Supporting Information

pH-Sensitive Brush Polymer-Drug Conjugates by Ring-Opening Metathesis Copolymerization

Jiong Zou, ${ }^{\dagger}$ Goran Jafr, ${ }^{\dagger}$ Efrosyni Themistou, ${ }^{\dagger}$ Yoonsing Yap, ${ }^{\dagger}$ Zachary A. P. Wintrob, ${ }^{\dagger}$ Paschalis Alexandridis, ${ }^{\dagger}$ Alice C. Ceacareanu, ${ }^{\dagger}$ and Chong Cheng $*, \dagger$

${ }^{\dagger}$ Department of Chemical and Biological Engineering, and ${ }^{\ddagger}$ Department of Pharmacy

Practice, University at Buffalo, The State University of New York, Buffalo, NY 14260
*Author to whom correspondence should be addressed:

Tel: (716)645-1193; Fax: (716)645-3822; Email: ccheng8@buffalo.edu (C. Cheng)

Experimental Section

Materials. 5-NB-2-carboxylic acid (endolexo mixture; 98\%), iodine (99.8\%), potassium iodide (99%), sodium hydroxide (97%), sodium bicarbonate $(99+\%)$, sodium thiosulfate $\quad(99 \%), \quad N, N$ '-dicyclohexyl-carbodiimide $\quad(D C C ; \quad 99 \%)$, 4-dimethylaminopyridine (DMAP; 99+\%), 1,6-hexanediol (99\%), pyridinium chlorochromate (PCC; 98\%), 3-bromopyridine (99\%), ethylene oxide (99.5\%), potassium (99.5%), the $1^{\text {st }}$ generation Grubbs catalyst (7a) and the $2^{\text {nd }}$ generation Grubbs catalyst were purchased from Sigma-Aldrich. L-Malic acid (99\%), boron trifluoride diethyl etherate (98\%), 1,1-diphenylethylene (99\%) and ethyl vinyl ether (99\%) were purchased from Acros. Diethyl ether (HPLC), tetrahydrofuran (THF; HPLC), dichloromethane (DCM; HPLC), ethyl acetate (HPLC), and hexane (HPLC) were purchased from Fisher Chemical. Paclitaxel (PTXL; 99+\%) was purchased from AvaChem. 7-Diethylaminocoumarin-3-carbonyl azide (10) was purchased from molecular probe. Toluene ($99.5+\%$) was purchased from VWR. Ethylene oxide, DCM, hexane, and toluene were dried by distillation over CaH_{2}; THF was dried by refluxing overnight over CaH_{2} and then distillation from sodium naphthalene. All chemicals were used without further purification unless stated otherwise.
exo-5-NB-2-carboxylic acid (3), exo-5-NB-2-methanol, and the $3^{\text {rd }}$ generation Grubbs catalyst (7b) were obtained respectively following literature methods. ${ }^{1-3}$ 1,4-Dipotassio-1,1,4,4-tetraphenylbutane $(\sim 0.25 \mathrm{M})$ was prepared by the reaction of

1,1-diphenylethylene $(2.04 \mathrm{~g}, 11.3 \mathrm{mmol})$ with an excess of potassium $(0.98 \mathrm{~g}, 25.1$ mmol) in 20 mL of dry THF at room temperature overnight under nitrogen atmosphere. ${ }^{4}$

Measurements. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 500 MHz on solutions in CDCl_{3} on a Varian INOVA-500 spectrometer maintained at $25^{\circ} \mathrm{C}$, with tetramethylsilane (TMS) as an internal reference standard. ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 125.7 MHz on solutions in CDCl_{3} on a Varian INOVA- 500 spectrometer maintained at $25{ }^{\circ} \mathrm{C}$, with the solvent carbon signal as standard.

Absolute molecular weight and molecular weight distribution were determined by gel permeation chromatography (GPC). GPC was conducted using Viscotek GPC system equipped with a VE-3580 refractive index (RI) detector, a 270 dual detector system having a viscometer detector and a dual-angle $\left(7^{\circ}\right.$ and $\left.90^{\circ}\right)$ laser light scattering detector, a VE 1122 pump, and two mixed-bed organic columns (PAS-103M and PAS-105M). N, N '-dimethylformamide (HPLC grade) with 0.1 M LiBr was used as solvent for polymers and eluent for GPC with a flow rate of $0.35 \mathrm{~mL} / \mathrm{min}$ at $55^{\circ} \mathrm{C}$. Polymer solutions were prepared at a known concentration (ca. $3 \mathrm{mg} / \mathrm{mL}$) and an injection volume of $100 \mu \mathrm{~L}$ was used. The system was calibrated with linear polystyrene standards with narrow polydispersities (PDI < 1.1; Polymer Laboratories, Varian Inc.).

