Modelling the Effect of the Electrode Potential on the

Metal-Adsorbate Surfaces States: Relevant States in the

Charge Transfer Mechanism of SERS

Francisco Avila, David J. Fernández, Juan F. Arenas, Juan C. Otero*

and Juan Soto*

Department of Physical Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga,

Spain.

Corresponding authors: Dr. Juan Soto

Prof. Juan C. Otero

E-mail: soto@uma.es, jc_otero@uma.es

Department of Physical Chemistry Faculty of Science University of Málaga Campus de Teatinos, 29071 Málaga (Spain) Fax:+34-95-2132019 Tlf: +34-95 -2132019

Electronic Supporting Information

Index

1. Figure.S1 Active space for Ag ₂ Py cluster	
2. Figure.S2. Active space for Ag ₃ Py ^q clusters	S4
3. Table S1. MS-CASPT2 excitation energies (eV) of [Ag ₂ -Py] ⁰ clusterS5
4. Table S2. MS-CASPT2 excitation energies (eV) of [Ag ₃ -Py] ⁰ clusterS6
5. Table S3. MS-CASPT2 excitation energies (eV) of [Ag ₃ -Py	⁻] ⁻ clusterS7
6. Table S4. MS-CASPT2 excitation energies (eV) of [Ag ₃ -Py] ⁺ clusterS8
7. Table S5. M06-HF excitation energies (A_2 and B_1 states) of	$[Ag_2-Py]^0$ cluster
8. Table S6. M06-HF excitation energies (A_2 and B_1 states) of	$\left[Ag_3-Py\right]^+$ cluster S10
9. Table S7. M06-HF excitation energies (A_2 and B_1 states) of	[Ag ₃ -Py] ⁻ cluster S11
10. Table S8. M06-HF excitation energies (A_2 and B_1 states) o	of [Ag _n -Py] ^q clusters S12

S2

Figure.S1. Active space for Ag₂Py cluster.

S3

Figure.S2. Active space for Ag₃Py^q clusters

S4

State	Configuration ^b	w ^c	Q^{d}	f	ΔE^{f}	ΔE^{h}
1A ₁	Ref. Conf	72	+0.1	-	-	
	$(5s+)^1(5s-)^1$	16				
$2A_1$	$(5s+)^1(5s-)^1$	68	+0.1	0.659	3.01	
	Ref. Conf	15				
1B ₁ CT0	$(5s_{+})^{1}(\pi^{*}_{CNC})^{1}$	88	-0.7	9.0 10 ⁻⁰⁵	3.54	3.30
1A ₂ CT1	$(5s_{+})^{1}(\pi^{*}_{C=C})^{1}$	70	-0.7	0	4.05	3.95
	$(5s_{+})^{l}(\pi^{*}_{C=C})^{l}$	15				
$1B_2$	$(\pi_{C=C})^1(\pi^*_{CNC})^1$	49	+0.1	$2.0\ 10^{-02}$	5.22	
	$(\pi_{\mathrm{CNC}})^1 (\pi^*_{\mathrm{C=C}})^1$	22				
$2B_1 \frac{S1}{g}$	$(n)^1(\pi^*_{CNC})^1$	83	+0.0	1.0 10 ⁻⁰²	5.54	

Table S1. MS-CASPT2 excitation energies (eV) of [Ag₂-Py]⁰ cluster.^a

^{*a*}Reference active space 10 electrons in 9 orbitals. Geometry optimized at the CAS-SCF level.

^bReference configuration:

 $(n)^{2}(5s_{+})^{2}(\pi_{\rho ing};1b_{1})^{2}(\pi_{CNC};2b_{1})^{2}(\pi_{C=C};1a_{2})^{2}(5s_{-})^{0}(\pi^{*}_{CNC};3b_{1})^{0}(\pi^{*}_{C=C};2a_{2})^{0}(\pi^{*}_{ring};4b_{1})^{0}$

^cWeight of the perturbatively modified wave function.

^dMülliken charge on the adsorbate.

^eOscillator strength.

^fExcitation energy in eV.

^hM06-HF excitation energy in eV.

^gFirst excited state of the neutral pyridine.

