Stereoselective synthesis of oxazino[4,3-a]indoles employing oxa-Pictet-Spengler reaction of indoles bearing N-tethered vinylogous carbonate

Santosh J. Gharpure* and A. M. Sathiyanarayanan

Department of Chemistry, Indian Institute of Technology Madras, Chennai – 600036, India

Experimental Procedures and Spectra

General Materials and Methods: Melting points are recorded using Tempo melting point apparatus in capillary tubes and are uncorrected. IR spectra were recorded on Nicolet 6700 spectrophotometers. ¹H (400 MHz) and ¹³C (100 MHz) spectra were recorded on Bruker Avance 400 spectrometers. The chemical shifts (δ ppm) and coupling constants (Hz) are reported in the standard fashion with reference to internal tetramethylsilane, chloroform or benzene. In the ¹³C NMR spectra, the nature of the carbons (C, CH, CH₂ or CH₃) was determined by recording the DEPT-135 experiment, and is given in parentheses. The NOESY (500 MHz) spectrums were recorded on Bruker Avance III 500 MHz (AV 500). High resolution mass measurements were carried out using Micromass Q-ToF GCMS instrument using direct inlet mode. Single crystal X-ray analysis was done on Bruker X8 Kappa APEX II. Analytical thin-layer chromatography (TLC) were performed on glass plates (7.5 x 2.5 and 7.5 x 5.0 cm) coated with Acme's silica gel G containing 13% calcium sulfate as binder or on pre-coated 0.2 mm thick Merck 60 F₂₄₅ silica plates and various combinations of ethyl acetate and hexanes were used as eluent. Visualization of spots was accomplished by exposure to iodine vapor. All compounds were purified using silica gel [Acme's silica gel (100-200 mesh)] column chromatography and gave spectroscopic data consistent with being \geq 95% the assigned structure. All small-scale dry reactions were carried out using standard syringe septum technique. Dry THF was obtained by distillation over sodium-benzophenone ketyl. Dry CH₂Cl₂ and dry DMF was prepared by distilling over calcium hydride. All the commercial reagents were used as such without further purification.

General Synthesis of Vinylogous carbonates 2:

Preparation of the alcohols 17 from the indoles 15:

To a stirred solution of NaH (1 equiv) in dry DMF at 0 °C was added indole **15** (1 equiv) in dry DMF dropwise and stirred for about 20 min. The epoxide **16** (1 equiv) was added

at 0 °C and the reaction mixture was warmed to r.t. and stirred overnight. The reaction mixture was then quenched by adding water and extracted with ether. The combined organic extracts were washed with brine and dried (*anhyd*. Na₂SO₄). Evaporation of the solvent and purification of the residue on a silica gel column using ethyl acetate-hexanes as the eluent furnished the corresponding alcohol **17**.

Preparation of the vinylogous carbonates 2 from the alcohols 17:

To a stirred solution of the alcohol **17** (1 equiv) in dry CH_2Cl_2 , was added *N*-methylmorpholine (1 equiv) and ethylpropiolate (1.1 equiv) at r.t. and stirred until the completion of the reaction (*ca.* 4h, TLC control). The reaction mixture was then concentrated and purified by silica gel column chromatography using ethyl acetate-hexanes as the eluent to yield the requisite vinylogous carbonate **2**.

$R_{1}^{1} + R_{1}^{2} + R_{1}^{2} + R_{1}^{2} + R_{1}^{2} + R_{1}^{3} + R_{1}^{2} + R_{1}^{3} + R_{1}^{2} + R_{1}^{3} + R_{1$									EtO ₂ C
15		16		17	1		2		
entry	R		\mathbf{R}^2	R		product	yield	product	yield
						(Step 1)	(%) ["]	(Step 2)	(%) ["]
1	Η	15a	Η	Me	16a	17a	85	2a	95
2	Н	15a	Н	Ph	16b	17b	91	2b	93
3	Н	15a	Н	CH ₂ OBn	16c	17c	74	2c	93
4	Н	15a	-(CH ₂) ₄ -		16d	17d	98 ^b	2d	94
5	Н	15a	-(CH ₂) ₃ -		16e	17e	67 ^b	2e	83
6	5-OMe	15b	Н	Me	16a	17f	80	2f	78
7	5-OMe	15b	Н	Ph	16b	17g	82	2g	85
8	5-Br	15c	Н	Me	16a	17h	95 ^b	2h	88
9	5-Br	15c	Н	Ph	16b	17i	94	2i	78
10	3-Me	15d	Н	Me	16a	17j	94	2j	82
11	3-Me	15d	Н	Ph	16b	17k	78	2k	72
12	3-Ph	15e	Н	Ph	16b	17l	77	21	83
13	3-Ac	15f	Н	Me	16a	17m	33	2m	83