Hydrodynamic diameters $\left(D_{h}\right)$ and size distributions of BPDCs in aqueous solutions were determined by dynamic light scattering (DLS). DLS measurements were performed on a Brookhaven Goniometer (BI-200SM Ver.2.0; Brookhaven Instruments,

Holtsville, NY) maintained at $25{ }^{\circ} \mathrm{C}$ at 514 nm laser light irradiation. The photon count rate was measured at a fixed angle perpendicular to the incident light $\left(90^{\circ}\right)$. The correlation function was fitted with NNLS routine to provide size distributions. Dilute solutions of brush polymer-drug conjugates (BPDCs; $1.0 \mathrm{mg} / \mathrm{mL}$ in water) were passed through 450 nm low protein binding hydrophilic LCR (PTFE) membrane filter (Millex-LCR, Millipore) for dust free process prior to the DLS measurements.

Transmission electron microscopy (TEM) images were obtained by using a JEOL 2010 microscope. TEM samples were prepared by dip coating 300 mesh carbon-coated copper grids with dilute solutions of BPDCs $(1.0 \mathrm{mg} / \mathrm{mL})$. Fresh prepared 0.2% solution of ruthenium tetroxide prepared by reaction between sodium periodate and hydrated ruthenium dioxide in water was used as the staining agent for TEM samples. ${ }^{5}$ The dried samples were treated with the volatile vapors of ruthenium tetroxide for 5 h prior to TEM measurements.

The profiles of drug release from BPDC was acquired by combined TLC separation and HPLC method. ${ }^{6}$ The BPDC with $0.04 \mathrm{mg} / \mathrm{ml}$ concentration was prepared in distilled water $(\mathrm{pH}=7.0)$ and acid condition $(\mathrm{pH}=5.5,20 \mathrm{mM}$; acetate buffer $)$. Based on the low water-solubility of PTXL, the solution concentration was selected to avoid precipitation of PTXL released from BPDC. At different time intervals, every time 5 mL of BPDC solution was taken out, and then extracted by chloroform ($3 \times 5 \mathrm{ml}$). The extracted free PTXL-based moieties in chloroform were separated by TLC and
concentrated for HPLC measurements. TLC separation was operated on a PE silica gel plate (PE SIL G/UV; Whatman), eluted with $10 \% \mathrm{MeOH}$ in DCM. The silica gel on the TLC plate within the R_{f} range corresponding to PTXL-based moieties $\left(0.5<\mathrm{R}_{\mathrm{f}}<0.8\right)$ was scratched off, and washed by DCM several times. After solvent evaporation, the dried PTXL-based moieties were dissolved in 0.1 mL acetonitrile for HPLC measurement. HPLC analysis was performed on Agilent 1100 series HPLC system with G1322A online degasser, G1312A binary pump, and G1313A autosampler. Chromatographic separations were achieved using a reversed phase C18-column (ZORBAX SB-C18, $250 \times 4.6 \mathrm{~mm}, 5$ $\mu)$ at $25^{\circ} \mathrm{C}$. The mobile phase consisted of deionized water and HPLC grade acetonitrile, with linear gradients of acetonitrile/water (1:9~4:6 v/v $0 \sim 10 \mathrm{~min}, 4: 6 \sim 6: 4 \mathrm{v} / \mathrm{v} 10 \sim 15 \mathrm{~min}$, 6:4~4:6 v/v 15~22 min, 4:6~1:9 22~24 min) at a flow rate of $1.0 \mathrm{ml} / \mathrm{min}$. The UV wavelength for the detection of PTXL moieties was set at $227 \mathrm{~nm} .{ }^{6}$ It should be noted that TLC process to obtain the released PTXL moieties was required because polymer scaffolds potentially may clog the HPLC column.