S5

Table S2.	MS-CASPT2	excitation	energies	of [Ag ₃ -Py] ⁰	cluster. ^a
1 abic 52.		excitation	energies		ciuster.

State	Configuration ^b	w ^c	Q^{d}	f ^e	$\Delta E^{\rm f}$
$1^{2}A_{1}$	Ref. Conf.	86	+0.1		
2^2	$(5_{0})^{1}(5_{0})^{2}$	01	⊥0 2	0.12	1 24
$Z \mathbf{A}_1$	$(3S_{+})$ $(3S_{n})$	01	10.2	0.12	1.34
1B ₁ CT0	$(5s_n)^0 (\pi^*_{CNC})^1$	81	-0.6	3.43 10-5	2.52
3^2A_1	$(5s_n)^0(5s)^1$	73	+0.2	0.84	2.84
$1^{2}A_{2}$ CT1	$(5s_n)^0(\pi^*_{C=C})^1$	80	-0.7	0	3.25
2B ₁ CT0'	$(5s_{+})^{1}(\pi^{*}_{CNC})^{1}$	77	-0.6	1.99 10 ⁻⁴	3.57
	$(n)^1 (\pi^*_{CNC})^1$	11			
2 ² A ₂ CT1'	$(5s_{+})^{1}(\pi^{*}_{C=C})^{1}$	87	-0.8	0	4.21
4^2A_1	$(\pi_{C=C})^{l}(\pi^{*}_{C=C})^{l}$	58	+0.1	7.89 10 ⁻⁶	4.24
	$(\pi_{\rm CNC})^1 (\pi^*_{\rm CNC})^1$	22			
1^2B_2	$(\pi_{C=C})^{l}(\pi^{*}_{\mathrm{CNC}})^{l}$	78	+0.1	2.88 10-6	4.36
5^2A_1	$(5s_{+})^{1}(5s_{-})^{1}$	79	+0.2	4.86 10 ⁻⁴	4.37
3B ₁ CT0''	$(5s_{+})^{1}(\pi^{*}_{CNC})^{1}$	76	-0.3	1.59 10 ⁻⁵	4.47
6^2A_1	$(\pi_{\rm CNC})^1 (\pi^*_{\rm CNC})^1$	57	+0.1	2.68 10-6	4.72
	$(\pi_{C=C})^{1}(\pi^{*}_{C=C})^{1}$	20			
4^2B_1 S1 ^g	$(n)^1 (\pi^*_{CNC})^1$	63	-0.2	1.19 10 ⁻³	4.86
	$(n)^{1}(5s_{+})^{1}(5s_{n})^{2}(\pi^{*}_{CNC})^{1}$	14			

^{*a*}Reference active space 11 electrons in 10 orbitals. Geometry optimized at the CAS-SCF level. ^bReference configuration:

 $(n;a_1)^2(5s_+;a_1)^2(5s_n;a_1)^1(\pi_{\text{ping}};1b_1)^2(\pi_{\text{CNC}};2b_1)^2(\pi_{\text{C=C}};1a_2)^2(5s_-)^0(\pi^*_{\text{CNC}};3b_1)^0(\pi^*_{\text{C=C}};2a_2)^0(\pi^*_{\text{ring}};4b_1)^0.$

^cWeight of the perturbatively modified wave function.

^dMülliken charge on the adsorbate.

^eOscillator strength.

^fExcitation energy in eV.

^gFirst excited state of isolated neutral pyridine.