Table 1: Synthesis of vinylogous carbonates 2

^{*a*} Yield corresponds to that of isolated, ^{*b*} Based on the recovered starting material

Preparation of oxazinoindoles 1a-l:

Ethyl [(1*R**,3*S**)-3-methyl-3,4-dihydro-1*H*-[1,4]oxazino[4,3-*a*]indol-1-yl]acetate (1a): Using TMSOTf:

To a cold (0 °C), magnetically stirred solution of the vinylogous carbonate **2a** (24 mg, 0.087 mmol) in dry CH₂Cl₂ (4 mL) was added TMSOTf (25 μ L, 0.1316 mmol). The reaction mixture was slowly allowed to warm up to r.t., stirred for 30 min. (TLC control) and quenched by adding saturated NaHCO₃. The reaction mixture was extracted with CH₂Cl₂ (3 x 5 mL), washed with brine and dried (*anhyd*. Na₂SO₄). Evaporation of the solvent and purification of the residue on a silica gel column using ethyl acetate-hexanes (1:24) as eluent furnished a sticky solid, which was recrystallised from ethyl acetate-hexanes to furnish the oxazinoindole **1a** (22 mg, 92 %) as a white solid.

Physical appearance: white solid

R_f: 0.5 (1:9, EtOAc:Hexanes).

mp: 78 °C.

IR (neat): 2976, 2925, 1722, 1456, 1357, 1310, 1246, 1153, 1094, 1035, 953, 782, 740 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, *J* = 7.8 Hz, 1H), 7.26 (d, *J* = 7.2 Hz, 1H), 7.18 (dt, *J* = 7.2, 0.9 Hz, 1H), 7.11 (dt, *J* = 7.2, 0.9 Hz, 1H), 6.20 (s, 1H), 5.35 (dd, *J* = 8.6, 4.2 Hz, 1H), 4.30-4.20 (m, 2H), 4.20-4.10 (m, 1H), 4.10 (ABX, *J* = 11.0, 3.2 Hz, 1H), 3.64 (ABX, *J* = 11.0, 11.0 Hz, 1H), 3.01 (ABX, *J* = 15.8, 4.2 Hz, 1H), 2.85 (ABX, *J* = 15.8, 8.6 Hz, 1H), 1.43 (d, *J* = 6.0 Hz, 3H), 1.31 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 170.76 (C), 136.18 (C), 135.57 (C), 128.13 (C) 121.46 (CH), 120.62 (CH), 120.30 (CH), 108.84 (CH), 95.83 (CH), 71.37 (CH), 70.48 (CH), 60.95 (CH₂), 47.90 (CH₂), 40.53 (CH₂), 19.24 (CH₃), 14.37 (CH₃).

HRMS (ESI, M+H⁺): m/z calcd. for C₁₆H₂₀NO₃ 274.1443, found 274.1443.

Using BF₃·OEt₂:

Reaction of the vinylogous carbonate 2a (23 mg, 0.085 mmol) with BF₃·OEt₂ (10 µL, 0.092 mmol) in dry CH₂Cl₂ (4 mL), as described for the synthesis of oxazinoindole 1a using TMSOTf followed by purification on a silica gel column using ethyl acetate-hexanes (1:24) as eluent furnished the oxazinoindole 1a (7 mg, 30 %) as a sticky solid.

Using BiBr₃:

Reaction of the vinylogous carbonate 2a (11 mg, 0.040 mmol) with BiBr₃ (20 mg, 0.044 mmol) in dry CH₂Cl₂ (4 mL), as described for the synthesis of oxazinoindole 1a using TMSOTf followed by purification on a silica gel column using ethyl acetate-hexanes (1:24) as eluent furnished the oxazinoindole 1a (6 mg, 54 %) as a sticky solid.

