14} ^{1} \text{H-NMR of 4-(4-Chloro-phenyl)-5-phenyl-5} H-[1,2,3] oxathiazole 2,2-dioxide (6k)$
$\label{eq:14} ^{1} \text{H-NMR of 4-(4-Chloro-phenyl)-5-phenyl-5} H-[1,2,3] oxathiazole 2,2-dioxide (6k)$
eq:sphere:sphe
$\label{eq:14} {}^{1}\mbox{H-NMR of 4-(4-Chloro-phenyl)-5-phenyl-5}$$ H-[1,2,3] oxathiazole 2,2-dioxide (6k) $$ 00 $$ 1^3$ C-NMR of 4-(4-Chloro-phenyl)-5-phenyl-5$$ H-[1,2,3] oxathiazole 2,2-dioxide (6k) $$ 00 $$ 1^1$ -NMR of (6l) $$ 51 $$ 1^3$ C-NMR of (6l) $$ 52 $$ 1^1$ C-NMR of (6m) $$ 53 $$ 1^3$ C-NMR of (6m) $$ 53 $$ 1^3$ C-NMR of 4,5-Diphenyl-[1,2,3] oxathiazolidine 2,2-dioxide, (4S,5R)-7a $$ 1^3$ C-NMR of 4,5-Diphenyl-[1,2,3] oxathiazolidine 2,2-dioxide, (4R,5S)-7a $$ 1^3$ C-NMR of 4,5-Diphenyl-[1,2,3] oxathiazolidine 2,2-dioxide, (4S,5R)-7b $$ 1^3$ C-NMR of 4,5-Diphenyl-[1,2,3] oxathiazolidine 2,2-dioxide, (4S,5R)-7b $$ 1^3$ C-NMR of 4,5-Diphenyl-[1,2,3] oxathiazolidine 2,2-dioxide, (4S,5R)-7b $$ 1^3$ C-NMR of 4,5-Bis-(2-chloro-phenyl)-[1,2,3] oxathiazolidine 2,2-dioxide, (4S,5R)-7b $$ 1^3$ C-NMR of 4,5-Bis-(2-chloro-phenyl)-[1,2,3] oxathiazolidine 2,2-dioxide, (4S,5R)-7b $$ 1^3$ C-NMR of 4,5-Bis-(3-chloro-phenyl)-[1,2,3] oxathiazolidine 2,2-dioxide, (4S,5R)-7b $$ 1^3$ C-NMR of 4,5-Bis-(3-chloro-phenyl)-[1,2,3] oxathiazolidine 2,2-dioxide, (4S,5R)-7c $$ 1^3$ C-NMR of 4,5-Bis-(3-chloro-phenyl)-[1,2,3] oxathiazolidine 2,2-dioxide, (4S,5R)-7c $$ 1^3$ C-NMR of 4,5-Bis-(3-chloro-phenyl)-[1,2,3] $
$\label{eq:14} {}^{1}\mbox{H-NMR of 4-(4-Chloro-phenyl)-5-phenyl-5H-[1,2,3]oxathiazole 2,2-dioxide (6k)} $$^{13}\mbox{C-NMR of 4-(4-Chloro-phenyl)-5-phenyl-5H-[1,2,3]oxathiazole 2,2-dioxide (6k)} $50 $$^{14}\mbox{H-NMR of (6l)} $51 $$^{13}\mbox{C-NMR of (6l)} $52 $$^{14}\mbox{H-NMR of (6l)} $52 $$^{14}\mbox{H-NMR of (6m)} $53 $$^{13}\mbox{C-NMR of (6m)} $53 $$^{13}\mbox{C-NMR of 4,5-Diphenyl-[1,2,3]oxathiazolidine 2,2-dioxide, (4S,5R)-7a} $55 $$^{13}\mbox{C-NMR of 4,5-Diphenyl-[1,2,3]oxathiazolidine 2,2-dioxide, (4S,5R)-7a} $56 $$^{14}\mbox{H-NMR of 4,5-Diphenyl-[1,2,3]oxathiazolidine 2,2-dioxide, (4S,5R)-7a} $57 $$^{14}\mbox{H-NMR of 4,5-Diphenyl-[1,2,3]oxathiazolidine 2,2-dioxide, (4R,5S)-7a} $58 $$^{13}\mbox{C-NMR of 4,5-Diphenyl-[1,2,3]oxathiazolidine 2,2-dioxide, (4R,5S)-7a} $59 $$^{13}\mbox{C-NMR of 4,5-Diphenyl-[1,2,3]oxathiazolidine 2,2-dioxide, (4S,5R)-7b} $61 $$^{14}\mbox{HPLC of 4,5-Diphenyl-[1,2,3]oxathiazolidine 2,2-dioxide, (4S,5R)-7b} $61 $$^{13}\mbox{C-NMR of 4,5-Bis-(2-chloro-phenyl)-[1,2,3]oxathiazolidine 2,2-dioxide, (4S,5R)-7b} $62 $$^{14}\mbox{HNR of 4,5-Bis-(3-chloro-phenyl)-[1,2,3]oxathiazolidine 2,2-dioxide, (4S,5R)-7b} $63 $$^{14}\mbox{HNR of 4,5-Bis-(3-chloro-phenyl)-[1,2,3]oxathiazolidine 2,2-dioxide, (4S,5R)-7c} $65 $$^{14}\mbox{HPLC of 4,5-Bis-(3-chloro-phenyl)-[1,2,3]oxathiazolidine 2,2-dioxide, (4S,5R)-7c} $65 $$^{14}\mbox{HPLC of 4,5-Bis-(3-chloro-phenyl)-[1,2,3]oxathiazolidine 2,2-dioxide, (4S,5R)-7c} $15 $$^{15}\mbox{H-HPLC of 4,5-Bis-(3-chloro-phenyl)-[1,2,3]oxathiazolidine 2,2-dioxide, (4S,5R)-7c} $15 $$^{15}\$
$\label{eq:spinor} {}^{1}H-NMR of 4-(4-Chloro-phenyl)-5-phenyl-5H-[1,2,3]oxathiazole 2,2-dioxide (6k)$

Chiral HPLC of 4,5-Bis-(4-chloro-phenyl)-[1,2,3]oxathiazolidine 2,2-dioxide, (4S,5 <i>R</i>)-7d······69
¹ H-NMR of 4,5-Bis-(4-fluoro-phenyl)-[1,2,3]oxathiazolidine 2,2-dioxide, (4 <i>S</i> ,5 <i>R</i>)-7e ······70
¹³ C-NMR of 4,5-Bis-(4-fluoro-phenyl)-[1,2,3]oxathiazolidine 2,2-dioxide, (4 <i>S</i> ,5 <i>R</i>)- 7e 71
Chiral HPLC of 4,5-Bis-(4-fluoro-phenyl)-[1,2,3]oxathiazolidine 2,2-dioxide, (4 <i>S</i> ,5 <i>R</i>)-7e······72
¹ H-NMR of (4 <i>S</i> ,5 <i>R</i>)-7f73
¹³ C-NMR of (4 <i>S</i> ,5 <i>R</i>)-7f74
Chiral HPLC of (4 <i>S</i> ,5 <i>R</i>)-7f75
¹ H-NMR of (4 <i>S</i> ,5 <i>R</i>)-7g76
¹³ C-NMR of (4 <i>S</i> ,5 <i>R</i>)-7g77
Chiral HPLC of (4 <i>S</i> ,5 <i>R</i>)-7g78
¹ H-NMR of (4 <i>S</i> ,5 <i>R</i>)- <i>N-Boc</i> -7g79
¹³ C-NMR of (4 <i>S</i> ,5 <i>R</i>)- <i>N-Boc</i> -7g80
Chiral HPLC of (4 <i>S</i> ,5 <i>R</i>)- <i>N-Boc</i> -7g81
¹ H-NMR of 4,5-Bis-(3-methyl-phenyl)-[1,2,3]oxathiazolidine 2,2-dioxide, (4 <i>S</i> ,5 <i>R</i>)-7i82
¹³ C-NMR of 4,5-Bis-(3-methyl-phenyl)-[1,2,3]oxathiazolidine 2,2-dioxide, (4 <i>S</i> ,5 <i>R</i>)-7i83
Chiral HPLC of 4,5-Bis-(3-methyl-phenyl)-[1,2,3]oxathiazolidine 2,2-dioxide, (4 <i>S</i> ,5 <i>R</i>)-7i ······84
¹ H-NMR of (4 <i>S</i> ,5 <i>R</i>)- <i>N-Boc</i> -7i85
¹³ C-NMR of (4 <i>S</i> ,5 <i>R</i>)- <i>N-Boc</i> -7i86
Chiral HPLC of (4 <i>S</i> ,5 <i>R</i>)- <i>N</i> - <i>Boc</i> -7i87
¹ H-NMR of 4,5-Bis-(4-methyl-phenyl)-[1,2,3]oxathiazolidine 2,2-dioxide, (4 <i>S</i> ,5 <i>R</i>)- 7j 88
Chiral HPLC of 4,5-Bis-(4-methyl-phenyl)-[1,2,3]oxathiazolidine 2,2-dioxide, (4 <i>S</i> ,5 <i>R</i>)-7j ······89
¹ H-NMR of (4 <i>S</i> ,5 <i>R</i>)- <i>N-Boc</i> -7j90
¹³ C-NMR of (4 <i>S</i> ,5 <i>R</i>)- <i>N-Boc</i> -7j91
Chiral HPLC of (4 <i>S</i> ,5 <i>R</i>)- <i>N</i> - <i>Boc</i> -7j92
¹ H-NMR of (4 <i>S</i> ,5 <i>R</i>)-7 k 93
¹³ C-NMR of (4 <i>S</i> ,5 <i>R</i>)-7 k 94
Chiral HPLC of (4 <i>S</i> ,5 <i>R</i>)-7k95
¹ H-NMR of (4 <i>S</i> ,5 <i>R</i>)-7196
¹³ C-NMR of (4 <i>S</i> ,5 <i>R</i>)-7197
Chiral HPLC of (4 <i>S</i> ,5 <i>R</i>)-7198
¹ H-NMR of (4 <i>S</i> ,5 <i>R</i>)- <i>N-Boc</i> -7199
¹³ C-NMR of (4 <i>S</i> ,5 <i>R</i>)- <i>N-Boc</i> -71100
Chiral HPLC of (4 <i>S</i> ,5 <i>R</i>)- <i>N</i> - <i>Boc</i> -71
¹ H-NMR of (4 <i>S</i> ,5 <i>R</i>)-7 m
¹³ C-NMR of (4 <i>S</i> ,5 <i>R</i>)-7 m
Chiral HPLC of (4 <i>S</i> ,5 <i>R</i>)-7m104