State	Configuration ^b	w ^c	\mathcal{Q}^{d}	ſ	$\Delta E^{\rm f}$	ΔE^{h}
$1A_1$	Ref. Conf.	89	+0.1			
1B ₁ CT0	$(5s_n)^1 (\pi^*_{CNC})^1$	90	-0.7	5.64.10-8	0.96	1.47
$1^{1}A_{2}$ CT1	$(5s_n)^1(\pi^*_{C=C})^1$	90	-0.8	0	1.51	1.88
2 ¹ B ₁ CT0'	$(5s_{+})^{1}(\pi^{*}_{CNC})^{1}$	90	-0.7	3.21.10-5	2.66	
2 ¹ A ₂ CT1	$(5s_{+})^{1}(\pi^{*}_{C=C})^{1}$	85	-0.76	0	3.22	
3 ¹ B ₁ CT0'	$(5s_n)^1(\pi^*_{ring})^1$	22	-0.7	2.09.10-3	4.65	
	$(5s_n)^l(\pi_{C=C})^l(\pi^*_{CNC})^l(\pi^*_{C=C})^l$	13				
	$(5s_n)^1(\pi_{CNC})^1(\pi^*_{CNC})^2$	-				
	$(n)^{1}(\boldsymbol{\pi}^{*}{}_{\mathrm{CNC}})^{1}$	40				
$4^1B_1 {\color{red}{\textbf{S1}}}^{g}$	$(n)^1 (\pi^*_{CNC})^1$	40	0	9.94·10 ⁻³	4.81	
	$(5s_n)^1(\pi^*_{ring})^1$	26				
	$(5s_n)^1(\pi_{C=C})^1(\pi^*_{CNC})^1(\pi^*_{C=C})^1$	15				

^{*a*}Reference active space 12 electrons in 10 orbitals. Geometry optimized at the CAS-SCF level.

^bReference configuration:

 $(n;a_1)^2(5s_+;a_1)^2(5s_n;a_1)^2(\pi_{\rho ing};1b_1)^2(\pi_{CNC};2b_1)^2(\pi_{C=C};1a_2)^2(5s_-)^0(\pi^*_{\ CNC};3b_1)^0(\pi^*_{\ C=C};2a_2)^0(\pi^*_{\ ring};4b_1)^0.$

^cWeight of the perturbatively modified wave function.

^dMülliken charge on the adsorbate.

^eOscillator strength.

^fExcitation energy in eV.

^gFirst excited state of isolated neutral pyridine.

^hM06-HF excitation energy in eV.

S7

State	Configuration ^b	w ^c	Q^{d}	ſ	ΔE^{f}	ΔE^{h}
$1^{1}A_{1}$	Ref. Conf.	81	+0.2			
2^1A_1	$(5s_{+})^{1}(5s_{n})^{1}$	81	+0.2	0.66	2.40	
2^1A_1	$(5s_{+})^{1}(5s_{n})^{1}$	81	+0.2	2.76 10-5	2.40	
$3^{1}A_{1}$	$(5s_{+})^{0}(5s_{n})^{2}$	63	+0.2	6.26 10 ⁻⁴	3.62	
	$(5s_{+})^{1}(5s_{-})^{1}$	17				
4^1A_1	$(5s_{\scriptscriptstyle +})^l(\pi_{C=C})^l(5s_n)^l(\pi^*_{C=C})^l$	34	+0.2	2.49 10 ⁻³	5.11	
	$(5s_{+})^{1}(\pi_{CNC})^{1}(5s_{n})^{1}(\pi^{*}_{CNC})^{1}$	35				
	$(5s_{+})^{1}(5s_{-})^{1}$	14				
5^1A_1	$(5s_{+})^{1}(5s_{-})^{1}$	49	+0.2	1.92 10 ⁻⁴	5.03	
	$(5s_{+})^{0}(5s_{n})^{2}$	10				
	$(5s_{\scriptscriptstyle +})^{l}(\pi_{C=C})^{l}(5s_{n})^{l}(\pi^{*}_{C=C})^{l}$	25				
6^1A_1	$(5s_{\scriptscriptstyle +})^{l}(\pi_{\rm CNC})^{l}(5s_{n})^{l}(\pi^{*}_{\rm \ CNC})^{l}$	50	+0.2	1.92 10 ⁻⁴	5.64	
	$(5s_{\scriptscriptstyle +})^l(\pi_{C=C})^l(5s_n)^l(\pi^*_{C=C})^l$	25				
1^1B_2	$(\pi_{C=C})^{1}(\pi^{*}_{CNC})^{1}$	47	+0.2	3.35 10-2	4.90	
	$(\pi_{CNC})^{1}(\pi^{*}_{C=C})^{1}$	19				
2^1B_2	$(5s_{\scriptscriptstyle +})^{l}(\pi_{C=C})^{l}(5s_{n})^{l}(\pi^{*}_{\rm CNC})^{l}$	90	+0.2	3.08 10 ⁻⁴	4.98	
1^1A_2 CTi	$(\pi_{C=C})^{1}(5s_{n})^{1}$	82	+1.0	0	5.23	
1^1B_1 CTi	$(\pi_{\rm CNC})^1 (5s_n)^1$	82	+1.1	1.51 10 ⁻³	5.39	
$2^{1}B_{1}$ CT0	$(5s_{+})^{1}(\pi^{*}_{CNC})^{1}$	32	0.0	2.07 10 ⁻³	5.42	5.46
	$(n)^{1}(5s_{+})^{1}(5s_{n})^{1}(\pi^{*}_{CNC})^{1}$	16				
	$(5s_{+})^{0}(5s_{n})^{1}(\pi^{*}_{CNC})^{1}$	16				
	$(n)^1(\pi^*_{\mathrm{CNC}})^1$	12				
$3^{1}B_{1}$ S1	$(n)^1 (\pi^*_{CNC})^1$	48	+0.1	5.89 10 ⁻³	5.87	
	$(n)^{1}(5s_{+})^{1}(5s_{n})^{1}(\pi^{*}_{CNC})^{1}$	24				

