
1 Experimental

All chemicals were used as purchased from Fisher Scientific, Sigma-Aldrich and Alfa Aesar unless otherwise

stated. NMR spectra were recorded on a Bruker DPX300 NMR spectrometer with shifts referenced to

the residual solvent signal. Mass spectra were recorded on a Bruker microTOF mass spectrometer using

electrospray ionization. FTIR spectra were recorded on a Thermo Nicolet 380 spectrometer using KBr pellets.

Powder X-ray diffraction data was recorded on a PANalytical X’Pert Pro MPD in Bragg-Brentano geometry,

with monochromated Cu Kα1 (λ = 1.5406Å, 40 kV, 40 mA) radiation, automated divergence and receiving slits

(10 mm illuminated length), 10 mm beam mask, 0.04 rad soller slits and a step size of 0.08◦. UV-Vis spectra

were recorded on a Perkin-Elmer Lambda 25 spectrometer using quartz cells with a 1 cm path length.

Atomic Force Microscopy (AFM) images were acquired on an Asylum Research MFP-3D microscope using

tapping mode, with a scan rate of 0.4 Hz. Igor Pro software was used for image acquisition and images were

presented as amplitude traces. AFM samples were prepared from 0.001 wt % suspensions dried on mica

sheets.

X-ray Photoelectron Spectra were recorded on a Kratos Axis Ultra X-ray Photoelectron Spectrometer

employing a monochromated Al Kα (hν = 1486.6 eV, 120 W) X-ray source, hybrid (magnetic/electrostatic)

optics (300 x 700 µm aperture), hemispherical analyser, multichannel plate and delay line detector (DLD) with

a take-off angle of 90◦ and an acceptance angle of 30◦. All scans were acquired under charge neutralization

conditions using a low energy electron gun within the field of the magnetic lens. Survey scans were taken

with a pass energy of 80 eV and high resolution scans with a pass energy of 20 eV.

1.1 Cotton hydrolysis

Sulfuric acid (400 ml, 64 %) was heated at 45 ◦C and cotton wool (47.1 g) added slowly with mechanical

stirring. Stirring and heating was continued for 35 minutes before addition of deionized water to quench the

reaction. The cellulose was separated from the acidic reaction media by centrifugation (10,000 rpm, 10 ◦C)
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for 20 minutes. The solid product was washed with two successive centrifugations (10,000 rpm, 10 ◦C) for

35 minutes, before dialysing against water for 48 hours. The nanocrystal suspension was homogenized using

a sonifier before filtration to separate aggregates. The resulting homogeneous suspension was mixed with

Amberlite MB 6113 mixed bed ion exchange resin (100 g) for 12 hours, frozen in liquid nitrogen, then freeze

dried. The cellulose nanocrystals were subsequently soxhlet extracted with ethanol (48 hours) to remove

organic surface contaminants and dried in vacuo. Found (%): C, 42.6; H, 6.05.

1.2 Synthesis of 6-chlorodeoxycellulose nanocrystals

Cellulose nanocrystals (2 g) were suspended in a solution of pyridine (20 ml, 250 mmol) and dry toluene

(400 ml) under argon. A solution of thionyl chloride (25 ml, 135 mmol) in dry toluene (100 ml) was added

dropwise before subsequent heating at 65 ◦C for 16 hours. The resulting light brown suspension was filtered

and the product washed with dichloromethane (20 ml), deionized water (50 ml) and acetone (20 ml) before

soxhlet extraction with dichloromethane (24 hours) and ethanol (48 hours). The light brown chlorinated

nanocrystals were isolated by drying in vacuo. IR (KBr): ν̃ = 715 cm−1. Found (%): C, 36.1; H, 5.70; Cl,

8.00.