¹ H-NMR of (4 <i>S</i> ,5 <i>R</i>)- <i>N-Boc</i> -7m·····	105
¹³ C-NMR of (4 <i>S</i> ,5 <i>R</i>)- <i>N-Boc</i> -7m	106
¹ H-NMR of (1 <i>S</i> ,2 <i>S</i>)- 15	107
¹³ C-NMR of (1 <i>S</i> ,2 <i>S</i>)-15	108
¹ H-NMR of (1 <i>S</i> ,2 <i>S</i>)-9m	109
¹³ C-NMR of (1 <i>S</i> ,2 <i>S</i>)- 9m	110
¹ H-NMR of (1 <i>S</i> ,2 <i>S</i>)-10m	111
¹³ C-NMR of (1 <i>S</i> ,2 <i>S</i>)-10m	112

General

All commercial reagents were used as obtained commercially unless otherwise noted. Reactions were performed using oven dried glassware under an atmosphere of nitrogen. Dichloromethane (DCM) was dried with CaH and distilled prior to use. Flash column chromatography was carried out on Fuji Chromatorex silica gel (38-75 μ m). Analytical thin layer chromatography (TLC) was performed on Merck silica gel 60 F₂₅₄ plates. Visualization of the developed chromatogram was accomplished with UV light and by staining with ethanolic phosphomolybdic acid (PMA) solution followed by heating.

Nuclear magnetic resonance (NMR) spectra were recorded using Bruker 500 MHz NMR instrument (¹H NMR at 500 MHz and ¹³C NMR at 125 MHz) or Bruker 300 MHz NMR instrument (¹H NMR at 300 MHz and ¹³C NMR at 75 MHz). ¹H NMR data are reported as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), integration, coupling constants (Hz). Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). High performance liquid chromatography (HPLC) was carried out on a Perkin Elmer series 200 HPLC equipped with a Chiralcel OD-H or Chiralcel AD-H column. Specific rotations were measured on a Rudolph Autopol IV (Automatic polarimeter). High-resolution mass spectra and elemental analysis were obtained from the center for chemical analysis in Korea Research Institute of Chemical Technology.

The formic acid/triethylamine (molar ratio = 5/2) azeotrope was prepared by the distillation of the mixtures, according to the literature procedure.¹

(1R,2S)-(-)-2-Amino-1,2-diphenylethanol (99%), (1S,2R)-(+)-2-Amino-1,2-diphenylethanol (99%), and (1R,2R)-(+)-2-Amino-1,2-diphenylethanol (99.5%) were purchased from Aldrich Chemistry.

Chiral catalysts, (R,R)-Rh-1:² RhCl[(R,R)-TsDPEN]Cp*, (R,R)-Ir-2:³ IrCl[(R,R)-TsDPEN]Cp*, (R,R)-Ru-3:⁴ RuCl[(R,R)-TsDPEN](η^6 -*p*-cymene), were prepared according to the literature procedures.

1. General procedure for the synthesis of cyclic imine (6) from benzoin

Formic acid (420 μ L, 11.0 mmol) was added dropwise to neat chlorosulfonyl isocyanate (960 μ L, 11.0 mmol) at 0 °C with rapid stirring. Vigorous gas evolution was observed during the addition process. The resulting viscous suspension was stirred for 5min at 0 °C during which time the mixture solidified. DMA (*N*,*N*-dimethyl acetamide, 11 mL) was added and the solution was stirred for 30min at room temperature. The reaction mixture was cooled to 0 °C and a solution of benzoin (1g, 7.3 mmol) in DMA (7 ml) was added dropwise. After stirring at room temperature for 1-2 h, the reaction mixture was diluted with EtOAc (30 mL) and washed with brine. The solvent was removed to provide the mixture of cyclic imine (**6a**), uncyclized sulfamidate ketone, and byproduct, α -chloride ketone. Then *p*-toluenesulfonic acid (0.1 eq) and toluene were added, and the reaction mixture was heated to reflux temperature for 1-2 h with azeotropic removal of water (This step can be carried out in the air without special handling). The solvent was evaporated, and the residue was purified by column chromatography to give the desired imine (**6a**). This procedure was applied to the synthesis of **6a~6m** except for **6b**.

4,5-Diphenyl-5*H*-[1,2,3]oxathiazole 2,2-dioxide (6a)

White solid, yield: 73%, ¹H NMR (300 MHz, CDCl₃) δ 7.85-7.84 (d, 2H, J = 3.6 Hz), 7.83 (t, 1H, J = 1.2 Hz), 7.61-7.39 (m, 7H), 6.67 (ds, 1H, J = 1.5 Hz).; ¹³C NMR (75 MHz, CDCl₃) δ 176.4, 135.3, 132.8, 131.0, 130.4, 129.9, 129.4, 128.7, 127.3, 89.9.; HRMS (EI): m/z calcd for C₁₄H₁₁NO₃S 273.0457, found

273.0455.

4,5-Bis-(2-chloro-phenyl)-5H-[1,2,3]oxathiazole 2,2-dioxide (6b)

The yield of **6b** from 1,2-bis-(2-chloro-phenyl)-2-hydroxy-ethanone and $ClSO_2NH_2$ according to the general procedure for the synthesis of **6a** was very low. Therefore **6b** was prepared by another method: 1,2-bis-(2-chloro-phenyl)-2-hydroxy-ethanone (300 mg, 1.1 mmol) and $NH_2SO_2NH_2$ (154 mg, 1.6 mmol) in 3 mL of xylene were refluxed for 3 hr. The reaction mixture

was concentrated to dryness and the residue was diluted with EtOAc. The solution was washed

with water and then brine. The organic layer was dried over anhydrous MgSO₄ and the solvent was evaporated. The residue was purified by silica gel column chromatography (hexane/EtOAc = 10/1) to give 138 mg (40%) of **6b**.

White solid, yield: 40%, ¹H NMR (500 MHz, CDCl₃) δ 7.74 (d, 1H, *J* = 7.8 Hz), 7.35-7.52 (m, 6H), 7.24-7.30 (m, 2H).; ¹³C NMR (125 MHz, CDCl₃) δ 177.17, 134.68, 134.43, 133.86, 132.14, 131.66, 131.38, 130.47, 129.77, 128.95, 128.00, 127.48, 127.10, 87.34.; HRMS (EI): m/z calcd for C₁₄H₉Cl₂NO₃S 340.9680, found 340.9705.

4,5-Bis-(3-chloro-phenyl)-5H-[1,2,3]oxathiazole 2,2-dioxide (6c)

White solid, yield: 66%, ¹H NMR (300 MHz, CDCl₃) δ 7.91 (m, 1H), 7.64-7.58 (m, 2H), 7.47-7.37 (m, 4H), 7.30-7.26 (m, 1H), 6.58 (ds, 1H, *J* = 2.1 Hz).; ¹³C NMR (75 MHz, CDCl₃) δ 174.7, 136.0, 135.98, 135.5, 134.0, 131.5, 131.4, 130.1, 128.7, 128.6, 128.3, 126.7, 88.6.; HRMS (EI):

m/z calcd for $C_{14}H_9Cl_2NO_3S$ 340.9680, found 340.9702.

4,5-Bis-(4-chloro-phenyl)-5H-[1,2,3]oxathiazole 2,2-dioxide (6d)

White solid, yield: 66%, ¹H NMR (300 MHz, CDCl₃) δ 7.79-7.74 (m, 2H), 7.44-7.32 (m, 6H), 6.64 (ds, 1H, *J* = 3.9 Hz).; ¹³C NMR (75 MHz, CDCl₃) 175.1, 142.4, 137.6, 131.6, 130.9, 130.4, 130.0, 130.0, 125.4, 88.7.; HRMS (EI): m/z calcd for C₁₄H₉Cl₂NO₃S 340.9680, found 340.9700.

4,5-Bis-(4-fluoro-phenyl)-5H-[1,2,3]oxathiazole 2,2-dioxide (6e)

White solid, yield: 67%, ¹H NMR (300 MHz, CDCl₃) δ 7.89-7.84 (m, 2H), 7.42-7.38 (m, 2H), 7.16-7.10 (m, 4H), 6.64 (s, 1H).; ¹³C NMR (125 MHz, DMSO) 177.2, 167.2, (165.1), 164.1, (162.1), 133.6, (133.5), 131.2, (131.1), 129.2, (129.17), 123.3, (123.25), 117.0, (116.9), 116.86, (116.7), 89.1.; HRMS (EI): m/z calcd for C₁₄H₉F₂NO₃S 309.0271, found 309.0270.

4,5-Bis-(4-trifluoromethyl-phenyl)-5*H*-[1,2,3]oxathiazole 2,2-dioxide (6f)

White solid, yield: 52%, ¹H NMR (300 MHz, CDCl₃) δ 7.97-7.94 (m, 2H), 7.73-7.71 (m, 4H), 7.57-7.55 (m, 2H), 6.77 (ds, 1H, *J* = 3.0 Hz).; ¹³C NMR (75 MHz, CDCl₃) 177.3, 136.4, 134.5, (134.1, 133.7, 131.6, 131.1. (130.7), 130.2, 129.6, 126.8, (126.7), 126.4, (126.35), 125.4, (125.0), 121.8, (121.4), 89.0.; HRMS (EI): m/z calcd for C₁₆H₉F₆NO₃S 409.0207, found 409.0217.

4,5-Bis-(3-methoxy-phenyl)-5H-[1,2,3]oxathiazole 2,2-dioxide (6g)

White solid, yield: 87%, ¹H NMR (300 MHz, CDCl₃) δ 7.47 (s, 1H), 7.37-7.26 (m, 3H), 7.13-7.12 (m, 1H), 7.01-7.69 (m, 3H), 6.59 (s, 1H), 3.80 (s, 3H), 3.78 (s, 3H).; ¹³C NMR (75 MHz, CDCl₃) 176.3, 160.6, 160.0, 134.1, 131.0, 130.3, 128.4, 123.0, 122.1, 120.8, 116.5, 114.2,

113.9, 89.9, 55.6, 55.5.; HRMS (EI): m/z calcd for $C_{16}H_{15}NO_5S$ 333.0671, found 333.0674.