Table S4. MS-CASPT2 excitation energies (eV) of $[Ag_3-Py]^+$ cluster.^a

^{*a*}Reference active space 10 electrons in 10 orbitals. Geometry optimized at the CAS-SCF level. ^{*b*}Reference configuration:

 $(n;a_1)^2(5s_+;a_1)^2(5s_n;a_1)^0(\pi_{\text{ping}};1b_1)^2(\pi_{\text{CNC}};2b_1)^2(\pi_{\text{C=C}};1a_2)^2(5s_-)^0(\pi^*_{\text{CNC}};3b_1)^0(\pi^*_{\text{C=C}};2a_2)^0(\pi^*_{\text{ring}};4b_1)^0.$

^cWeight of the perturbatively modified wave function.

^dMülliken charge on the adsorbate.

^eOscillator strength.

^fExcitation energy in eV.

^gFirst excited state of isolated neutral pyridine.

^hM06-HF excitation energy in eV.

S8

Table S5. M06-HF excitation energies (A₂ and B₁ states) of $[Ag_2-Py]^0$ cluster.

State	Sym	Configuration ^{<i>a</i>}	$w^{\mathbf{b}}$	Q^c	ΔE^d	f^e
$\overline{\mathbf{S}_0}$	$1^{1}A_{1}$	Ref. Conf.		0.12		
$\tilde{S_3}$	$1^{1}B_{1}$	$(5s_{+})^{1}(\pi^{*}_{CNC})^{1}$	0.40	-0.34	3.30	0.1073
	(CT_0)	$(5s_{+})^{1}(5p_{+})^{1}$	0.07			
S_4	$2^{1}B_{1}$	$(5s_{+})^{1}(5p_{+})^{1}$	0.42	-0.17	3.48	0.1668
		$(5s_{+})^{1}(\pi^{*}_{CNC})^{1}$	0.07			
S_5	$1^{1}A_{2}$	$(5s_{+})^{1}(\pi^{*}_{C=C})^{1}$	0,5	-0.72	3.95	0.0000
	(CT_1)					
S_7	$3^{1}B_{1}$	$(5s_{+})^{1}(5p_{-})^{1}$	0,49		4.26	0.0624
S_{10}	$4^{1}B_{1}$	$(n + d_{z(-)})^{1} (\pi^{*}_{CNC})^{1}$	0.27	-0.04	5.14	0.0037
		$(n - d_{z(-)})^{1} (\pi^{*}_{CNC})^{1}$	0.08			
		$(n + d_{z(+)})^{1} (\pi^{*}_{CNC})^{1}$	0.04			
		$(n + d_{z(x)})^{1} (5p_{+})^{1}$	0.02			
		$(5s_{+})^{1}(\pi^{*}_{CNC})^{1}$	0.02			
		$(n + d_{z})^{1} (\pi^{*}_{ring})^{1}$	0.02			
S_{13}	$5^{1}B_{1}$	$(5s_{+})^{1}(6p_{+})^{1}$	0.43		6.35	0.0123
15	1	$(5s_{+})^{1}(5p_{+})^{1}$	0.01			-

^aReference configuration:

 $(n;a_1)^2(5s_{\text{+}};a_1)^2(5s_{\text{-}};a_1)^2(\pi_{\text{ping}};1b_1)^2(\pi_{\text{CNC}};2b_1)^2(\pi_{\text{C=C}};1a_2)^2(5s_{\text{-}})^0(\pi^*_{\text{ CNC}};3b_1)^0(\pi^*_{\text{ C=C}};2a_2)^0(\pi^*_{\text{ ring}};4b_1)^0.$

^bWeight of the configuration

^cMülliken charge on the adsorbate.