Using TiCl₄:

Reaction of the vinylogous carbonate 2a (51 mg, 0.187 mmol) with TiCl₄ (25 µL, 0.205 mmol) in dry CH₂Cl₂ (4 mL), as described for the synthesis of oxazinoindole 1a using TMSOTf followed by purification on a silica gel column using ethyl acetate-hexanes (1:24) as eluent furnished the oxazinoindole 1a (21 mg, 42 %) as a sticky solid.

Using SnCl₄:

Reaction of the vinylogous carbonate **2a** (44 mg, 0.160 mmol) with $SnCl_4$ (20 µL, 0.177 mmol) in dry CH_2Cl_2 (4 mL), as described for the synthesis of oxazinoindole **1a** using TMSOTf followed by purification on a silica gel column using ethyl acetate-hexanes (1:24) as eluent furnished the oxazinoindole **1a** (24 mg, 56 %) as a sticky solid.

Using FeCl₃:

Reaction of the vinylogous carbonate 2a (51 mg, 0.186 mmol) with FeCl₃ (50 mg, 0.300 mmol) in dry CH₂Cl₂ (4 mL), as described for the synthesis of oxazinoindole 1a using TMSOTf followed by purification on a silica gel column using ethyl acetate-hexanes (1:24) as eluent furnished the oxazinoindole 1a (27 mg, 53 %) as a sticky solid.

Using CF₃CO₂H:

Reaction of the vinylogous carbonate 2a (53 mg, 0.194 mmol) with CF₃CO₂H (30 µL, 0.388 mmol) in dry CH₂Cl₂ (4 mL), as described for the synthesis of oxazinoindole 1a using TMSOTf followed by purification on a silica gel column using ethyl acetate-hexanes (1:24) as eluent furnished the oxazinoindole 1a (21 mg, 42 %) as a sticky solid.

Ethyl $[(1R^*,3S^*)-3$ -phenyl-3,4-dihydro-1*H*-[1,4]oxazino[4,3-*a*]indol-1-yl]acetate (1b):

Reaction of the vinylogous carbonate **2b** (110 mg, 0.328 mmol) with TMSOTf (65 μ L, 0.360 mmol) in dry CH₂Cl₂ (6 mL) for 30 min., as described for the oxazinoindole **1a** followed by purification on a silica gel column using ethyl acetate-hexanes (1:24) as eluent furnished the oxazinoindole **1b** (67 mg, 61 %) as a syrupy liquid.

Physical appearance: syrupy liquid

R_f: 0.5 (1:9, EtOAc:Hexanes).

IR (neat): 2980, 2928, 1733, 1608, 1459, 1366, 1324, 1168, 1103, 1059, 1038, 932, 780, 746 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃): δ 7.60 (d, J = 7.8 Hz, 1H), 7.55-7.45 (m, 2H), 7.45-7.30 (m, 3H), 7.27 (d, J = 7.3 Hz, 1H), 7.20 (t, J = 7.2 Hz, 1H), 7.14 (t, J = 7.2 Hz, 1H), 6.28 (s, 1H), 5.57 (dd, J = 8.2, 4.5 Hz, 1H), 5.08 (dd, J = 11.5, 3.5 Hz, 1H), 4.36 (ABX, J = 11.5, 3.5 Hz, 1H), 4.24 (q, J = 7.1 Hz, 2H), 3.92 (ABX, J = 11.5, 11.5 Hz, 1H), 3.11 (ABX, J = 15.8, 4.5 Hz, 1H), 2.99 (ABX, J = 15.8, 8.2 Hz, 1H), 1.30 (t, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 170.60 (C), 138.87 (C), 136.28 (C), 135.35 (C), 128.76 (CH, 2C), 128.52 (CH), 128.20 (C), 126.15 (CH, 2C), 121.62 (CH), 120.70 (CH), 120.44 (CH), 108.88 (CH), 96.21 (CH), 76.12 (CH), 71.94 (CH), 60.96 (CH₂), 48.07 (CH₂), 40.70 (CH₂), 14.36 (CH₃).

HRMS (**ESI**, **M**+**H**⁺): m/z calcd. For C₂₁H₂₂NO₃ 336.1600, found 336.1604.