4,5-Bis-(4-methoxy-phenyl)-5H-[1,2,3]oxathiazole 2,2-dioxide (6h)

White solid, yield: 56%, ¹H NMR (300 MHz, CDCl₃) δ 7.94-7.91 (m, 2H), 7.41-7.38 (m, 2H), 6.90-6.86 (m, 4H), 6.29 (s, 1H), 3.87 (s, 3H), 3.77 (s, 3H).; ¹³C NMR (75 MHz, CDCl₃) 190.1, 164.0, 160.2, 131.6, 129.9, 128.4, 127.2, 114.6, 114.1, 62.2, 55.6, 55.4.; HRMS (EI): m/z calcd for C₁₆H₁₅NO₅S 333.0671, found 333.0675.

4,5-Bis-(3-methyl-phenyl)-5H-[1,2,3]oxathiazole 2,2-dioxide (6i)

White solid, yield: 60%, ¹H NMR (300 MHz, CDCl₃) δ 7.77 (s, 1H), 7.55-7.52 (d, 1H, *J* = 7.8 Hz), 7.40-7.37 (d, 1H, *J* = 7.8 Hz), 7.33-7.19 (m, 5H), 6.60 (s, 1H), 2.34 (s, 6H).; ¹³C NMR (75 MHz, CDCl₃) 176.7, 139.9, 139.5, 136.2, 132.8, 131.8, 130.8, 129.7, 129.2, 129.1, 127.6,

127.2, 125.8, 90.1, 21.5, 21.4.; HRMS (EI): m/z calcd for C₁₆H₁₅NO₃S 301.0773, found 301.0780.

4,5-Bis-(4-methyl-phenyl)-5*H*-[1,2,3]oxathiazole 2,2-dioxide (6j)

White solid, yield: 67%, ¹H NMR (300 MHz, CDCl₃) δ 7.74-7.71 (d, 2H, *J* = 8.4 Hz), 7.29-7.19 (m, 6H), 6.61 (s, 1H), 2.38 (s, 3H), 2.34 (s, 3H).; ¹³C NMR (75 MHz, CDCl₃) 176.3, 146.8, 141.3, 130.5, 130.5, 130.1, 130.1, 128.6, 124.6, 88.8, 22.1, 21.5.; HRMS (EI): m/z calcd for C₁₆H₁₅NO₃S 301.0773, found 301.0776.

4-(4-Chloro-phenyl)-5-phenyl-5*H*-[1,2,3]oxathiazole 2,2-dioxide (6k)

White solid, yield: 80%, ¹H NMR (300 MHz, CDCl₃) δ 7.80-7.76 (m, 2H), 7.45-7.32 (m, 7H), 6.64 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) 175.3, 142.1, 132.5, 131.6, 131.2, 130.1, 129.9, 128.7, 125.7, 89.7.; HRMS (EI): m/z calcd for C₁₄H₁₀ClNO₃S 307.0070, found 307.0078.

4-(4-Chloro-phenyl)-5-(4-methyl-phenyl)-5H-[1,2,3]oxathiazole 2,2-dioxide (6l)

White solid, yield: 60%, ¹H NMR (300 MHz, CDCl₃) δ 7.79-7.76 (m, 2H), 7.40-7.37 (m, 2H), 7.28-7.20 (m, 4H), 6.60 (s, 1H), 2.35 (s, 3H).; ¹³C NMR (75 MHz, CDCl₃) 175.6, 142.0, 141.6, 131.6, 130.7, 129.8, 129.4, 128.6, 125.7, 89.8, 21.4.; HRMS (EI): m/z calcd for C₁₅H₁₂ClNO₃S 321.0226, found 321.0230.

4-(4-Methyl-phenyl)-5-(4-chloro-phenyl)-5H-[1,2,3]oxathiazole 2,2-dioxide (6m)

White solid, yield: 88%, ¹H NMR (300 MHz, CDCl₃) δ 7.72-7.69 (d, 2H, *J* = 8.4 Hz), 7.40-7.32 (m, 4H), 7.24-7.21 (d, 2H, *J* = 8.1 Hz), 6.64 (s, 1H), 2.38 (s, 3H).; ¹³C NMR (75 MHz, CDCl₃) 175.8, 147.1, 137.1, 131.4, 130.3, 130.2, 031.0, 129.9, 124.1, 88.6, 22.0.; HRMS (EI): m/z calcd for C₁₅H₁₂ClNO₃S 321.0226, found 321.0230.

2. Optimization of the ATH-DKR reaction of 6a

2-1. ATH-DKR reaction of 6a with various catalysts^a

			Catalys HCO ₂ H/Et EtOAc	<mark>st</mark> ₃N (5:2) , rt			
Entry	catalyst		rxn time (h)	yield (%) ^b	dr (<i>cis/trans</i>) ^c	ee(%) ^d	config ^e
1	(<i>R</i> , <i>R</i>)-Rh-1	0.5 mol %	0.5	99.0	>20:1	98.0	4 <i>S</i> , 5 <i>R</i>
2	(<i>R</i> , <i>R</i>)-Ir- 2	0.5 mol %	1	91.1	>20:1	28.2	4 <i>S</i> , 5 <i>R</i>
3	(<i>R</i> , <i>R</i>)-Ru- 3	0.5 mol %	12	85.5	>20:1	89.5	4 <i>S</i> , 5 <i>R</i>
4	(<i>R</i> , <i>R</i>)-Rh-1	0.1 mol %	3	$>99^{\mathrm{f}}$	>20:1	99.0	4 <i>S</i> , 5 <i>R</i>
5	(<i>R</i> , <i>R</i>)-Rh-1	0.05 mol %	15	94^{f}	>20:1	98.0	4 <i>S</i> , 5 <i>R</i>

^a **6a** (0.1 mmol) in 1.0 mL of EtOAc with 0.1 mL of HCO_2H/Et_3N (5:2) azeotropic mixture, catalyst (0.5 ~ 0.1 mol %) at 25 ^oC. ^b Isolated yields. ^c Only a single diastereomer was detected in the ¹H-NMR of the crude reaction mixture. ^d ee was determined by chiral HPLC. ^c Determined by X-ray crystallography. ^fDetermined by ¹H-NMR analysis.

Imine **6a** (0.25 mmol) and RhCl[(R, R)-TsDPEN]Cp*, (R, R)-Rh-1, (0.5 mol %) were place in round bottom flask. To this mixture, solvent (2.5 mL) was added and then an azeotropic mixture

of HCO₂H/Et₃N (molar ratio = 5/2, 250 μ L) were added via a syringe. After stirring at room temperature for 0.5 h, the reaction mixture was diluted with EtOAc (5 mL) and washed with water (3 × 3 mL). The organic layer was dried over anhydrous MgSO₄, filtered, and evaporated. The analysis of crude ¹H-NMR showed no imine **6a** was remained. % ee was determined by chiral HPLC analysis. (Chiralcel AD-H, 20% isopropanol/hexanes, 1.0 mL/min, 215 nm, tr(major) = 7.8 min, tr(minor) = 9.0 min)

2-2. ATH-DKR reaction of 6a in various solvents^a

HC	:O ₂ H/Et ₃ N, 0.5 h, rt, solve	nt			
Entry	solvent	convn(%) ^b	dr ^c	ee(%) ^d	config ^e
1	EtOAc	>99	>20:1	98.0	4 <i>S</i> ,5 <i>R</i>
2	CH_2Cl_2	>99	>20:1	88.2	4 <i>S</i> ,5 <i>R</i>
3	THF	>99	>20:1	96.1	4 <i>S</i> ,5 <i>R</i>
4	DMF	>99	>20:1	83.5	4 <i>S</i> ,5 <i>R</i>
5	MeOH	66 ^f	>20:1	93.7	4 <i>S</i> ,5 <i>R</i>
6	Toluene	>99	>20:1	81.1	4 <i>S</i> ,5 <i>R</i>
7	CH ₃ CN	>99	>20:1	92.8	4 <i>S</i> ,5 <i>R</i>
8	neat (no solvent) ^g	>99(89) ^h	>20:1	96.6	4 <i>S</i> ,5 <i>R</i>

6a (*R,R*)-Rh-1 (0.5 mol %) HCO₂H/Et₃N, 0.5 h, rt, solvent **7a**

^a **6a** (0.1 mmol) in 1 mL of solvent with 0.1 mL HCO₂H/Et₃N (5:2) azeotropic mixture, (*R*,*R*)-Rh-1 0.5 mol %, at 25 ^oC for 0.5 h. ^bDetermined by ¹H-NMR analysis. ^cOnly a single diastereomer was detected in the ¹H-NMR of the crude reaction mixture. ^de.e. was determined by HPLC analysis. ^eDetermined by X-ray crystallography. ^fReaction time: 2 h. ^g**6a**:HCO₂H:Et₃N = 1:2:2. ^hIsolated yield in parentheses.

3. General procedure for asymmetric transfer hydrogenation of imines (6):

Imine **6a** (136.7 mg, 0.5 mmol) and RhCl[(R,R)-TsDPEN]Cp*, (R,R)-Rh-1, (1.6 mg, 0.5 mol %) were placed in round bottom flask. To this mixture, EtOAc (5 mL) was added and then an azeotropic mixture of HCO₂H/Et₃N (molar ratio = 5/2, 500 µL) were added via a syringe. After stirring at room temperature for 0.5 h, the reaction mixture was diluted with EtOAc (5 mL) and washed with water (3 × 3 mL). The organic layer was dried over anhydrous MgSO₄ and then the residue was purified by column chromatography on silica gel to give the desired cyclic sulfamidate **7a**. (For all compounds in Table 2, only a single diastereomer was detected in the ¹H-NMR of the respective crude reaction mixture.)