^dExcitation energy in eV.

^eOscillator strength.

S9

State	Sym	Configuration ^{<i>a</i>}	$w^{\mathbf{b}}$	Q^c	ΔE^d	f ^e
$\overline{S_0}$	$1^{1}A_{1}$	Ref. Conf.		0.21		
S_4	$1^{1}B_{1}$	$(5s_{+})^{1}(5p_{x(+)})^{1}$	0.48	0.21	4.31	0.3613
S_6	$2^{1}B_{1}$	$(5s_{+})^{1}(5p_{x(n)} + \pi^{*}_{CNC})^{1}$	0.29	0.20	4.98	0.0248
		$(5s_{+})^{1}(\pi^{*}_{CNC}+5p_{x(n)})^{1}$	0.19			
		$(5s_{+})^{1}(6p_{x})^{1}$	0.01			
S_8	$3^{1}B_{1}$	$(n)^{1}(\pi^{*}_{CNC}+5p_{x(n)})^{1}$	0.18	-0.04	5.46	0.0069
	(CT_0)	$(5s_{+})^{1}(5p_{x(n)} + \pi^{*}_{CNC})^{1}$	0.10			
		$(5s_{+})^{1}(\pi^{*}_{CNC}+5p_{x(n)})^{1}$	0.09			
		$(n)^{1}(\pi^{*}_{CNC}+5p_{x(n)})^{1}$	0.05			
		$(n)^{1}(\pi^{*}_{ring})^{1}$	0.02			
S_{11}	$4^{1}B_{1}$	$(5s_{+})^{1}(\pi^{*}_{CNC}+5p_{x(n)})^{1}$	0.15	-0.1	5.93	0.0037
	(CT_0')	$(d_{xz(-)})^{1}(5s_{n})^{1}$	0.12			
		$(5s_{+})^{1}(5p_{x(n)} + \pi^{*}_{CNC})^{1}$	0.07			
		$(n)^{1}(\pi^{*}_{CNC}+5p_{x(n)})^{1}$	0.06			
		$(\pi_{\rm CNC})^1 (5s_n)^1$	0.03			
		$(n)^{1}(5p_{x(n)} + \pi^{*}_{CNC})^{1}$	0.02			
S ₁₂	$5^{1}B_{1}$	$(d_{xz(-)})^{1}(5s_{n})^{1}$	0.23	0.03	5.98	0.0138
		$(n)^{1}(\pi^{*}_{CNC}+5p_{x(n)})^{1}$	0.07			
		$(5s_{+})^{1}(\pi^{*}_{CNC}+5p_{x(n)})^{1}$	0.05			
		$(5s_{+})^{1}(5p_{x(n)} + \pi^{*}_{CNC})^{1}$	0.03			
		$(5s_{+})^{1}(5p_{x(-)})^{1}$	0.02			
		$(n)^{1}(5p_{x(n)} + \pi^{*}_{CNC})^{1}$	0.02			
S ₁₄	$1^{1}A_{2}$	$(\pi_{C=C})^{1}(5s_{n})^{1}$	0.44		6.07	0.0000
		$(\pi_{C=C})^1 (5s_{-})^1$	0.04			
S ₁₅	$2^{1}A_{2}$	$(4d_{xy})^{1}(5s_{n})^{1}$	0.43		6.14	0.0000
		$(4d_{xy})^{1}(5p_{z(-)})^{1}$	0.03			
		$(4d_{xy})^{1}(5p_{z(+)})^{1}$	0.02			
		$(4d_{xy})^{1}(5s_{-})^{1}$	0.02			
S ₂₀	$3^{1}A_{2}$	$(5s_{+})^{1}(\pi^{*}_{C=C})^{1}$	0.47	-0.55	6.38	0.0000
	(CT_1)	$(n)^{1}(\pi^{*}_{C=C})^{1}$	0.03			

Table S6. M06-HF excitation energies (A_2 and B_1 states) of $[Ag_3-Py]^+$ cluster.