6-Hydroxyhexyl bicyclo[2.2.1]hept-5-ene-2-carboxylate (4). In a 100 mL flask with a stirring bar, 1,6-hexanediol ($2.4 \mathrm{~g}, 20 \mathrm{mmol}$), DCC ($0.922 \mathrm{~g}, 4.47 \mathrm{mmol}$) and DMAP ($49.2 \mathrm{mg}, 0.41 \mathrm{mmol}$) were added and dissolved in $30 \mathrm{~mL} \mathrm{CHCl} \mathrm{l}_{3}$. Then $\mathbf{3}$ (563 $\mathrm{mg}, 4.07 \mathrm{mmol}$) dissolved in $10 \mathrm{mLCHCl}_{3}$ was added dropwise into the reaction mixture under reflux within 30 min . After stirring under reflux for 48 h , the reaction mixture was allowed to cool to room temperature. The white precipitate was removed by
filtration and the filtrate was concentrated in vacuo and purified by column chromatography (silica gel, eluting with hexane, ethyl acetate in gradient; 4 had a Rf value of 0.3 in $1: 1(\mathrm{v} / \mathrm{v})$ of hexane-ethyl acetate) to obtain 4 as white solid. Yield: 0.536 g (55\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 1.34-1.97\left(\mathrm{~m}, 12 \mathrm{H}, 6 \times \mathrm{CH}_{2}\right.$), 2.21 (d of d, $1 \mathrm{H}, J=4.5 \mathrm{~Hz}$ and $J=10.2 \mathrm{~Hz}, \mathrm{C} H), 2.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} H), 3.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} H), 3.65(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 4.08\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OCO}\right), 6.10-6.15(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR (125.7 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 25.4,25.7,28.7,30.3,32.6,41.5,43.2,46.3,46.6,62.8,64.4$, 135.7, 138.0, 176.4.

6-Oxohexyl bicyclo[2.2.1]hept-5-ene-2-carboxylate (5). In a 100 mL flask with a stirring bar, $4(495 \mathrm{mg}, 1.83 \mathrm{mmol})$ was dissolved in 35 mL DCM. Then PCC (592 mg , 2.75 mmol) was added directly to the mixture. After stirring under $\mathrm{r} . \mathrm{t}$. for 1 h , the reaction mixture was filtered and the filtrate was concentrated in vacuo. The mixture was purified by column chromatography (silica gel, eluting with hexane, ethyl acetate in gradient; $\mathbf{5}$ had a Rf value of 0.5 in $1: 1(\mathrm{v} / \mathrm{v})$ of hexane-ethyl acetate) and gave $\mathbf{5}$ as colorless liquid. Yield: $395 \mathrm{mg}(80 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 1.36-1.97$ $\left(\mathrm{m}, 10 \mathrm{H}, 5 \times \mathrm{CH}_{2}\right), 2.21(\mathrm{dd}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}$ and $J=10.2 \mathrm{~Hz}, \mathrm{CH}), 2.45(\mathrm{t}, 2 \mathrm{H}, J=7.0$, $\mathrm{CH}_{2} \mathrm{CHO}$), $2.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 3.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.09\left(\mathrm{t}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OCO}\right)$, 6.10-6.15 (m, 2H, $\mathrm{CH}=\mathrm{CH}$), $9.77\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHO}\right) .{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 21.6,25.5,28.4,30.3,41.5,43.2,46.3,46.6,43.6,64.3,135.6,137.9,174.7,202.9$.
dioxolan-4-yl)acetic acid (6). In a 10 mL flask with a stirring bar, $5(120 \mathrm{mg}, 0.508$ mmol) was added into a $5 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ solution of L -malic acid ($75 \mathrm{mg}, 0.56 \mathrm{mmol}$), and after stirring the mixture at r . t. for $10 \mathrm{~min}, \mathrm{BF}_{3} \mathrm{OEt}_{2}(355 \mathrm{mg}, 2.5 \mathrm{mmol})$ was added. The reaction was conducted in r. t. for 60 h under N_{2} atmosphere. The reaction mixture was purified by column chromatography (silica gel, eluting with hexane, ethyl acetate in gradient; $\mathbf{6}$ had a Rf value of 0.2 in $1: 1(\mathrm{v} / \mathrm{v})$ of hexane-ethyl acetate) and gave $\mathbf{6}$ as colorless liquid. Yield: $108 \mathrm{mg}(61 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 1.35-1.93$ (m, $12 \mathrm{H}, 6 \times \mathrm{CH}_{2}$), $2.21(\mathrm{~d}$ of d, $1 \mathrm{H}, J=4.5 \mathrm{~Hz}$ and $J=10.2 \mathrm{~Hz}, \mathrm{C} H), 2.84-3.05(\mathrm{~m}, 4 \mathrm{H}$, $2 \times \mathrm{CH}$ and $\left.\mathrm{CH}_{2} \mathrm{COOH}\right), 4.08\left(\mathrm{t}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OCO}\right), 4.61(\mathrm{t}, 1 \mathrm{H}$ cis, $J=4.8 \mathrm{~Hz}$, $\left.\mathrm{CHCH}_{2} \mathrm{COOH}\right), 4.65\left(\mathrm{t}, 1 \mathrm{H}\right.$ trans, $\left.J=4.8 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{COOH}\right), 5.57(\mathrm{t}, 1 \mathrm{H}$ cis, $J=4.8 \mathrm{~Hz}$, $\left.\mathrm{OCH}\left(\mathrm{CH}_{2}\right) \mathrm{O}\right), 5.73\left(\mathrm{t}, 1 \mathrm{H}\right.$ trans, $\left.J=4.8 \mathrm{~Hz}, \mathrm{OCH}\left(\mathrm{CH}_{2}\right) \mathrm{O}\right), 6.10-6.15(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH})$. ${ }^{13}{ }^{3} \mathrm{NMR}\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 22.3,25.5,28.4,30.3,33.5,34.7,35.3,41.5,43.2$, 46.3, 46.6, 64.3, 70.1, 71.2, 104.7, 105.9, 135.6, 137.9, 172.1, 173.9, 176.5.