4,5-Diphenyl-[1,2,3]oxathiazolidine 2,2-dioxide, (4S,5R)-7a

White solid, yield: 99%; 98.0% ee (Chiralcel AD-H, 20% isopropanol/hexanes, 1.0 mL/min, 215 nm, tr(major) = 7.8 min, tr(minor) = 9.0 min); $[\alpha]_D^{19}$ = -9.3 (c 0.2, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.19-7.11 (m, 6H), 7.00-6.97 (m, 4H), 6.11 (d, 1H, *J* = 6.0 Hz), 5.29 (t, 1H, *J* = 6 Hz), 5.24 (br, s, 1H).; ¹³C NMR (75 MHz, CDCl₃) δ 133.8, 132.3, 129.1, 128.9, 128.6, 128.3, 127.5, 126.5, 87.4, 64.8.; HRMS (EI): m/z calcd for C₁₄H₁₃NO₃S 275.0616, found 275.0637.; Anal. Calcd for C₁₄H₁₃NO₃S: C, 61.07; H, 4.76; N, 5.09; S, 11.65; found: C, 60.34; H, 4.83; N, 5.00; S, 11.48.

(4S,5R)-N-Boc-4,5-diphenyl)-[1,2,3]oxathiazolidine 2,2-dioxide, (4S,5R)-N-Boc-7a:

To a solution of (4S,5R)-7a (39 mg, 0.14 mmol) and di-*tert*-butyldicarbonate (61.1 mg, 0.28 mmol) in dichloromethane (1 mL) was added catalytic amount of DMAP (0.001 mmol), and the mixture was stirred for 1 h at room temperature. Then, the reaction mixture was diluted with dichloromethane (5

ml) and washed with saturated aqueous NaHCO₃ and brine. The organic layer was dried over MgSO₄, and evaporated. The residue was purified by flash chromatography on silica gel (Hex/EtOAc=3:1) to give 44.6 mg (85% yield) of (4S,5R)-*N*-Boc-7a.

White solid, 97.6% ee (Chiralpak OD-H, 5% isopropanol/ hexanes, 1.0 mL/min, 215 nm, $t_r(minor) = 9.7 min, t_r(major) = 11.3 min); [\alpha]_D^{30} = -145.9 (c 0.30, CHCl_3);^{1}H NMR (300 MHz, CDCl_3) \delta 7.12-7.21 (m, 6H), 7.04-7.07 (m, 2H), 6.92-6.94 (m, 2H), 6.17 (d, 1H,$ *J* $= 6.0 Hz), 5.43 (d, 1H, J = 6.0 Hz), 1.49 (s, 9H).;^{13}C NMR (75 MHz, CDCl_3) \delta 148.2, 133.5, 130.5, 129.3, 128.5, 128.4, 128.3, 127.2, 126.3, 85.7, 83.3, 66.6, 27.9. HRMS (EI): m/z calcd for C₁₉H₂₁NO₅S 375.1140, found 375.1132.$

This product is identical with the (4S,5R)-14, which is derived from (1S,2R)-11, judged from ¹H-NMR, ¹³C-NMR, optical rotation, and ciral HPLC (See 7-1).

4,5-Diphenyl-[1,2,3]oxathiazolidine 2,2-dioxide, (4R,5S)-7a

This compound was prepared from imine **6a** by using essentially the same reaction procedure for (**4***S*,*5R*)-7**a** but, instead using the (*S*,*S*)-Rh-1 catalyst. White solid, yield: 99%; 97.4% ee (Chiralcel AD-H, 20% isopropanol/hexanes, 1.0 mL/min, 215 nm, tr(minor) = 7.1 min, tr(major) = 8.1 min); $[\alpha]_D^{19} = +8.0$ (c 0.2, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.17-7.15 (m, 6H), 7.00 (br, s, 4H), 6.11 (d, 1H, *J* = 5.9 Hz), 5.29 (t, 1H, *J* = 5.4 Hz), 5.24 (br, s, 1H).; ¹³C NMR (125 MHz, CDCl₃) δ 133.8, 132.3, 129.1, 128.9, 128.6, 128.3, 127.5, 126.5, 87.4, 64.8.; HRMS (EI): m/z calcd for C₁₄H₁₃NO₃S 275.0616, found 275.0616.

4,5-Bis-(2-chloro-phenyl)-[1,2,3]oxathiazolidine 2,2-dioxide, (4S,5R)-7b

White solid, yield: 99%; 21.8% ee (Chiralcel AD-H, 20% isopropanol/hexanes, 1.0 mL/min, 215 nm, tr(major) = 5.0 min, tr(minor) = 5.7 min); $[\alpha]_D^{22} = -16.3$ (c 0.3, CHCl₃); 1H NMR (500 MHz, CHCl₃) δ 7.53-7.54 (m, 1H), 7.03-7.22 (m, 6H), 7.02-7.03 (m, 1H), 6.64 (d, 1H, *J* = 6.1 Hz), 5.96 (t, 1H, *J* = 5.8 Hz), 5.28

(d, 1H, *J* = 5.4 Hz).; ¹³C NMR (125 MHz, CDCl₃) δ 133.71, 133.04, 131.73, 130.38, 130.01, 129.39, 129.24, 129.10, 128.34, 127.00, 126.46, 83.08, 59.89.; Anal. Calcd for C₁₄H₁₁Cl₂NO₃S: C, 48.85; H, 3.22; N, 4.07; S, 9.32; found: C, 49.32; H, 3.22; N, 3.91; S, 9.15.

4,5-Bis-(3-chloro-phenyl)-[1,2,3]oxathiazolidine 2,2-dioxide, (4S,5R)-7c

White solid, yield: 99%; 99.9% ee (Chiralcel AD-H, 5% isopropanol/hexanes, 1.0 mL/min, 215 nm, tr(major) = 33.6 min, tr(minor) = 37.9 min); $[\alpha]_D^{22}$ = -19.7 (c 0.3, CHCl₃); ¹H NMR (300 MHz, CHCl₃) δ 7.26-6.89 (m, 8H), 6.05 (br, s, 1H), 5.25 (br, s, 2H).; ¹³C NMR

 $(125 \text{ MHz}, \text{CDCl}_3) \ \delta 135.6, 134.6, 134.5, 133.8, 129.8, 129.6, 129.4, 129.1, 127.5, 126.5, 125.4, 124.4, 85.7, 63.8.; \text{Anal. Calcd for } C_{14}H_{11}\text{Cl}_2\text{NO}_3\text{S}: \text{C}, 48.85; \text{H}, 3.22; \text{N}, 4.07; \text{S}, 9.32; \text{found: C}, 49.04; \text{H}, 3.30; \text{N}, 3.95; \text{S}, 9.23.$

4,5-Bis-(4-chloro-phenyl)-[1,2,3]oxathiazolidine 2,2-dioxide, (48,5R)-7d

White solid, yield: 99%; 99.4% ee (Chiralcel AD-H, 20% isopropanol/hexanes, 1.0 mL/min, 215 nm, tr(major) = 7.3 min, tr(minor) = 8.9 min); $[\alpha]_D^{22}$ = -36.8 (c 0.3, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.17-7.13 (m, 4H), 6.98-6.91 (m, 4H), 6.08 (d, 1H, *J* = 6.3 Hz), 5.62 (br, s, 1H), 5.26 (br, s, 1H).; ¹³C NMR (75 MHz, CDCl₃) δ 135.5, 135.2, 132.2, 130.5, 129.0, 128.9, 128.8, 127.9, 86.4,

64.1.; Anal. Calcd for C₁₄H₁₁Cl₂NO₃S: C, 48.85; H, 3.22; N, 4.07; S, 9.32; found: C, 48.65; H, 3.29; N, 3.76; S, 9.10.

4,5-Bis-(4-fluoro-phenyl)-[1,2,3]oxathiazolidine 2,2-dioxide, (4S,5R)-7e

White solid, yield: 94%; 98.5% ee (Chiralcel AD-H, 20% isopropanol/hexanes, 1.0 mL/min, 215 nm, tr(major) = 6.9 min, tr(minor) = 8.4 min); [α]_D²¹ = -20.0 (c
0.3, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.04-6.83 (m, 8H), 6.15 (d, 1H, J = 4.8 Hz), 6.08 (d, 1H, J = 6.3 Hz), 5.26 (d, 1H, J = 6.1 Hz).; ¹³C NMR (75 MHz, CDCl₃) δ 164.7, (164.5), 161.4, (161.2), 129.8, (129.79), 129.4, (129.3), 128.5,

(128.4), 128.0, (127.99), 116.3, (115.7), 115.69, (115.5, 115.4), 86.8, 64.1.; HRMS (ESI): m/z calcd for $C_{14}H_{11}F_2NO_3S$ 311.0428, found 311.0385.

4,5-Bis-(4-trifluoromethyl-phenyl)-[1,2,3]oxathiazolidine 2,2-dioxide, (4S,5R)-7f

White solid, yield: 99%; 99.0% ee (Chiralcel AD-H, 20% isopropanol/hexanes, 1.0 mL/min, 215 nm, tr(major) = 5.3 min, tr(minor) = 6.7 min); $[\alpha]_D^{24}$ = -28.0 (c 0.3, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.45-7.43 (m, 4H), 7.18-7.12 (m, 4H), 6.21 (d, 1H, *J* = 6.3 Hz), 5.37 (br, s, 2H).; ¹³C NMR (75 MHz, CDCl₃) δ 137.5, 135.6, 131.7, (131.4, 131.2), 127.8,

126.7, (126.68), 125.6, (125.56, 125.53, 125.50), 125.46, 125.4, (125.4, 125.37), 124.6, 124.5, (122.4, 122.37), 85.7, 63.9.; HRMS (ESI): m/z calcd for C₁₆H₁₁F₆NO₃S 411.0364, found 411.0329.