Ethyl [(1*R**,3*R**)-3-(benzyloxymethyl)-3,4-dihydro-1*H*-[1,4]oxazino[4,3-*a*]indol-1-yl]acetate (1c):

Reaction of the vinylogous carbonate 2c (63 mg, 0.166 mmol) with TMSOTf (35 µL, 0.182 mmol) in dry CH₂Cl₂ (5 mL) for 1.5 h, as described for the oxazinoindole **1a** followed by purification on a silica gel column using ethyl acetate-hexanes (1:24) as eluent furnished the oxazinoindole **1c** (38 mg, 60 %) as a syrupy liquid.

Physical appearance: syrupy liquid

R_f: 0.5 (1:9, EtOAc:Hexanes).

IR (neat): 2922, 2860, 1731, 1617, 1457, 1367, 1313, 1283, 1172, 1095, 1029, 783, 737 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.49 (d, J = 7.9 Hz, 1H), 7.35-7.15 (m, 6H), 7.12 (t, J = 7.2 Hz, 1H), 7.04 (t, J = 7.2 Hz, 1H), 6.13 (s, 1H), 5.31 (dd, J = 8.4, 4.3 Hz, 1H), 4.57 (s, 2H), 4.25-4.10 (m, 4H), 3.80-3.70 (m, 2H), 3.63 (ABX, J = 10.3, 5.4 Hz, 1H), 2.96 (ABX, J = 15.9, 4.3 Hz, 1H), 2.80 (ABX, J = 15.9, 8.4 Hz, 1H), 1.22 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃, DEPT): δ 170.61 (C), 137.94 (C), 136.36 (C), 135.42 (C), 128.62 (CH, 2C), 128.00 (CH), 127.94 (CH), 127.90 (CH, 2C), 121.54 (CH), 120.62 (CH), 120.34 (CH), 108.94 (CH), 95.96 (CH), 73.81 (CH₂), 73.58 (CH), 71.54 (CH), **HRMS (ESI, M+H⁺):** m/z calcd. for C₂₃H₂₆NO₄ 380.1862, found 380.1865.

Ethyl [4a*S**,12a*S**]-1,2,3,4,4a,12a,-hexahydro-6*H*,indolo[2,1-*c*][1,4]benzoxazin-6-yl-acetate (1d):

Reaction of the vinylogous carbonate 2d (50 mg, 0.159 mmol) with TMSOTf (30 μ L, 0.176 mmol) in dry CH₂Cl₂ (6 mL) for 30 min., as described for the oxazinoindole 1a followed by purification on a silica gel column using ethyl acetate-hexanes (1:24) as eluent furnished the oxazinoindole 1d (28 mg, 56 %) as a syrupy liquid.

Physical appearance: syrupy liquid

R_f: 0.6 (1:9, EtOAc:Hexanes).

IR (neat): 2934, 2864, 1734, 1455, 1327, 1240, 1171, 1109, 1036, 784, 744 cm⁻¹.

¹**H NMR (400MHz, CDCl₃):** δ 7.48 (d, J = 7.2 Hz, 1H), 7.43 (d, J = 8.4 Hz, 1H), 7.10-7.05 (m, 2H), 6.20 (s, 1H), 5.39 (dd, J = 8.5, 4.2 Hz, 1H), 4.30-4.20 (m, 2H), 3.93 (dt, J = 10.5, 3.5 Hz, 1H), 3.64 (dt, J = 10.5, 3.5 Hz, 1H), 3.25-3.05 (m, 1H), 3.00 (ABX, J = 15.8, 4.2 Hz, 1H), 2.82 (ABX, J = 15.8, 8.5 Hz, 1H), 2.20-2.10 (m, 1H), 2.00-1.80 (m, 2H), 1.70-1.44 (m, 4H), 1.30 (t, J = 7.2 Hz, 3H).

¹³C NMR (100MHz, CDCl₃, DEPT): δ 170.77 (C), 137.48 (C), 136.53 (C), 128.79 (C), 121.28 (CH), 120.70 (CH), 119.88 (CH), 111.81 (CH), 96.76 (CH), 80.49 (CH), 72.33 (CH), 60.94 (CH₂), 59.78 (CH), 40.75 (CH₂), 31.29 (CH₂), 30.16 (CH₂), 24.70 (CH₂), 24.55 (CH₂), 14.36 (CH₃).