NB-PTXL conjugated monomer (1). In a 25 mL flask with a stirring bar, 6 (108 $\mathrm{mg}, 0.306 \mathrm{mmol})$, paclitaxel ($274 \mathrm{mg}, 0.321 \mathrm{mmol}$), DCC ($69.4 \mathrm{mg}, 0.337 \mathrm{mmol}$) and DMAP ($8 \mathrm{mg}, 0.061 \mathrm{mmol}$) were added separately and dissolved in 10 mL DCM. The reaction mixture was stirred at r . t . for 48 h , filtrated, and concentrated and then separated by flash chromatography (on silica gel; eluting with hexane, ethyl acetate in gradient; $\mathbf{1}$ had a Rf value of 0.3 in $1: 1(\mathrm{v} / \mathrm{v})$ of hexane-ethyl acetate), giving 310 mg of $\mathbf{1}$ as a white solid. Yield: 90%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 1.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.25(\mathrm{~s}, 3 \mathrm{H}$,
$\left.\mathrm{CH}_{3}\right), 1.26-2.00\left(\mathrm{~m}, 19 \mathrm{H}, \mathrm{CH}, 2 \times \mathrm{CH}_{3}\right.$, and $\left.6 \times \mathrm{CH}_{2}\right), 2.12-2.42\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}, \mathrm{CH}_{2}\right.$, $\left.\mathrm{OCOCH}_{3}\right), 2.42-2.59\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{OH}, \mathrm{CH}\right.$, and $\left.\mathrm{OCOCH}_{3}\right), 2.90-3.01(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}$, and $\left.\mathrm{CH}_{2}\right), 3.47(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.82(\mathrm{~d}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}), 4.03(\mathrm{t}, 2 \mathrm{H}, J=$ 6.5 Hz, CH2OCO), 4.18-4.36(m, 2H, CH2O), $4.44(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}), 4.54(\mathrm{t}, 1 \mathrm{H}$ cis, $J=$ $4.8 \mathrm{~Hz}, \mathrm{CH}), 4.56(\mathrm{t}, 1 \mathrm{H}$ trans, $J=4.8 \mathrm{~Hz}, \mathrm{CH}), 4.97\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0, \mathrm{CHOCH}_{2}\right), 5.46(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{OCHO}), 5.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHOH}), 5.68(\mathrm{~d}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CHOCOPh}), 6.00(\mathrm{dd}, 1 \mathrm{H}, J=$ $9.2 \mathrm{~Hz}, J=3.0 \mathrm{~Hz}, \mathrm{PhCH}), 6.09-6.12(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 6.23-6.34(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{CHOCO})$, $7.01(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{~N} H), 7.45(\mathrm{~m}, 10 \mathrm{H}, \operatorname{Ar}-H), 7.61(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \operatorname{Ar}-H), 7.80$ $(2 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \operatorname{Ar}-H), 8.15(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{Ar}-H) .{ }^{13} \mathrm{C}$ NMR $\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ррт) $\delta 9.6,14.8,20.8,22.5,24.9,25.5,26.7,28.3,30.3,33.1,33.9,35.3,35.6,41.6,43.2$, $45.6,46.3,46.6,52.8,58.5,64.1,71.3,71.8,71.9,72.1,74.8,75.1,75.5,76.4,79.1,81.0$, $84.4,105.0,126.5,127.3,128.5,128.6,128.8,129.1,129.2,130.2,132.0,132.8,133.4$, 133.7, 135.6, 136.8, 138.0, 138.1, 142.7, 167.0, 167.4, 167.7, 169.9, 171.3, 171.9, 176.4, 203.8.