4,5-Bis-(3-methoxy-phenyl)-[1,2,3]oxathiazolidine 2,2-dioxide, (4S,5R)-7g

White solid, yield: 99%; 94.4% ee (Chiralcel AD-H, 20% isopropanol/hexanes, 1.0 mL/min, 215 nm, tr(major) = 10.4 min, tr(minor) = 11.7 min); ¹H NMR (300 MHz, CDCl₃) δ 7.11-7.05 (m, 2H), 6.76-6.70 (m, 2H), 6.64 (d, 2H, *J* = 7.5 Hz), 6.53-6.48 (m, 2H),

 $6.04 \text{ (d, 1H, } J = 6.1 \text{ Hz}\text{)} 5.23 \text{ (d, 1H, } J = 6.1 \text{ Hz}\text{)}, 3.61 \text{ (s, 3H)}, 3.60 \text{ (s, 3H)}.; {}^{13}\text{C NMR} (75 \text{ MHz}, \text{CDCl}_3) \delta 159.7, 159.5, 159.5, 135.3, 133.8, 129.6, 129.4, 119.9, 118.9, 115.4, 115.0, 112.6, 111.5, 87.2, 64.7, 55.3.$

This compound was unstable under silica-gel column chromatography purification and converted to the corresponding *N-Boc* derivative, *N-Boc-*(4S,5R)-**7g**, which is sufficiently stable under silica-gel column chromatographic purification.

(4*S*,5*R*)-*N*-*Boc*-4,5-bis-(3-methoxy-phenyl)-[1,2,3]oxathiazolidine 2,2-dioxide, (4*S*,5*R*)-*N*-*Boc*-7g:

To a solution of (4S,5R)-7g (47 mg, 0.14 mmol) and di-*tert*-butyldicarbonate (61.1 mg, 0.28 mmol) in dichloromethane (1 mL) was added catalytic amount of DMAP (0.001 mmol), and the

mixture was stirred for 1 h at room temperature. Then, the reaction mixture was diluted with dichloromethane (5 ml) and washed with saturated aqueous NaHCO3 and brine. The organic layer was dried over $MgSO_4$, and evaporated. The residue was purified by flash chromatography on silica gel (Hex/EtOAc=3:1) to give 38.4 mg (63% yield) of (4S,5R)-N-Boc-7g.

White solid, yield: 63%; 98.3% ee (Chiralcel OD-H, 20% isopropanol/hexanes, 1.0 mL/min, 215 nm, tr(minor) = 6.6 min, tr(major) = 9.7min); $[\alpha]_D^{20}$ -124.2 (c 0.3, CHCl₃); ¹H NMR (300 MHz, CHCl₃) & 7.13-7.07 (m, 2H), 6.76-6.58 (m, 5H), 6.37 (s, 1H), 6.11 (d,

1H, J = 5.5 Hz), 5.39 (d, 1H, J = 5.5 Hz), 3.64 (s, 3H), 3.56 (s, 3H), 1.49 (s, 9H).; ¹³C NMR (125 MHz, CDCl₃) δ 159.7, 159.5, 148.3, 135.2, 132.0, 129.6, 129.5, 119.6, 118.8, 116.0, 114.7, 112.5, 111.2, 85.1, 83.3, 77.4, 66.6, 55.3, 28.0.; HRMS (EI): m/z calcd for C₂₁H₂₅NO₇S 435.1352, found 435.1351.

4,5-Bis-(3-methyl-phenyl)-[1,2,3]oxathiazolidine 2,2-dioxide, (4S,5R)-7i

White solid, yield: 99%; 88.5% ee (Chiralcel AD-H, 5% isopropanol/hexanes, 0.8 mL/min, 215 nm, tr(major) = 31.0 min, tr(minor) = 33.0 min); ¹H NMR (300 MHz, CDCl₃) δ 7.06-6.97 (m, 4H), 6.80-6.76 (m, 4H), 6.02 (t, 1H, J = 3.0 Hz), 5.21 -5.20 (d, 2H, J = 3.5 Hz), 2.18 (s, 6H).; ¹³C NMR (75 MHz, CDCl₃) δ 138.2, 138.0, 133.6, 132.2, 129.7, 129.5 128.3,

128.2, 128.1, 127.2, 124.6, 123.6, 87.6, 64.8, 21.3, 14.3.

This compound was unstable under silica-gel column chromatography purification and converted to the corresponding N-Boc derivative, N-Boc-(4S,5R)-7i, which is sufficiently stable under silica-gel column chromatographic purification.

(4S,5R)-N-Boc-4,5-bis-(3-methyl-phenyl)-[1,2,3]oxathiazolidine 2,2-dioxide, (4S,5R)-N-

Boc-7i: Prepared as essentially the same procedure for (4S, 5R)-N-Boc-7g from (4S, 5R)-7g.

White solid, yield: 64.3%; 91.3% ee (Chiralcel OD-H, 10%) isopropanol/hexanes, 1.0 mL/min, 215 nm, tr(minor) = 5.5 min, tr(major) = 6.5min); $[\alpha]_D^{20}$ = -155.27 (c 0.3, CHCl₃); ¹H NMR (300 MHz, CHCl₃) δ 7.06-6.96 (m, 4H), 6.87-6.67 (m, 4H), 6.09 (d, 1H, *J* =

5.6 Hz), 5.36 (d, 1H, J = 5.6 HZ), 2.17 (s, 3H), 2.14 (s, 3H), 1.49 (s, 9H).; ¹³C NMR (125 MHz, CDCl₃) δ 146.7, 138.0, 137.9, 130.4, 130.0, 129.2, 128.1, 128.0, 127.9, 127.1, 124.3, 123.5, 85.2, 83.5, 66.6, 27.9, 27.4, 21.2, 21.1.; HRMS (EI): m/z calcd for C₂₁H₂₅NO₅S 403.1453, found 403.1447.

4,5-Bis-(4-methyl-phenyl)-[1,2,3]oxathiazolidine 2,2-dioxide, (4S,5R)-7j

White solid, yield: 99%; 87.0% ee (Chiralcel AD-H, 10% isopropanol/hexanes, 1.0 mL/min, 215 nm, tr(major) = 14.2 min, tr(minor) = 16.9 min); ¹H NMR (300 MHz, CDCl₃) δ 6.97 (d, 4H, *J* = 4.9 Hz), 6.88-6.86 (m, 4H), 6.03 (d, 1H, *J* = 3.7 Hz), 5.20 (t, 1H, *J* = 3.5 Hz), 4.88 (br, s, 1H), 2.34 (s, 6H).

This compound was unstable under silica-gel column chromatography purification and converted to the corresponding N-Boc derivative, N-Boc-(4S,5R)-7j, which is sufficiently stable under silica-gel column chromatographic purification.

(4S,5R)-N-Boc-4,5-bis-(4-methyl-phenyl)-[1,2,3]oxathiazolidine 2,2-dioxide, (4S,5R)-N-

Boc-7j: Prepared as essentially the same procedure for (4S,5R)-N-Boc-7g from (4S,5R)-7g.

White solid, yield: 30%; 93.1% ee (Chiralcel AD-H, 10% isopropanol/hexanes, 1.0 mL/min, 215 nm, tr(major) = 7.0 min, tr(minor) = 10.3 min); $[\alpha]_D^{20} = -133.6$ (c 0.3, CHCl₃); ¹H NMR (300 MHz, CHCl₃) δ 6.96-6.94 (m, 6H), 6.81-6.79 (m, 2H), 6.11 (d, 1H, J = 5.3 Hz), 5.37 (d, 1H, J = 5.2 Hz), 2.25 (s, 6H), 1.53 (s, 9H).; ¹³C NMR (125 MHz, CDCl₃) δ 148.4,

139.4, 138.4, 130.7, 129.2, 129.1, 127.6, 127.3, 126.6, 85.6, 83.9, 66.7, 28.0, 27.6, 21.3.; HRMS (EI): m/z calcd for $C_{21}H_{25}NO_5S$ 403.1453, found 403.1447.

4-(4-Chloro-phenyl)-5-phenyl-[1,2,3]oxathiazolidine 2,2-dioxide, (4S,5R)-7k

White solid, yield: 98%; 96.7% ee (Chiralcel OD-H, 30% isopropanol/hexanes, 1.0 mL/min, 215 nm, tr(minor) = 8.8 min, tr(major) = 16.5 min); $[\alpha]_D$ ¹⁸ = -48.6 (c 0.3, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.26-7.09 (m, 5H), 6.99-6.94 (m, 4H), 6.12 (d, 1H, *J* = 6.2 Hz), 5.45 (d, 1H, *J* = 5.0 Hz) 5.25 (t, 1H, *J* = 5.7 Hz).; ¹³C NMR (75 MHz, CDCl₃) δ 134.4, 133.1, 132.5, 129.3, 128.6, 128.0, 127.8,

126.5, 86.3, 62.4.; Anal. Calcd for C₁₄H₁₂ClNO₃S: C, 54.28; H, 3.90; N, 4.52; S, 10.35; found: C, 54.26; H, 3.94; N, 4.51; S, 10.35.

4-(4-Chloro-phenyl)-5-(4-methyl-phenyl)-[1,2,3]oxathiazolidine 2,2-dioxide, (4S,5R)-7l

White solid, yield: 99%; 99.9% ee (Chiralcel AD-H, 10% isopropanol/hexanes, 1.0 mL/min, 215 nm, tr(major) = 13.6 min, tr(minor) = 18.2 min); ¹H NMR (300 MHz, CDCl₃) δ 7.14-7.11 (m, 2H), 6.98-6.95 (m, 4H), 6.86-6.85 (m, 2H), 6.07 (d, 1H, *J* = 3.7 Hz), 5.44 (br, s, 1H) 5.20 (t, 1H, *J* = 3.4 Hz), 2.26 (s, 3H).; ¹³C NMR (75 MHz, CDCl₃) δ 139.3, 134.7, 132.8,

129.2, 129.0, 128.8, 128.7, 126.5, 87.4, 64.3, 21.3.

This compound was unstable under silica-gel column chromatography purification and converted to the corresponding N-Boc derivative, N-Boc-(4S,5R)-7l, which is sufficiently stable under silica-gel column chromatographic purification.

(4*S*,5*R*)-*N-Boc*-4-(4-chloro-phenyl)-5-(4-methyl-phenyl)-[1,2,3]oxathiazolidine 2,2-dioxide, (4*S*,5*R*)-*N-Boc*-71:

Prepared as essentially the same procedure for (4*S*,5*R*)-*N*-*Boc*-7g from (4*S*,5*R*)-7g.