1.3 Synthesis of 6-azidodeoxycellulose nanocrystals

6-Chlorodeoxycellulose nanocrystals (270 mg) were suspended in dimethylformamide (20 ml) with sodium

azide (680 mg, 39 mmol) and heated at 100 ◦C for 2 days. The solid product was separated by filtration and

washed with deionized water (4 x 50 ml) and ethanol (2 x 20 ml) before dispersing in deionized water and

dialysis against deionized water for 2 days. The product was subsequently isolated by freeze drying. IR (KBr):

ν̃ = 2114 cm−1. Found (%): C, 40.95; H, 5.5; N, 3.66.
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1.4 Synthesis of 3-methyl-1-propargylimidazolium bromide ([MPIM][Br])

Methylimidazole (10 ml, 125 mmol) was added dropwise to an 80 % solution of propargyl bromide (16.97 g,

143 mmol) in toluene (15.37 ml) at −10 ◦C under argon. The reaction was allowed to warm to room temperature

slowly, and dry toluene (50 ml) was added before leaving the brown suspension to stir overnight. The solvent

was removed in vacuo to yield a pale brown product. IR (ATR): ν̃ = 2122, 1566, 1164, 745 cm−1. 1H NMR

(300 MHz, DMSO-d6): δ = 3.86 (t, J = 2.5 Hz, 1H, HC−−−C), 3.88 (s, 3H, CH3), 5.23 (d, J = 2.5 Hz, 2H, CH2),

7.76 − 7.79 (m, 1H, ImH), 7.80 − 7.83 (m, 1H, ImH), 9.24 − 9.30 (m, 1H, ImH) ppm. 13C NMR (75 MHz,

DMSO-d6): δ = 36.0, 38.5, 76.1, 78.9, 122.1, 124.0, 136.6 ppm. m/z (ESI): 121.08 (M)+, 321.07 (2M+Br)+.

1.5 Synthesis of

3-methyl-1-((1-(6-deoxycellulos-6-yl)-1,2,3-triazol-4-yl)methyl)imidazolium

bromide ([MPIM]-g-cellulose nanocrystals)

6-Azidodeoxycellulose nanocrystals (200 mg) and 3-methyl-1-propargylimidazolium bromide (80 mg, 0.4 mmol)

were suspended in deionized water (20 ml) and 0.1 m copper(II) sulfate (1 ml, 0.1 mmol) and 0.1 m sodium

ascorbate (3 ml, 0.3 mmol) were added before heating the suspension at 70 ◦C for 2 days. The solid product

was isolated by centrifugation, then washed by 2 successive centrifugations with deionized water before

dialysing against deionized water for 5 days and isolation by freeze drying. Found (%): C, 42.36; H, 5.58; N,

3.40.

1.6 Synthesis of

3-methyl-1-((1-(6-deoxycellulos-6-yl)-1,2,3-triazol-4-yl)methyl)imidazolium

bis(trifluoromethanesulfonyl)imide ([MPIM][NTf2]-g-cellulose nanocrystals)

3-Methyl-1-((1-(6-deoxycellulos-6-yl)-1,2,3-triazol-4-yl)methyl)imidazolium bromide (50 mg) and lithium bis-

(trifluoromethanesulfonyl)imide (30 mg, 0.1 mmol) were suspended in deionized water (5 ml) and stirred for 24
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hours before isolation and washing by 10 successive centrifugations with deionized water and freeze drying.

2 Calculation of degree of substitution

Using the dimensions of the long (L = 14 nm) and short (l = 7.3 nm) sides of the nanocrystal cross section,1

and considering that the (11̄0) planes (d = 0.62 nm) are parallel to the long side, and the (110) planes

(d = 0.53 nm) parallel to the short side, the ratio of chains accessible at the surface can be calculated using

the method by Habibi et al.2

Surface Chains
Total Chains =

(
2L

d(110)

)
+

(
2l

d(11̄0)

)
(

Ll
d(11̄0)d(110)

)
=

( 2×14
0.532

)
+

( 2×7.3
0.588

)(
14×7.3

0.588×0.532

)
= 0.24

Using the ratio for surface chains to internal chains, the empirical formulae for the anhydroglucose units in the

modified samples were determined assuming a surface degree of substitution of 1, along with the associated

expected atomic and weight percentage compositions. The degree of substitution by elemental analysis was

then calculated by an iterative method. The differences in carbon and hydrogen values with respect to

the calculated values remain constant between each modification reaction and are present in unmodified

cellulose.
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3 Infrared Spectra
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Figure 1 Transmission FTIR spectra showing modification of CNXLs: (a) CNXLs; (b) Chlorinated CNXLs;

(c) Azidated CNXLs; (d) [MPIM][Br] grafted CNXLs.
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4 Powder X-ray Diffraction Data
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Figure 2 Diffractograms for Cellulose Nanocrystal Derivatives

The d-spacing of the (11̄0) and (110) planes were calculated from the XRD data for cellulose nanocrystals

(2θ = 15.07 and 2θ = 16.65 respectively).

d(11̄0) = λ

2 sin θ

= 1.5405980
2 sin 7.5336955

= 5.875Å
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d(110) = λ

2 sin θ

= 1.5405980
2 sin 8.3236955

= 5.321Å

The crystallinity indices were calculated for each sample using Equation 3,3 and are shown in Table 1

χc =
I(200) − Ia

I(200)

Figure 3 Equation for the crystallinity index, where I(200) is the intensity of the (200) peak, and Ia is the

intensity of the amorphous background around 2θ = 18◦.

