Ligand inducible assembly of a DNA tetrahedron

Chikara Dohno, Hiroshi Atsumi and Kazuhiko Nakatani*

Department of Regulatory Bioorganic Chemistry The Institute of Scientific and Industrial Research (ISIR), Osaka University, Ibaraki 567-0047, JAPAN.

Supporting information

The contents of supporting information:

1) Thermal melting profiles of NCD -DNA complex.	page 2
2) Cold-spray ionization time of flight mass spectra of NCD-DNA complex.	page 2
3) Cross section analysis of AFM images.	page 3
4) ODN sequences for tetrahedron formation.	page 4
5) Experimental section.	page 4

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Figure S1. (a) Thermal melting profiles of DNA duplex **D1/D2** (3 μ M) in the presence of **NCD** (18 μ M). The absorbance at 260 nm was measured in 10 mM Na·cacodylate buffer (pH 7.0) containing 100 mM NaCl. Key: The plots in the absence of **NCD**, open circles; plots in the presence of **NCD**, filled circle.

Figure S2. Cold-spray ionization time of flight mass spectra of **D1/D2** in the presence and absence of **NCD**. Samples containing 20 μ M duplex DNA in 50% aqueous methanol and ammonium acetate (100 mM) were cooled at -10 °C during the injection with a flow rate 10 μ L/min⁻¹. Orifice voltage; -65 V. Key: (a) Without **NCD**; (b) 120 μ M **NCD**.

Figure S3. Line cross-section analysis of the AFM images of the assembly **Tet1** in the absence (a, the same image in Fig. 3b) and presence (b, the same image in Fig. 3d) of **NCD**. Averaged heights of the structures in (a) and (b) were 2.1 ± 0.1 nm and 5.3 ± 0.2 nm, respectively.

Scheme S1. ODN sequences for tetrahedron formation

- T1: AGGCAGTTGAGACGAACATTCCTAAGTCTGAAATTTATCACCCGCCATAGTAGACGTATCACC
- T2: GGTGATAAAACGTGTAGCAAGCTGTAATCGACGGGAAGAGCATGCCCATCCACTACTATGGCG
- T3: CCTCGCATGACTCAACTGCCTGGTGATACGAGGATGGGCATGCTCTTCCCGACGGTATTGGAC
- T4: CTTGCTACACGATTCAGACTTAGGAATGTTCGACATGCGAGGGTCCAATACCGACGATTACAG
- T5: CTCGGATGACTCAACTGCCTGGTGATACGAGGATGGGCATGCTCTTCCCGAACGGTCGGC
- T6: CTTGCTACACGATTCAGACTTAGGAATGTTCG
- T7: CAT<u>CCGAGGCCGACCG</u>TACGATTACAG
- T8: CAT<u>CGG</u>AGG<u>CGGACGG</u>TACGATTACAG

Assembly of DNA tetrahedron.

A set of ODNs (**T1+T2+T5+T6+T8** for **Tet1** and **T1+T2+T5+T6+T7** for **Tet2**, 0.2 μ M each) in 10 mM Tris (pH 7.0) and 5 mM MgCl₂ were annealed (from 95 °C for 2 min to 4 °C over 3 min). Samples containing 5% glycerol were electrophoresed through 8% naturing PAGE (29:1, 150 V, 50 min, 15 °C).

AFM measurements.

A set of ODNs **Tet1** (10 μ L, 20 nM in 10 mM Tris (pH 7.0) and 10 mM MgCl₂) in the presence and absence of **NCD** (1 μ M) was spotted on a freshly cleaved mica pretreated with 10 mM NiCl₂. The sample was incubated overnight (18 h), and was washed with 100 μ L of the same buffer. Buffer was added and the sample was scanned in AC mode on MFP-3D-Bio (Asylum Research, Santa Barbara, CA) with BL-AC40TS-C2 cantilever (Olympus).