White solid, yield: 55%; 98.5% ee (Chiralcel AD-H, 10% isopropanol/hexanes, 1.0 mL/min, 215 nm, tr(major) = 7.9 min, tr(minor) = 12.7 min); $[\alpha]_D^{21}$ = -174.5 (c 1.0, CHCl₃); ¹H NMR (300 MHz, CHCl₃) δ 7.17-7.14 (m, 2H), 7.02-6.97 (m, 4H), 6.82-6.79 (m, 2H), 6.12 (d, 1H, *J* = 5.4 Hz), 5.38 (d, 1H, *J* = 5.3 Hz), 2.25 (s, 3H), 1.49 (s, 9H).; ¹³C NMR (125 MHz,

CDCl₃) δ 148.3, 139.8, 134.7, 132.5, 129.3, 128.8, 128.76, 127.3, 126.3, 86.0, 83.5, 66.1, 28.0, 21.3.; HRMS (EI): m/z calcd for C₂₀H₂₂ClNO₅S 423.0907, found 423.0914.

4-(4-Methyl-phenyl)-5-(4-chloro-phenyl)-[1,2,3]oxathiazolidine 2,2-dioxide, (4S,5R)-7m

White solid, yield: 94%; 99.9% ee (Chiralcel AD-H, 20% isopropanol/hexanes, 1.0 mL/min, 215 nm, tr(major) = 15.7 min, tr(minor) = 17.0 min); $[\alpha]_D^{21} = +22.8$ (c 0.3, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.15-6.87 (m, 8H), 6.03 (d, 1H, *J* = 4.5 Hz), 5.23 (br, m, 2H), 2.25 (s, 3H).; ¹³C NMR (75 MHz, CDCl₃) δ 139.1, 135.0, 131.1, 130.3, 129.5, 128.5, 128.0,

127.3, 86.8, 64.4, 21.2.; Anal. Calcd for C₁₅H₁₄ClNO₃S: C, 55.64; H, 4.36; N, 4.33; S, 9.90; found: C, 55.20; H, 4.34; N, 3.94; S, 9.68.

4. Synthesis of (1*S*,2*S*)-2-Amino-2-(4-chlorophenyl)-1-(*N-Boc*-amino)-1-(4-methylphenyl) ethane, (1*S*,2*S*)-9m

4-1. (4*S*,5*R*)-*N-Boc*-4-(4-methyl-phenyl)-5-(4-chloro-phenyl)-[1,2,3]oxathiazolidine 2,2-dioxide, (4*S*,5*R*)-*N-Boc*-7m:

To a solution of (4S,5R)-7m (45.4 mg, 0.14 mmol, 97.5 % ee) and di-*tert*-butyldicarbonate (61.1 mg, 0.28 mmol) in dichloromethane (1 mL) was added catalytic amount of DMAP, and the mixture was stirred for 1 h at room temperature. Then, the reaction mixture was diluted with dichloromethane (5 ml) and washed with saturated aqueous NaHCO₃ and brine. The organic layer was dried over MgSO₄, and evaporated. The residue was purified by flash chromatography on silica gel (Hex/EtOAc=3:1) to give 50.9 mg (86% yield) of (4*S*,5*R*)-*N*-*Boc*-7m.

White solid, yield: 86%; $[\alpha]_D{}^{19} = -163.94$ (*c* 0.1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.16-7.13 (d, 2H, *J* = 8.4 Hz), 7.01-6.86 (m, 6H), 6.11 (d, 1H, *J* = 5.7Hz), 5.9 (d, 1H, *J* = 5.7 Hz), 2.26 (s, 3H), 1.48 (s, 9H).; ¹³C NMR (75 MHz, CDCl₃) δ 146.8, 138.5, 135.2, 129.4, 129.2, 128.5, 127.8, 127.1, 85.1, 82.7, 66.2, 27.8, 27.4, 21.1.; HRMS (EI): m/z calcd for C₂₀H₂₂CINO₅S 423.0907, found 423.0911.

4-2. (1S,2S)-N-Boc-2-azido-2-(4-chloro-phenyl)-1-(4-methyl-phenyl)-ethyl amine, 15:

NaN₃ (76.7 mg, 1.18 mmol, 5.0 equiv) was added in a single portion to a solution of (4S,5R)-*N*-*Boc*-4-(4-methyl-phenyl)-5-(4-chloro-phenyl)-[1,2,3]oxathiazolidine 2,2-dioxide ((4S,5R)-*N*-*Boc*-7m) (110 mg, 0.26 mmol, 1.0 equiv) in DMF (2 ml) at 25 °C. The resulting mixture was warmed to 60 °C and stirred for 5 h. Upon completion, the reaction mixture was cooled to rt and contents were diluted with Et₂O (3 mL), treated with 1*N* aqueous HCl(3 mL), and allowed to stir for an additional 12 h at 25 °C. Once this operation was complete, the reaction mixture was poured into saturated NaHCO₃ solution and extracted with Et₂O. The combined organic layers were then washed with water, dried (MgSO₄), and concentrated. The resultant light yellow solid was purified by flash column chromatography (silica gel, EtOAc/hexanes, 3:1).

White solid, yield: 94%; $[\alpha]_{D}^{20} = +85.96$ (*c* 0.1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.31-7.04 (m, 8H), 5.22 (d, 1H, *J* = 8.4 Hz), 4.90 (br, s, 1H), 4.82 (br, s, 1H), 2.31 (s, 3H), 1.35 (s, 9H).; ¹³C NMR (125 MHz, CDCl₃) δ 155.1, 137.7, 135.9, 135.4, 134.4, 129.3, 129.1, 128.9, 126.9, 80.1, 69.7, 58.7, 28.4, 21.2.; HRMS (EI): m/z calcd for C₂₀H₂₃ClN₄O₂ 386.1510, found 386.1565.

4-3. (1*S*,2*S*)-2-Amino-2-(4-chlorophenyl)-1-(*N-Boc*-amino)-1-(4-methylphenyl) ethane, (1*S*,2*S*)-9m

A mixture of (1*S*,2*S*)-*N*-*Boc*-2-azido-2-(4-chloro-phenyl)-1-(4-methyl-phenyl)-ethyl amine, **15**, (60.1 mg, 0.16 mmol) and 10% palladium on carbon (60.0 mg) in MeOH (1 ml) was stirred

under an atmosphere of H_2 for 12 h. The reaction mixture was filtered over Celite and washed three times with dichloromethane. After concentration of the solution under reduced pressure, the crude product was purified by silica gel column chromatography (EtOAc/hexane, 1:1).

White solid, yield: 71%; $[\alpha]_{D}^{18} = -6.3$ (c = 0.3, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.37-7.11 (m, 8H), 5.75 (d, 1H, *J* = 7.2 Hz), 4.82 (br, s, 1H), 4.32 (d, 1H, *J* = 3 Hz), 2.32 (s, 3H), 1.32 (s, 9H).; ¹³C NMR (75 MHz, CDCl₃) δ 155.7, 142.4, 138.1, 136.9, 129.3, 128.4, 127.5, 127.0, 126.5, 79.3, 77.4, 60.1, 28.4, 21.2.; Anal. Calcd for C₂₀H₂₅ClN₂O₂: C, 66.56; H, 6.98; N, 7.76; found: C, 66.72; H, 7.13; N, 7.93.

5. Synthesis of (1*S*,2*S*)-1-(*N-Boc*-amino)-1-(4-methylphenyl)-2-(4-chlorophenyl)-2benzoyloxy ethane, (1*S*,2*S*)-10m

Ammonium benzoate (33.4 mg, 0.24 mmol) was added to a solution of (4S, 5R)-*N-Boc*-7m (50.9 mg, 0.12 mmol) in dry DMF (1 ml). The solution was heated to 60 °C for 12 h. The solvent was evaporated, and the residue was re-dissolved in dichloromethane (3 mL) and 1*N* HCl (3 mL) was added. The reaction mixture was stirred at room temperature for 6 h, before the pH was adjusted to 8 with saturated aqueous NaHCO₃ solution. The layers were separated and the aqueous layer was extracted three times with dichloromethane. The combined organic layer was washed with H₂O and brine. After drying over MgSO₄, the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography on silica-gel (EtOAc/hexane, 5:1).

White solid, yield: 85%; $[\alpha]_D^{19} = -24.5$ (c 0.3, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, 2H, J = 7.4 Hz), 7.58-7.55 (m, 1H), 7.46-7.43 (m, 2H), 7.23-7.18 (m, 4H), 7.07-7.02 (m, 4H), 6.16 (d, 1H, J = 7.1 Hz), 5.21 (br, m, 2H), 2.29 (s, 3H), 1.29 (s, 9H).; ¹³C NMR (125 MHz, CDCl₃) δ 165.9, 155.1, 137.7, 136.0, 134.1, 133.3, 129.9, 129.7, 129.3, 128.7, 128.5, 127.3, 79.8, 78.0, 58.9, 29.7, 28.2, 21.1.; Anal. Calcd for C₂₇H₂₈ClNO₄: C, 69.59; H, 6.06; N, 3.01; found: C, 69.06; H, 6.18; N, 2.78.

6. Synthesis of (5*R*)-4,5-diphenyl-5H-[1,2,3]oxathiazole 2,2-dioxide [(5*R*)-6a]:

To the solution of (*R*)-benzoin (25 mg, 0.12 mmol, 99% ee) in DMA (*N*,*N*-dimethyl acetamide, 0.3 mL) was added chlorosulfamide (ClSO₂NH₂, 1.5 eq.). The reaction mixture was stirred at room temperature for 2 h, the reaction mixture was diluted with EtOAc (1 mL) and washed with brine. The organic layer was dried over anhydrous MgSO₄ and the solvent was removed. The residue was re-dissolved in toluene (3 mL) and catalytic amount of PTSA (*p*-toluenesulfonic acid) was added. The reaction mixture was heated for 10 min at 110 °C and cooled to room temperature. The solvent was removed and the residue was purified by column chromatography to give the desired imine (*5R*)-**6a**. ¹H NMR & ¹³C NMR spectra of (*5R*)-**6a** are same as those of racemic-**6a**. White solid, yield: 73%; 85% ee (Chiralcel AD-H, 20% isopropanol/hexanes, 1.0 mL/min, 215 nm, tr(minor) = 12.7 min, tr(major) = 14.8 min.).