PEG-based NB-functionalized macromonomer (2). The preparation of 2 was based on a literature method with modification. ${ }^{3}$ In a 100 mL flask, a THF solution of exo-5-NB-2-methanol ($0.55 \mathrm{~g}, 4.4 \mathrm{mmol} ; 20 \mathrm{~mL}$) was titrated with a fresh prepared THF solution of 1,4-dipotassio-1,1,4,4-tetraphenylbutane $(\sim 0.25 \quad \mathrm{M})$ under nitrogen atmosphere, using the characteristic red color of the latter as indicator. After exo-5-NB-2-methanol was quantitatively deprotonated, the solution was cooled with dry
ice-acetone bath, and 9.0 g of ethylene oxide (205 mmol) was added. After cooling with dry ice-acetone bath for 5 h , the solution was allowed to rise to room temperature overnight. After keeping at room temperature for over 40 h , the reaction medium was deactivated by addition of acidified methanol. The reaction mixture was concentrated by solvent evaporation, and then precipitated in diethyl ether to give 7.6 g of 2 as a white solid. Yield: $80 \% . \mathrm{DP}_{\mathrm{PEG}}{ }^{\mathrm{NMR}}=50$ (determined based on the resonance intensities of ethylene oxide protons at $3.32-3.90 \mathrm{ppm}$ relative to NB alkene protons at $6.04-6.15 \mathrm{ppm}$), $M_{\mathrm{n}}{ }^{\mathrm{NMR}}=2.4 \mathrm{kDa}, \mathrm{PDI}^{\mathrm{GPC}}=1.1$ (based on signal from the RI detector of GPC). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 1.00-1.35\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 1.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.74-2.88(\mathrm{~m}$, $2 \times \mathrm{CH}_{2}$ and OH$), 3.32-3.90\left(\mathrm{~m}, 202 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right.$ and $\left.50 \times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 6.04-6.15(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}=\mathrm{C} H) .{ }^{13} \mathrm{C}$ NMR (125.7 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 29.6,38.7,41.5,43.6,44.9,61.5,70.2$, $70.3,70.5,72.5,75.9,124.0,136.5$.

General procedure for the synthesis of BPDCs (8). To a 10 mL Schlenk flask with a magnetic stir bar were added monomer 1, macromonomer 2, and DCM (2.0-4.0 mL) as the solvent under nitrogen atmosphere. After $\mathbf{1}$ and $\mathbf{2}$ were completely dissolved, a DCM solution of Grubbs catalyst (either $7 \mathbf{7 a}$ or $\mathbf{7 b} ;<1.2 \mathrm{~mL}$) was added to start polymerization at room temperature. When the polymerization time was reached, the polymerization solution was quenched by the addition of ethyl vinyl ether ($1.0-2.0 \mathrm{~mL}$). An aliquot of the resulting polymerization solution was analyzed by ${ }^{1} \mathrm{H}$ NMR and GPC analysis. Full conversions of $\mathbf{1}$ and $\mathbf{2}$ were confirmed by the absence of the resonances of
exo-NB alkene protons at 6.1 ppm on the ${ }^{1} \mathrm{H}$ NMR spectrum and the absence of GPC peaks corresponding to $\mathbf{1}$ (peak at 52.6 min) and $\mathbf{2}$ (peak at 57.4 min) on the GPC curve. The polymerization solution was precipitation in diethyl ether and gave BPDC 8 as a white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): 1.00-3.20 (br m, all $\mathrm{CH}, \mathrm{CH}_{2}, \mathrm{OCOCH}_{3}$ from 1 and 2 units except those identified otherwise), 3.20-4.09 (br m, all $\mathrm{CH}_{2} \mathrm{O}$ and $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$ from 2 units, CH and $2 \times \mathrm{OH}$ from 1 units), 4.09-4.64 (br m, $\mathrm{CH}, \mathrm{CH}_{2}$, CHOH , and $\mathrm{CH}_{2} \mathrm{OCO}$ from 1 units), 4.97 (br, CHOCH_{2} from 1 units), 5.04-5.58 (br m, all $\mathrm{CH}=\mathrm{CH}$ from $\mathrm{PNB}, \mathrm{OCHO}$ and CHOH from 1 units), 5.68 (br, CHOCOPh from 1 units), 6.00 (br, PhCH from 1 units), $6.20-6.35(\mathrm{br} \mathrm{m}, 2 \times \mathrm{CHOCO}$ from 1), 7.11 (br, NH from 1 units), 7.30-8.20 (br m, all Ar- H from 1 units). ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm) $\delta 9.8,14.8,21.0,21.4,22.9,34.1,35.8,43.2,61.7,70.3,70.5,72.6,105.1,123.9$, 126.9, 127.3, 128.6, 129.1, 130.0, 167.0.

