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SERS-CT spectra have been calculated according with the independent mode 

displaced harmonic oscillator (IMDHO) method,1,2 where it is assumed that the excited-

state displacements with respect to the ground state geometry are proportional to the 

gradient of the excited state potential energy surface. To be specific, it is assumed that 

the intensity of a Raman band in preresonance conditions is proportional to the 

dimensionaless shift parameter of Manneback3 [Eq. (1)] and this shift parameter is 

calculated within the harmonic approximation1 [Eq. (2)]. 

Ii ∝ γ
i
ω i

2 (2) 

γ i = Bi
2 (3) 

where Bi is the adimensional shift parameter given by [Eq.(3)] 

Bi = 1

2

c

4π2h

 
 
 

 
 
 

1/2
1

c 2 ν−3 / 2 f ⋅ M −1/ 2L i
 (4) 

f  is the gradient  vector of the excited state evaluated at the Franck-Condon geometry, 

M  is the diagonal matrix of atomic masses and L i is the eigenvector of the Hessian 

matrix associated with the i-normal mode. 
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Fig S1 Botton: Calculated SERS-CT spectra of a) silver pyridine [Agn-A=Py]q (left) and 

b) silver pyrazine [Agn-A=Pz]q (right) complexes in preresonance with their respective 

S0-CT1 transitions. Top: Calculated SERS-CT spectra for the S0-D1 “transition” between 

the isolated neutral Py and Pz (S0) and their respective radical anions in the D1 state. 

The bands are positioned at the M06-HF/LanL2DZ unscaled frequencies. 
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Fig S2 Botton: Calculated SERS-CT spectra of a) silver pyridine [Agn-A=Py]q (left) and 

b) silver pyrazine [Agn-A=Pz]q (right) complexes in preresonance with their respective 

S0-CT0´ transitions. Top: Calculated SERS-CT spectra for the S0-D0 “transition” 

between the  isolated neutral Py and Pz (S0) and their respective radical anions (D0). The 

bands are positioned at the M06-HF/LanL2DZ unscaled frequencies. 
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Fig S3 Botton: Calculated SERS-CT spectra of a) silver pyridine [Agn-A=Py]q (left) and 

b) silver pyrazine [Agn-A=Pz]q (right) complexes in preresonance with their respective 

S0-CT1´ transitions. Top: Calculated SERS-CT spectra for the S0-D1 “transition” 

between the isolated neutral Py and Pz (S0) and their respective radical anions (D1). The 

bands are positioned at the M06-HF/LanL2DZ unscaled frequencies. 
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