Peak #	Time (min)	Area [mV*s]	BL	wide (sec)	Area %
1	12.6833	1479.7453	BB	65.0000	7.3136
2	14.7500	18752.9540	BB	99.0000	92.6864
Total		20232.6992			

6-1. Racemization of (5R)-4,5-diphenyl-5H-[1,2,3]oxathiazole 2,2-dioxide [(5R)-6a] in the presence of HCO₂H/Et₃N:

(5*R*)-**6a** (5 mg, 0.02 mmol, 85% ee) was dissolved in 0.2 mL of EtOAc and HCO₂H/Et₃N (5:2 azeotropic mixture, 0.02 mL) was added in one portion. After stirring for 30 min at room temperature, the reaction mixture was diluted with EtOAc (0.5 mL) and water (1 mL) was added. The organic layer was separated, dried over anhydrous MgSO₄ and evaporated to give crude **6a** (Recovery yield >99%). The optical purity of **6a** was completely lost and racemic **6a** (0.4% ee) was recovered (determined by chiral HPLC analysis).

Chiralcel AD-H, 20% isopropanol/hexanes, 1.0 mL/min, 215 nm, tr(major) = 12.3 min, tr(minor) = 14.1 min.

Peak #	Time (min)	Area [mV*s]	BL	wide (sec)	Area %
1	12.2167	7540.7053	BB	79.0000	50.2144
2	14.1333	7476.3250	VB	73.0000	49.7856
Total		15017.0303			

6-2. Racemization of (5R)-4,5-diphenyl-5H-[1,2,3]oxathiazole 2,2-dioxide [(5R)-6a] in the presence of Et₃N:

(5R)-6a (5 mg, 0.02 mmol, 85% ee) was dissolved in 0.2 mL of EtOAc and Et₃N (0.02 mL) was added in one portion. After stirring for 30 min at room temperature, the reaction mixture was diluted with EtOAc (0.5 mL) and water (1 mL) was added. The organic layer was separated, dried over anhydrous MgSO₄ and evaporated to give crude 6a (Recovery yield >99%). The optical purity of 6a was completely lost and racemic 6a (0.4% ee) was recovered (determined by chiral HPLC analysis).

Chiralcel AD-H, 20% isopropanol/hexanes, 1.0 mL/min, 215 nm, tr(minor) = 12.3 min, tr(major) = 14.2 min.

Peak #	Time (min)	Area [mV*s]	BL	wide (sec)	Area %
1	12.2667	16392.2789	BB	86.0000	49.7907
2	14.2167	16530.1185	BB	91.0000	50.2093
Total		32922.3984			

7. Synthesis of cis- and trans-4,5-diphenyl cyclic sulfamidates

7-1. (4S,5R)-N-Boc-4,5-Diphenyl-[1,2,3]oxathiazolidine 2,2-dioxide, (4S,5R)-14⁵

To a stirred mixture of (1S,2R)-1-amino-1,2-diphenyl-2-ethanol, (1S,2R)-11, (500 mg, 2.3 mmol) and sodium carbonate (496 mg, 4.7 mmol) in a mixture of THF/H₂O (3:1, 28 mL) at 0 °C, di-*tert*-butyl dicarbonate (563 mg, 2.6 mmol) was added and stirred at 0 °C for 1 h and then at room temperature for another 2 h. The reaction mixture was diluted with H₂O (30 mL) and extracted with ethyl acetate (20 mL x 3) The combined organic layer was washed with brine and dried over anhydrous MgSO₄. It was filtered and solvent was removed under vacuum to give a waxy solid **12** which was used for next step without further purification.

To a stirred solution of (1S,2R)-12 and triethylamine (978 µL, 7.0 mmol) in 20 mL of dry dichloromethane at -40 °C was added SOCl₂ (171 µL, 2.3 mmol). After being stirred for 1h, the reaction mixture was quenched with water (20 mL) at -40 °C and was allowed to warm to room temperature, then H₂O (20 mL) was added. The aqueous phase was extracted with dichloromethane (20 mL x 2). The combined organic phase was washed with brine and dried over MgSO₄, and evaporated to afford a crude mixture of *endo-* and *exo-*isomer of sulfamidites (4*S*,5*R*)-13 which was used for next step without further purification.

To an ice-cold solution of the sulfamidites (4S,5R)-13 in a mixed solvent of CH₃CN (8.0 mL), CH₂Cl₂ (4.5 mL), and water (9.5 mL) was added ruthenium(III) chloride (catalytic amount) and then NaIO₄ (217.0 mg, 3.5 mmol) in portions at 0 °C. The mixture was stirred at 0 °C for 4 h, and water (20 mL) was added. The organic layer was separated and the aqueous phase was extracted with ether (20 mL x 3). The combined organic layer was washed with brine and dried over MgSO₄. The solvent was evaporated and the residue was purified by flash chromatography to afford white solid of (4S,5R)-14. The overall yield over three steps from (1S,2R)-11 was 84.7% (731.0 mg).

(4*S*,5*R*)-14: White solid, 97.3% ee (Chiralpak OD-H, 5% isopropanol/ hexanes, 1.0 mL/min, 215 nm, $t_r(minor) = 9.8 \text{ min}$, $t_r(major) = 11.2 \text{ min}$; $[\alpha]_D^{22} = -148.0 (c \ 0.30, \text{CHCl}_3)$; ¹H NMR (300 MHz, CDCl₃) δ 7.07-7.23 (m, 6H), 7.04-7.05 (m, 2H), 6.92-6.94 (m, 2H), 6.16 (d, 1H, *J* = 5.7 Hz), 5.43 (d, 1H, J = 5.7 Hz), 1.49 (s, 9H).; ¹³C NMR (75 MHz, CDCl₃) δ 148.2, 133.5, 130.5, 129.3, 128.5, 128.4, 128.3, 127.2, 126.3, 85.7, 83.3, 66.6, 27.9. HRMS (EI): m/z calcd

for $C_{19}H_{21}NO_5S$ 375.1140, found 375.1131.

This product is identical with the (4S,5R)-*N-Boc*-**7a**, which is derived from the major ATH product of **6a** with (R,R)-Rh-**1** catalyst, judged from ¹H-NMR, ¹³C-NMR, optical rotation, and ciral HPLC (See 3, (4S,5R)-*N-Boc*-**7a**).

7-2. (4R,5S)-N-Boc-4,5-Diphenyl-[1,2,3]oxathiazolidine 2,2-dioxide, (4R,5S)-14

Prepared from (1R,2S)-1-amino-1,2-diphenyl-2-ethanol, (1R,2S)-11.

Overall yield 78.2% from (1*R*,2*S*)-11.

White solid, 96.8% ee (Chiralpak OD-H, 5% isopropanol/ hexanes, 1.0 mL/min, 215 nm, t_r(major) = 9.7 min, t_r(minor) = 11.3 min); $[\alpha]_D^{22}$ = +153.1 (*c* 0.30, CHCl₃);¹H NMR (300 MHz, CDCl₃) δ 7.12-7.23 (m, 6H), 7.05-7.07 (m, 2H), 6.92-6.94 (m, 2H), 6.17 (d, 1H, *J* = 6.0 Hz), 5.43 (d, 1H, J = 5.4 Hz), 1.49 (s, 9H).; ¹³C NMR (75 MHz, CDCl₃) δ 148.2, 133.5, 130.5, 129.3, 128.5, 128.4, 128.3, 127.2, 126.3, 85.7, 83.4, 66.6, 27.9. HRMS (EI): m/z calcd for C₁₉H₂₁NO₅S 375.1140, found 375.1135.

7-3. (4R,5R)-N-Boc-4,5-Diphenyl-[1,2,3]oxathiazolidine 2,2-dioxide, (4R,5R)-14

Prepared from (1*R*,2*R*)-1-amino-1,2-diphenyl-2-ethanol, (1*R*,2*R*)-11.

Overall yield 82.2% from (1*R*,2*R*)-11.

White solid ; $[\alpha]_D^{22} = +61.3$ (*c* 0.30, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.36-7.44 (m, 6H), 7.23-7.28 (m, 4H), 5.49 (d, 1H, *J* = 8.7 Hz), 5.16 (d, 1H, J = 9.0 Hz), 1.36 (s, 9H).; ¹³C NMR (75 MHz, CDCl₃) δ 148.2, 135.1, 131.9, 130.3, 129.2, 129.1, 129.0, 127.2, 126.8, 85.7, 85.4, 68.6, 27.7.; Anal. Calcd for C₁₉H₂₁NO₅S: C, 60.78; H, 5.64; N, 3.73; O, 21.31; S, 8.54. Found: C, 61.14; H, 5.76; N, 3.75; O, 19.65; S, 9.08.

8. Plausible mechanism and possible transition state for ATH of cyclic sulfamidate imine with the Rh catalyst [(R,R)-Rh-1] to the corresponding cyclic sulfamidate.

Kinetic studies and isotope labeling experiments as well as computational analysis for the asymmetric transfer hydrogen (ATH) reaction of ketone with 2-propanol or formic acid/triethyl amine as hydrogen sources promoted by the chiral Ru catalyst (R,R)-RuCl[TsDPEN](p-cymene) (Ru-**3**) revealed that the reaction takes place reversibly through a six-membered pericyclic transition state.⁶⁻¹⁰ The NH unit forms a hydrogen bond with the carbonyl oxygen atom to stabilize the transition state. The proposed mechanism of the chiral Ru catalyst Ru-**3** for the transfer hydrogenation of acetophenone (**1**) involves a concerted transfer of proton and hydride from amine hydrido complexe (**II**) to the substrate in a cyclic six-membered transition state to give the (R)-1-phenylethanol (**2**) and amido complexe (**II**) as shown in Figure S-1.

Figure S-1. Interconversion of the amido (I) and the amine hydrido Ru complex (II) in the ATH of acetophenone to 1-phenylethanol (2) *via* possible six-membered transition state (Modified from ref. 6).

The origin of stereoselectivity in the transfer hydrogenation catalyzed by Ru-**3** has been ascribed not only to the chiral diamine ligand but also to the contribution of polyalkylated arenes to the stabilization of the $C(sp_2)H/\pi$ or $C(sp_3)H/\pi$ attractive interactions between arene ligands and phenyl group of ketone developed in the transition state. Although the stereodetermining transition state structure is determined integrally by combining various steric and electronic factors, the secondary interaction between nonreacting sites (the $C(sp_2)H/\pi$ or

 $C(sp_3)H/\pi$ attractive interactions) is particularly important in generating the asymmetric sense of the ATH of ketone.