^aReference configuration:

 $(n;a_1)^2(5s_+;a_1)^2(5s_n;a_1)^0(\pi_{\text{ping}};1b_1)^2(\pi_{\text{CNC}};2b_1)^2(\pi_{\text{C=C}};1a_2)^2(5s_-)^0(\pi^*_{\text{ CNC}};3b_1)^0(\pi^*_{\text{ C=C}};2a_2)^0(\pi^*_{\text{ ring}};4b_1)^0.$

^bWeight of the configuration

^cMülliken charge on the adsorbate.

^dExcitation energy in eV.

^eOscillator strength.

S10

		e (-	-) E C	5 3	
State	Sym	Configuration ^{<i>a</i>}	w^{b}	Q^c	ΔE^d	f ^e
$\overline{S_0}$	$1^{1}A_{1}$	Ref. Conf.		0.06		
$S_1(CT_0)$) $1^{1}B_{1}$	$(5s_n)^1 (\pi^*_{CNC})^1$	0.42	-0.78	1.47	0.0000
		$(5s_{+})^{1}(\pi^{*}_{CNC})^{1}$	0.07			
$S_2(CT_1)$	$1^{1}A_{2}$	$(5s_n)^1 (\pi^*_{C=C})^1$	0.43	-0.82	1.88	0.0000
		$(5s_{+})^{1}(\pi^{*}_{C=C})^{1}$	0.06			
S_4	$2^{1}B_{1}$	$(5s_n)^1(5p_{x+1})^1$	0.42	0.07	2.07	0.0046
		$(5s_n)^1(5p_{xn})^1$	0.04			
		$(5s_n)^1(5p_x + 5d_{xz})^1$	0.04			
S_8	$3^{1}B_{1}$	$(5s_n)^1 (5p_{xn})^1$	0.40	0.08	2.96	0.3900
		$(5s_n)^1 (5p_{x+})^1$	0.05			
		$(5s_{+})^{1}(5p_{x+})^{1}$	0.03			
		$(5s_n)^1(5p_x + 5d_{xz})^1$	0.02			
S_{10}	$4^{1}B_{1}$	$(5s_{+})^{1}(5p_{x+})^{1}$	0.34	-0.09	3.50	0.0730
		$(5s_{+})^{1}(\pi^{*}_{CNC})^{1}$	0.08			
		$(5s_n)^1(5p_{xn})^1$	0.02			
		$(5s_{+})^{1}(5p_{x}+5d_{xz})^{1}$	0.02			
		$(5s_n)^1 (\pi^*_{CNC})^1$	0.01			
S_{12}	$5^{1}B_{1}$	$(5s_{+})^{1}(\pi^{*}_{CNC})^{1}$	0.31	-0.62	3.61	0.0557
(CT_0')		$(5s_{+})^{1}(5p_{x+})^{1}$	0.10			
		$(5s_n)^1 (\pi^*_{CNC})^1$	0.06			
		$(5s_{+})^{1}(5p_{xn})^{1}$	0.01			
S_{14}	$6^{1}B_{1}$	$(5s_n)^1(5p_x + 5d_{xz})^1$	0.34	0.03	3.65	0.1803
		$(5s_{+})^{1}(5p_{xn})^{1}$	0.09			
		$(5s_n)^1(5p_{xn})^1$	0.04			
		$(5s_{+})^{1}(\pi^{*}_{CNC})^{1}$	0.02			
		$(5s_{+})^{1}(5p_{x+})^{1}$	0.01			
S ₁₅	2^1A_2	$(5s_{+})^{1}(\pi^{*}_{C=C})^{1}$	0.43	-0.86	3.88	0,0000
(CT_1')		$(5s_n)^1 (\pi^*_{C=C})^1$	0.06			
S_{19}	7^1B_1	$(5s_{+})^{1}(5p_{xn})^{1}$	0.38	0.08	4.25	0.0074
	-	$(5s_n)^1(5p_x + 5d_{xz})^1$	0.08			
		$(5s_n)^1(5p_{x+1})^1$	0.02			
S_{20}	$8^{1}B_{1}$	$(n+d_{z^{2}(-)})^{1}(\pi^{*}_{CNC})^{1}$	0.15	-0.08	4.61	0.0035
		$(n+d_{z^{2}(+)})^{1}(\pi^{*}_{CNC})^{1}$	0.10			
		$(n-d_{z^{2}(n)})^{1}(\pi^{*}_{CNC})^{1}$	0.09			
		$(n-d_{\tau^{2}(+)})^{1}(\pi^{*}_{CNC})^{1}$	0.07			
		$(58_{\pm})^{1}(\pi^{*}_{CNC})^{1}$	0.01			
		$(n+d_{2})^{1}(\pi^{*}+1)^{1}$	0.01			
Saa	$9^1 \mathbf{B}_1$	$(1 + d_{z2(-)})^{1} (\pi r_{rng})^{1}$	0.46	0.07	5.01	0.0250
~23	<i>y</i> D ₁	$(5_{\pm})^{1}(5_{p_{x\pm}})^{1}(5_{p_{x\pm}})^{1}$	0.01	0.07	0.01	0.0250
		(-+) $(-+)$	0.01			