BPDC 8a. Sample 8a was prepared from the polymerization mixture of monomer $1(200 \mathrm{mg}, 0.168 \mathrm{mmol})$, macromonomer $2(402 \mathrm{mg}, 0.168 \mathrm{mmol})$, and $1^{\text {st }}$ generation Grubbs' catalyst 7a ($5.54 \mathrm{mg}, 0.00673 \mathrm{mmol}$) in DCM. The polymerization was quenched at 3 h , and the isolation yield was $90 \% . M_{\mathrm{n}}{ }^{\mathrm{GPC}}=104 \mathrm{kDa}, \mathrm{PDI}^{\mathrm{GPC}}=1.11$.

BPDC 8b. Sample $\mathbf{8 b}$ was prepared from the polymerization mixture of monomer $1(50 \mathrm{mg}, 0.042 \mathrm{mmol})$, macromonomer $2(100 \mathrm{mg}, 0.042 \mathrm{mmol})$, and $2^{\text {nd }}$ generation Grubbs' catalyst 7b ($1.48 \mathrm{mg}, 0.00168 \mathrm{mmol}$) in DCM. The polymerization was quenched at 15 min , and the isolation yield was $85 \% . M_{\mathrm{n}}{ }^{\mathrm{GPC}}=127 \mathrm{kDa}, \mathrm{PDI}^{\mathrm{GPC}}=1.04$.

BPDC 8c. Sample 8c was prepared from the polymerization mixture of monomer 1 ($100 \mathrm{mg}, 0.084 \mathrm{mmol}$), macromonomer $2(201 \mathrm{mg}, 0.084 \mathrm{mmol})$, and $1^{\text {st }}$ generation Grubbs' catalyst 7a ($0.69 \mathrm{mg}, 0.00084 \mathrm{mmol}$) in DCM. The polymerization was quenched at 19 h , and the isolation yield was $90 \% . M_{\mathrm{n}}{ }^{\mathrm{GPC}}=571 \mathrm{kDa}, \mathrm{PDI}^{\mathrm{GPC}}=1.34$.

BPDC 8d. Sample 8d was prepared from the polymerization mixture of monomer $1(50 \mathrm{mg}, 0.042 \mathrm{mmol})$, macromonomer $2(100 \mathrm{mg}, 0.042 \mathrm{mmol})$, and $1^{\text {st }}$ generation Grubbs' catalyst 7a ($0.37 \mathrm{mg}, 0.00042 \mathrm{mmol}$) in DCM. The polymerization was quenched at 1.5 h , and the isolation yield was $87 \% . M_{\mathrm{n}}{ }^{\mathrm{GPC}}=390 \mathrm{kDa}, \mathrm{PDI}^{\mathrm{GPC}}=1.09$.

Supporting Figures

Figure S1. GPC curves of BPDCs 8a-8d.

Figure S2. Histograms of fractions of particles vs particle surface diameters (nm) of for a)
$\mathbf{8 a}$ and b) 8d on TEM grids (samples were prepared by dip coating from aqueous BPDC solutions).

References:

1. C. D. VerNooy and C. S. Rondestvedt, J. Am. Chem. Soc., 1955, 77, 3583-3586.
2. S. P. Ligthelm, E. v. Rudloff, and D. A. Sutton, J. Chem. Soc., 1950, 3187-3190.
3. J. A. Love, J. P. Morgan, T. M. Trnka, and R. H. Grubbs, Angew. Chem. Int. Ed., 2002, 41, 4035-4037.
4. K. Se, K. Miyawaki, K. Hirahara, A. Takano, and T. Fujimoto, J. Polym. Sci., Part A: Polym. Chem., 1998, 36, 3021-3034.
5. J. S. Trent, Macromolecules, 1984, 17, 2930-2931.
6. S. L. Richheimer, D. M. Tinnermeier, and D. W.Timmons, Anal. Chem., 1992, 64, 2323-2326.