Figure S-2. Plausible mechanism and possible transition state for ATH of cyclic sulfamidate imine (3) with the Rh catalyst [(R,R)-Rh-1] to the corresponding cyclic sulfamidate (4S,5R)-4.

The chiral Rh catalyst [(R,R)-Rh-1], $(R,R)-RhCl[TsDPEN]Cp^*$, is isoelectronic with the chiral Ru complex (Ru-3) and imine is also isoelectronic with ketone. Therefore, essentially the same mechanism for ATH of ketone with Ru-3 catalyst could be applied to the ATH of cyclic sulfamidate imine (3) with Rh-1 catalyst to the corresponding cyclic sulfamidate [(4S,5R)-4] as shown in Figure S-2.

9. X-ray crystallography analysis data of (4S,5R)-7a

CCDC-803456 contains the supplementary crystallographic data for (4S,5R)-7a. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

Crystal data for (4*S*,5*R*)-7a.

Identification code	20100309_0m	
Empirical formula	C14 H13 N O3 S	
Formula weight	275.31	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P2(1)2(1)2(1)	
Unit cell dimensions	a = 5.72190(10) Å	α= 90°.
	b = 14.5983(4) Å	β= 90°.
	c = 15.3184(4) Å	$\gamma = 90^{\circ}$
Volume	1279.55(5) Å ³	
Z	4	

Density (calculated)	1.429 Mg/m ³
Absorption coefficient	0.256 mm ⁻¹
F(000)	576
Crystal size	0.32 x 0.20 x 0.05 mm ³
Theta range for data collection	2.66 to 28.30°.
Index ranges	-7<=h<=7, -16<=k<=19, -20<=l<=19
Reflections collected	7449
Independent reflections	3142 [R(int) = 0.0295]
Completeness to theta = 28.30°	99.2 %
Absorption correction	Multi-scan
Max. and min. transmission	0.9873 and 0.9226
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3142 / 0 / 172
Goodness-of-fit on F ²	1.033
Final R indices [I>2sigma(I)]	R1 = 0.0420, wR2 = 0.0979
R indices (all data)	R1 = 0.0587, wR2 = 0.1077
Absolute structure parameter	-0.02(10)
Largest diff. peak and hole	0.282 and -0.287 e.Å ⁻³

10. References

- 1. K. Narita and M. Sekiya, Chem. Pharm. Bull., 1977, 25, 135.
- 2. J. Mao and D. C. Baker, Org. Lett., 1999, 1, 841.
- 3. K. Mashima, T. Abe and K. Tani, Chem. Lett., 1998, 27, 1199.
- 4. K.-J. Haack, S. Hashiguchi, A. Fujii, T. Ikariya and R. Noyori, *Angew. Chem. Int. Ed. Eng.*, 1997, **36**, 285.
- R. Guo, S. Lu, X. Chen, C.-W. Tsang, W. Jia, C. Sui-Seng, D. Amoroso and K. Abdur-Rashid, J. Org. Chem., 2010, 75, 937.
- 6. T. Ikariya and A. J. Blacker, Acc. Chem. Res., 2007, 40, 1300.
- 7. S. Gladiali and E. Alberico, Chem. Soc. Rev., 2006, 35, 226.
- J. S. M. Samec, J.-E. Backvall, P. G. Andersson and P. Brandt, *Chem. Soc. Rev.*, 2006, 35, 237.
- 9. T. Ikariya, K. Murata, and R. Noyori, Org. Biomol. Chem. 2006, 4, 393.
- 10. R. Noyori, M. Yamakawa and S. Hashiguchi, J. Org. Chem., 2001, 66, 7931.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

34

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Result Report

Peak #	Time (min)	Area [mV*s]	BL	wide (sec)	Area %
1	3.0000	94.3282	BB	20.0000	0.7233
2	7.7667	26405.3896	BB	61.0000	98.2787
3	9.0500	268.1618	BB	23.0000	0.9981
Total		26867.8809			

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Result	Re	por	t
--------	----	-----	---

Peak #	Time (min)	Area [mV*s]	BL	wide (sec)	Area %
1	3.0167	359.5693	BB	26.0000	1.8540
2	7.1167	250.6404	BB	23.0000	1.2924
3	8.1000	18783.5336	BB	52.0000	96.8536
Total		19393.7441			

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Result Report

Peak #	Time (min)	Area [mV*s]	BL	wide (sec)	Area %
1	5.5167	12825.3085	VV	48.0000	60.8924
2	6.3333	8236.9532	VB	65.0000	39.1076
Total		21062.2617			

Result	Rep	port
--------	-----	------

Peak #	Time (min)	Area [mV*s]	BL	wide (sec)	Area %
1	2.7167	13.5374	BB	13.0000	0.0157
2	2.9500	218.4371	BB	21.0000	0.2536
3	3.7667	39.5275	BB	15.0000	0.0459
4	6.2000	24.3187	BB	15.0000	0.0282
5	33.6000	85791.2412	BB	193.0000	99.6159
6	37.9167	34.9975	BB	29,0000	0.0406
Total		86122.0625			

Result Report

Peak #	Time (min)	Area [mV*s]	BL	wide (sec)	Area %
15	7.3333	29716.4006	VB	93.0000	90.6248
16	8.8667	96.1782	BB	29.0000	0.2933
Total		29812.57			

#	[min]	[µV·s]	[µV]	[%]	[%]		[S]
1	2.963	18534.03	1572.13	0.12	0.12	BB	11.7891
2	6.313	63666.71	5734.35	0.42	0.42	BB	11.1027
3	7.103	15106941.86	1.11e+06	98.72	98.72	BB	13.5884
4	8.750	114290.90	7568.49	0.75	0.75	BB	15.1009

15303433.51 1.13e+06 100.00 100.00

77

Peak #	Time (min)	Area [mV*s]	BL	wide (sec)	Area %
1	10.4167	31640.5137	VB	88.0000	97.2023
2	11.7667	910.6725	BB	55.0000	2.7977
Total		32551.1855			

Peak #	Time (min)	Area [mV*s]	BL	wide (sec)	Area %
1	3.8333	291.6175	BB	16.0000	0.6644
2	4.5833	717.9036	BB	20.0000	1.6355
3	5.2833	753.4113	BB	21.0000	1.7164
4	6.6000	362.9644	BB	20.0000	0.8269
5	9.7167	41768.3730	BB	81.0000	95.1568
Total		43894.2695			

Peak #	Time (min)	Area [mV*s]	BL	wide (sec)	Area %
1	30.9500	46127.0592	BV	141.0000	94.2734
2	33.0167	2801.9863	VB	126.0000	5.7266
Total		48929.0430			

Result Report

Peak #	Time (min)	Area [mV*s]	BL	wide (sec)	Area %
1	5.5000	906.9436	BB	12.0000	4.3252
2	6.4667	20061.6528	BB	32.0000	95.6748
Total		20968.5957			

Peak #	Time (min)	Area [mV*s]	BL	wide (sec)	Area %
1	14.2167	47825.1201	BV	115.0000	93.4941
2	16.8833	3327.9649	BB	85.0000	6.5059
Total		51153.0859		-	

Peak #	Time (min)	Area [mV*s]	BL	wide (sec)	Area %
1	6.0167	708.4693	BB	19.0000	2.8773
2	7.0667	23085.1137	BB	40.0000	93.7545
3	10.3000	829.3597	BB	25.0000	3.3682
Total		24622.9414			

DE		11	T		DO	DT
	FAI		11	$\prec \vdash$	P()	RI
		~ _				

Peak #	Time [min]	Area [µV·s]	Height [µV]	Area [%]	Norm. Area [%]	BL	Area/Height [s]
1	0.376	3168.87	129.29	0.02	0.02	BB	24.5101
2	2.320	10539.38	438.92	0.06	0.06	BV	24.0122
3	2.999	138832.13	7595.09	0.83	0.83	W	18.2792
4	3.389	204482.60	11038.20	1.22	1.22	W	18.5250
5	3.895	28580.87	1331.90	0.17	0.17	VB	21.4587
6	4.570	98751.93	7613.16	0.59	0.59	BV	12.9712
7	5.282	147629.99	11036.17	0.88	0.88	W	13.3769
8	5.695	169779.42	12031.01	1.01	1.01	W	14.1118
9	6.296	22306.44	1402.10	0.13	0.13	VB	15.9093
10	7.216	2737.36	281.66	0.02	0.02	BV	9.7187
11	7.570	16393.70	957.87	0.10	0.10	VB	17.1147
12	8.845	267007.80	6663.42	1.59	1.59	BB	40.0707
13	10.503	12995.13	474.94	0.08	0.08	BB	27.3615
14	16.529	15667018.50	247738.93	93.31	93.31	BB	63.2400
		16790224 10	308732 67	100.00	100.00		

Peak #	Time (min)	Area [mV*s]	BL	wide (sec)	Area %
1	3.0333	183.8998	BB	30.0000	0.4958
2	13.6167	36150.6770	BB	93.0000	97.4654
3	15.6667	363.9467	BB	. 65.0000	0.9812
4	18.2333	392.2732	BB	67.0000	1.0576
Total		37090.7969			

			rucu /
241.5256	BB	26.0000	0.7116
334.0131	BB	21.0000	0.9841
33 32865.1483	BB	59.0000	96.8293
57 249.1193	BB	24.0000	0.7340
33 251.5202	BB	27.0000	0.7410
33941.3281			
	33 32865.1483 57 249.1193 33 251.5202 33941.3281	33 32805.1483 DB 57 249.1193 BB 33 251.5202 BB 33941 3281	53 32805.1483 BB 59.0000 57 249.1193 BB 24.0000 33 251.5202 BB 27.0000 33941.3281 33941.3281 33941.3281 33941.3281

Result Report

Peak #	Time (min)	Area[mV*s]	BL	wide (sec)	Area %
26	15.6667	17431.5022	BB	101.0000	73.1587
27	17.0000	5.1808	BB	17.0000	0.0217
28	17.9500	4.6992	BB	20.0000	0.0197
Total		23826.9727			5