Table S7. M06-HF excitation energies (A_2 and B_1 states) of $[Ag_3-Py]^-$ cluster.

^aReference configuration:

 ${}^{(n;a_1)^2(5s_+;a_1)^2(5s_n;a_1)^2(\pi_{\text{ping}};1b_1)^2(\pi_{\text{CNC}};2b_1)^2(\pi_{\text{C=C}};1a_2)^2(5s_-)^0(\pi^*_{\text{CNC}};3b_1)^0(\pi^*_{\text{C=C}};2a_2)^0(\pi^*_{\text{ring}};4b_1)^0. } \\ {}^{b}\text{Weight of the configuration}$

^cMülliken charge on the adsorbate.

^dExcitation energy in eV.

^eOscillator strength.

S11

Cluster	State	Configuration	w^{a}	Q^b	ΔE^{c}	f^{cl}
Ag ₃ ⁻	$GS(S_0) = 1^1A_1$	Ref. Conf.		0.06		
-85	$CT_0(S_1) 1^1B_1$	$(5s_{n})^{1}(\pi^{*}_{CNC})^{1}$	0.42	-0.78	1.47	0.0000
	0 (1) 1	$(5s_{+})^{1}(\pi^{*}_{CNC})^{1}$	0.07			
	$CT_1(S_2) \ 1^1A_2$	$(5s_n)^1 (\pi^*_{C=C})^1$	0.43	-0.82	1.88	0.0000
	. (2) 2	$(5s_{+})^{1}(\pi^{*}c_{-}c_{-})^{1}$	0.06			
	$S_1(S_{20}) = 8^1 B_1$	$(n+d_{z^{2}(x)})^{1}(\pi^{*}_{CNC})^{1}$	0.15	-0.08	4.61	0.0035
	1 (20)	$(n+d_{z^{2}(+)})^{1}(\pi^{*}_{CNC})^{1}$	0.10			
Ag_5^-	GS (S ₀) $1^{1}A_{1}$	Ref. Conf.		0.07		
00	$CT_0(S_2) \ 1^1B_1$	$(5s_n)^1 (\pi^*_{CNC})^1$	0.34	-0.73	2.00	0.0004
		$(5s_{+-})^{1}(\pi^{*}_{CNC})^{1}$	0.11			
	CT_1 (S ₅) 1^1A_2	$(5s_n)^1 (\pi^*_{C=C})^1$	0.37	-0.79	2.45	0.0000
	- (-) -	$(5s_{+})^{1}(\pi^{*}c_{+})^{1}$	0.10			
	$S_1(S_{31}) = 12^1B_1$	$(n)^{1}(\pi^{*}_{CNC})^{1}$	0.15	-0.19	4.82	0.0005
Ag_7	$GS(S_0) 1^1A_1$	Ref. Conf.		0.09		
0.	$CT_0(S_2) \ 1^1B_1$	$(5s_n)^1 (\pi^*_{CNC})^1$	0.27	-0.68	2.37	0.0013
		$(5s_{+-+})^{1}(\pi^{*}_{CNC})^{1}$	0.13			
	$CT_1(S_9) \ 1^1A_2$	$(5s_n)^1 (\pi^*_{C=C})^1$	0.3	-0.77	2.85	0.0000
		$(5s_{+,+})^{1}(\pi^{*}_{C=C})^{1}$	0.13			
	$S_1(S_{44}) = 16^1B_1$	$(n)^{1}(\pi^{*}_{CNC})^{1}$	0.21	-0.09	4.94	0.0051