HRMS (ESI, M+H⁺): m/z calcd. for $C_{19}H_{24}NO_3$ 314.1756, found 314.1752.

Ethyl [3*aS**,5*R**,11*aS**]-2,3,3*a*,11*a*-tetrahydro-1*H*,5*H*cyclopenta[5,6][1,4]oxazino[4,3-*a*]indol-5yl-acetate (1e):

Reaction of the vinylogous carbonate 2e (130 mg, 0.434 mmol) with TMSOTf (120 µL, 0.651 mmol) in dry CH₂Cl₂ (6 mL) for 30 min., as described for the oxazinoindole **1a** followed by purification on a silica gel column using ethyl acetate-hexanes (1:24) as eluent furnished the oxazinoindole **1e** (41 mg, 32 %) as a syrupy liquid.

Physical appearance: yellow oil

R_f: 0.6 (1:9, EtOAc:Hexanes).

IR (neat): 2968, 1732, 1618, 1461, 1368, 1330, 1288, 1166, 1124, 1029, 786, 754 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ 7.56 (d, J = 7.7 Hz, 1H), 7.38 (d, J = 8.0 Hz, 1H), 7.16 (dt, J = 8.0, 1.0 Hz, 1H), 7.10 (dt, J = 8.0, 1.0 Hz, 1H), 6.25 (s, 1H), 5.50 (dd, J = 8.1, 4.2 Hz, 1H), 4.30-4.15 (m, 2H), 3.95-3.85 (m, 1H), 3.85-3.75 (m, 1H), 3.05 (ABX, *J* = 15.9, 4.2 Hz, 1H), 2.91 (ABX, *J* = 15.9, 8.1 Hz, 1H), 2.80-2.65 (m, 1H), 2.15-1.90 (m, 4H), 1.80-1.65 (m, 1H), 1.30 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100MHz, CDCl₃, DEPT): δ 170.67 (C), 137.07 (C), 136.72 (C), 128.19 (C), 121.73 (CH), 120.69 (CH), 120.10 (CH), 110.77 (CH), 97.82 (CH), 82.15 (CH), 72.73 (CH), 60.96 (CH₂), 59.04 (CH), 40.85 (CH₂), 25.67 (CH₂), 25.18 (CH₂), 18.33 (CH₂), 14.34 (CH₃).

HRMS (ESI, M+H⁺): m/z calcd. for C₁₈H₂₂NO₃ 300.1600, found 300.1594.

Ethyl $[(1R^*, 3S^*)$ -8-methoxy-3-methyl-3,4-dihydro-1*H*-[1,4]oxazino[4,3-*a*]indol-1-yl]acetate (1f):

Reaction of the vinylogous carbonate **2f** (210 mg, 0.692 mmol) with TMSOTf (140 μ L, 0.761 mmol) in dry CH₂Cl₂ (8 mL) for 1.5 h, as described for the oxazinoindole **1a** followed by purification on a silica gel column using ethyl acetate-hexanes (1:24) as eluent furnished the oxazinoindole **1f** (194 mg, 92 %) as a syrupy liquid.

Physical appearance: syrupy liquid

R_f: 0.5 (1:9, EtOAc:Hexanes).

IR (neat): 2980, 1733, 1620, 1477, 1361, 1288, 1168, 1096, 1034, 950, 843, 795 cm⁻¹. ^{III} **H NMR (400 MHz, CDCl₃):** δ 7.15 (d, J = 8.8 Hz, 1H), 7.04 (d, J = 2.4 Hz, 1H), 6.85

(dd, *J* = 8.8, 2.4 Hz, 1H), 6.13 (s, 1H), 5.33 (dd, *J* = 8.6, 4.2 Hz, 1H), 4.25 (q, *J* = 7.1 Hz, 2H), 4.15-4.05 (m, 1H), 4.04 (ABX, *J* = 11.0, 3.3 Hz, 1H), 3.84 (s, 3H), 3.61 (ABX, *J* = 11.0, 11.0 Hz, 1H), 3.00 (ABX, *J* = 15.8, 4.2 Hz, 1H), 2.84 (ABX, *J* = 15.8, 8.6 Hz, 1H), 1.42 (d, *J* = 6.2 Hz, 3H), 1.31 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 170.77 (C), 154.65 (C), 136.09 (C), 131.46 (C), 128.4 (C), 111.52 (CH), 109.48 (CH), 102.55 (CH), 95.48 (CH), 71.27 (CH), 70.41 (CH), 60.94 (CH₂), 56.02 (CH₃), 47.87 (CH₂), 40.43 (CH₂), 19.19 (CH₃), 14.35 (CH₃).