Table 1 Crystallinity Indices

Compound I(200) Ia χc

Cellulose Nanocrystals 1210 133 0.89

Chlorinated Cellulose Nanocrystals 610 125 0.80

Azidodeoxycellulose Nanocrystals 697 157 0.78

MPIM-g-cellulose Nanocrystals 734 213 0.79

5 X-ray Photoelectron Spectroscopy

Table 2 Cellulose Nanocrystals XPS Data

Element Orbital Binding Energy /eV At %

Carbon 1s 286.6 59.5

Oxygen 1s 532.6 40.5
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Figure 4 XPS Wide Scan of Cellulose Nanocrystals
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Figure 5 XPS High Resolution Carbon 1s Scan of Cellulose Nanocrystals
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Table 3 Chlorodeoxycellulose Nanocrystals XPS Data

Element Orbital Binding Energy /eV At %

Carbon 1s 286.9 59.6

Oxygen 1s 533.3 31.7

Chlorine 2p 200.7 8.7
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Figure 6 XPS Wide Scan of Chlorodeoxycellulose Nanocrystals
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Figure 7 XPS High Resolution Carbon 1s Scan of Chlorodeoxycellulose Nanocrystals
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Figure 8 XPS High Resolution Chlorine 2p Scan of Chlorodeoxycellulose Nanocrystals
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Table 4 Azidodeoxycellulose Nanocrystals XPS Data

Element Orbital Binding Energy /eV At %

Carbon 1s 286.6 53.9

Oxygen 1s 532.9 41.8

Nitrogen 1s 404.6 & 400.8 4.3
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Figure 9 XPS Wide Scan of Azidodeoxycellulose Nanocrystals
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Figure 10 XPS High Resolution Carbon 1s Scan of Azidodeoxycellulose Nanocrystals
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Figure 11 XPS High Resolution Nitrogen 1s Scan of Azidodeoxycellulose Nanocrystals
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Table 5 MPIM-g-cellulose Nanocrystals XPS Data

Element Orbital Binding Energy /eV At %

Carbon 1s 286.5 62.6

Oxygen 1s 532.8 33.0

Nitrogen 1s 401.8 & 400.5 4.4
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Figure 12 XPS Wide Scan of MPIM-g-cellulose Nanocrystals
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Figure 13 XPS High Resolution Carbon 1s Scan of MPIM-g-cellulose Nanocrystals
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Figure 14 XPS High Resolution Nitrogen 1s Scan of MPIM-g-cellulose Nanocrystals
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Table 6 [NTf2][MPIM]-g-cellulose Nanocrystals XPS Data

Element Orbital Binding Energy /eV At %

Carbon 1s 286.6 & 293.0 53.2

Oxygen 1s 533.0 35.7

Nitrogen 1s 401.9 & 400.3 4.1

Sulfur 2p 169.1 1.0

Fluorine 1s 688.9 5.9
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Figure 15 XPS Wide Scan of [NTf2][MPIM]-g-cellulose Nanocrystals
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Figure 16 XPS High Resolution Carbon 1s Scan of [NTf2][MPIM]-g-cellulose Nanocrystals
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Figure 17 XPS High Resolution Nitrogen 1s Scan of [NTf2][MPIM]-g-cellulose Nanocrystals
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Figure 18 XPS High Resolution Fluorine 1s Scan of [NTf2][MPIM]-g-cellulose Nanocrystals
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Figure 19 XPS High Resolution Sulfur 2p Scan of [NTf2][MPIM]-g-cellulose Nanocrystals
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6 AFM Image of [Br][MPIM]-g-CNXLs

Figure 20 AFM image of [Br][MPIM]-g-CNXLs showing aggregation on the mica surface
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