Ag_2^0	$GS(S_0) = 1^1A_1$	Ref. Conf.		0.12		
0-	$CT_0(S_3) \ 1^1B_1$	$(5s_{+})^{1}(\pi^{*}_{CNC})^{1}$	0.40	-0.34	3.30	0.1073
		$(5s_{+})^{1}(5p_{+})^{1}$	0.07			
	$CT_1(S_5) \ 1^1A_2$	$(5s_{+})^{1}(\pi^{*}_{C=C})^{1}$	0.5	-0.72	3.95	0.0000
	$S_1(S_{10}) = 4^1B_1$	$(n + d_{z(-)})^{1} (\pi^{*}_{CNC})^{1}$	0.27	-0.04	5.14	0.0037
Ag_7^+	GS (S ₀) $1^{1}A_{1}$	Ref. Conf.		0.18		
	$CT_0 (S_{21})7^1B_1$	$(5s_{+-+})^1 (\pi^*_{CNC})^1$	0.16	-0.24	4.86	0.0150
	$CT_1 (S_{27}) 1^1 A_2$	$(5s_{+-+})^{1}(\pi^{*}_{C=C})^{1}$	0.34	-0.64	5.51	0.0000
		$(5s_{+-})^{1}(\pi^{*}_{C=C})^{1}$	0.13			
	$S_1(S_{33}) = 11^1B_1$	$(n)^{1}(\pi^{*}_{CNC})^{1}$	0.23	0.00	5.62	0.0027
Ag_5^+	$GS(S_0) = 1^1A_1$	Ref. Conf.		0.19		
	$CT_{0}(S_{14})$	$(5s_{+-})^1 (\pi^*_{CNC})^1$	0.29	-0.34	5.08	0.0072
		$(5s_{++})^1 (\pi^*_{CNC})^1$	0.08			
		$(n)^{1}(\pi^{*}_{CNC})^{1}$	0.06			
	$CT_{1}(S_{22})$	$(5s_{+-})^1 (\pi^*_{C=C})^1$	0.41	-0.62	5.80	0.0000
		$(5s_{++})^1 (\pi^*_{C=C})^1$	0.08			
	$S_{1}(S_{19})$	$(n)^{1}(\pi^{*}_{CNC})^{1}$	0.25	-0.04	0.00	0.0013
		$(5s_{+-})^{1}(\pi^{*}_{C=C})^{1}$	0.08			
Ag_3^+	GS (S ₀) $1^{1}A_{1}$	Ref. Conf.		0.21		
-	$CT_0 (S_{11}) 4^1 B_1$	$(5s_{+})^{1}(\pi^{*}_{CNC}+5p_{x(n)})^{1}$	0.15	-0.1	5.93	0.0037
		$(d_{xz(-)})^1 (5s_n)^1$	0.12			
	$CT_1 (S_{20}) 3^1 A_2$	$(5s_{+})^{1}(\pi^{*}_{C=C})^{1}$	0.47	-0.55	6.38	0.0000
		$(n)^{1}(\pi^{*}_{C=C})^{1}$	0.03			
	$S_1(S_8) = 3^1B_1$	$(n)^{1}(\pi^{*}_{CNC}+5p_{x(n)})^{1}$	0.18	-0.04	5.46	0.0069
		$(5s_{+})^{1}(5p_{x(p)} + \pi^{*}_{CNC})^{1}$	0.10			

Table S8. M06-HF excitation energies (A_2 and B_1 states) of $[Ag_n-Py]^q$ clusters.

^aWeight of the configuration.

^bMülliken charge on the adsorbate.

^cExcitation energy in eV.

^dOscillator strength.

S12