HRMS (ESI, M+H⁺): m/z calcd. for C₁₇H₂₂NO₄ 304.1549, found 304.1553.

Ethyl $[(1R^*, 3S^*)$ -8-methoxy-3-phenyl-3,4-dihydro-1H-[1,4]oxazino[4,3-a]indol-1-yl]acetate (1g):

Reaction of the vinylogous carbonate 2g (60 mg, 0.164 mmol) with TMSOTf (40 μ L, 0.246 mmol) in dry CH₂Cl₂ (6 mL) for 30 min., as described for the oxazinoindole **1a**

followed by purification on a silica gel column using ethyl acetate-hexanes (1:24) as eluent furnished the oxazinoindole 1g (43 mg, 72 %) as a syrupy liquid.

Physical appearance: syrupy liquid

R_f: 0.5 (1:9, EtOAc:Hexanes).

CO₂Et

ò

м́е

IR (neat): 2938, 1732, 1619, 1578, 1478, 1443, 1287, 1167, 1105, 1033, 931, 843, 794, 761 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 7.50-7.35 (m, 5H), 7.15 (d, *J* = 8.8 Hz, 1H), 7.08 (d, *J* = 2.3 Hz, 1H), 6.87 (dd, *J* = 8.8, 2.3 Hz, 1H), 6.21 (s, 1H), 5.54 (dd, *J* = 8.1, 4.5 Hz, 1H), 5.05 (dd, *J* = 11.0, 3.4 Hz, 1H), 4.30 (ABX, *J* = 11.0, 3.4 Hz, 1H), 4.27 (q, J = 7.2 Hz, 2H), 3.88 (ABX, *J* = 11.0, 11.0 Hz, 1H), 3.86 (s, 3H), 3.10 (ABX, *J* = 15.7, 4.5 Hz, 1H), 2.98 (ABX, *J* = 15.7, 8.1 Hz, 1H), 1.30 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 170.57 (C), 154.81 (C), 138.87 (C), 135.94 (C), 131.61 (C), 128.74 (CH, 2C), 128.59 (CH), 128.50 (CH), 126.13 (CH, 2C), 111.70 (CH), 109.51 (CH), 102.76 (CH), 95.90 (CH), 76.08 (CH), 71.88 (CH), 60.93 (CH₂), 56.04 (CH₃), 48.09 (CH₂), 40.66 (CH₂), 14.36 (CH₃).

HRMS (ESI, M+H⁺): m/z calcd. For C₂₂H₂₄NO₄ 366.1705, found 366.1707.

Ethyl [(1*R**,3*S**)-8-bromo-3-methyl-3,4-dihydro-1*H*-[1,4]oxazino[4,3-*a*]indol-1yl]acetate (1h):

Reaction of the vinylogous carbonate **2h** (120 mg, 0.341 mmol) with TMSOTf (100 μ L, 0.511 mmol) in dry CH₂Cl₂ (6 mL) for 30 min., as described for the oxazinoindole **1a** followed by purification on a silica gel column using ethyl acetate-hexanes (1:24) as eluent furnished the oxazinoindole **1h** (65 mg, 54 %) as a syrupy liquid.

Physical appearance: brown syrupy liquid

R_f: 0.6 (1:9, EtOAc:Hexanes).

IR (neat): 2972, 2927, 1722, 1454, 1363, 1312, 1243, 1153, 1095, 1036, 952, 893, 852, 792, 730 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 7.68 (d, *J* = 1.8 Hz, 1H), 7.26 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.12 (d, *J* = 8.6 Hz, 1H), 6.14 (s, 1H), 5.33 (dd, *J* = 8.4, 4.2 Hz, 1H), 4.30-4.20 (m, 2H), 4.20-4.10 (m, 1H), 4.06 (ABX, *J* = 11.1, 3.3 Hz, 1H), 3.63 (ABX, *J* = 11.1, 11.1 Hz, 1H), 2.99 (ABX, *J* = 15.9, 4.2 Hz, 1H), 2.85 (ABX, *J* = 15.9, 8.4 Hz, 1H), 1.43 (d, *J* = 6.2 Hz, 3H), 1.30 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 170.55 (C), 136.73 (C), 134.79, (C), 129.71 (C), 124.22 (CH), 123.06 (CH), 113.40 (C), 110.21 (CH), 95.44 (CH), 71.15 (CH), 70.35 (CH), 60.99 (CH₂), 47.80 (CH₂), 40.36 (CH₂), 19.16 (CH₃), 14.34 (CH₃).

HRMS (ESI, M+H⁺): m/z calcd. for $C_{16}H_{19}NO_3Br$ 352.0548, found 352.0548.

Ethyl $[(1R^*, 3S^*)-8$ -bromo-3-phenyl-3,4-dihydro-1H-[1,4]oxazino[4,3-a]indol-1-yl]acetate (1i):

Reaction of the vinylogous carbonate **2i** (190 mg, 0.459 mmol) with TMSOTf (130 μ L, 0.688 mmol) in dry CH₂Cl₂ (6 mL) for 30 min., as described for the oxazinoindole **1a** followed by purification on a silica gel column using ethyl acetate-hexanes (1:9) as eluent furnished the oxazinoindole **1i** (121 mg, 64 %) as a syrupy liquid.

Physical appearance: syrupy liquid

R_f: 0.5 (1:9, EtOAc:Hexanes).

IR (neat): 2929, 1731, 1455, 1364, 1318, 1266, 1171, 1102, 1038, 950, 888, 788, 734, 695 cm⁻¹.

¹**H NMR (400MHz, CDCl₃):** δ 7.63 (d, *J* = 1.3 Hz, 1H), 7.45-7.15 (m, 6H), 7.04 (d, *J* = 8.6 Hz, 1H), 6.13 (s, 1H), 5.46 (dd, *J* = 8.0, 4.6 Hz, 1H), 4.98 (dd, *J* = 11.3, 3.5 Hz, 1H), 4.23 (ABX, *J* = 11.3, 3.5 Hz, 1H), 4.15 (q, *J* = 7.1 Hz, 2H), 3.82 (ABX, *J* = 11.3, 11.3 Hz, 1H), 3.00 (ABX, *J* = 15.9, 4.6 Hz, 1H), 2.90 (ABX, *J* = 15.9, 8.0 Hz, 1H), 1.21 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100MHz, CDCl₃, DEPT): δ 170.42 (C), 138.54 (C), 136.53 (C), 134.90 (C), 129.80 (C), 128.81 (CH, 2C), 128.65 (CH), 126.11 (CH, 2C), 124.44 (CH), 123.18 (CH), 113.58 (C), 110.25 (CH), 95.82 (CH), 76.01 (CH), 71.76 (CH), 61.04 (CH₂), 48.04 (CH₂), 40.55 (CH₂), 14.35 (CH₃).

HRMS (ESI, M+H⁺): m/z calcd. for C₂₁H₂₁BrNO₃ 414.0705, found 414.0705.

Ethyl [(1*R**,3*S**)-3,10-dimethyl-3,4-dihydro-1*H*-[1,4]oxazino[4,3-*a*]indol-1-yl]acetate (1j):

Reaction of the vinylogous carbonate 2j (62 mg, 0.216 mmol) with TMSOTf (45 μ L, 0.237 mmol) in dry CH₂Cl₂ (6 mL) for 40 min., as described for the oxazinoindole **1a** followed by purification on a silica gel column using ethyl acetate-hexanes (1:9) as eluent furnished the oxazinoindole **1j** (53 mg, 85 %) as a syrupy liquid.

Physical appearance: syrupy liquid

R_f: 0.5 (1:9, EtOAc:Hexanes).

IR (neat): 2979, 2930, 1729, 1614, 1460, 1366, 1241, 1158, 1095, 1036, 849, 746, 605 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ 7.44 (d, J = 7.9 Hz, 1H), 7.20-7.00 (m, 3H), 5.38 (dd, J = 9.5, 2.5 Hz, 1H), 4.14 (q, J = 7.2 Hz, 2H), 3.95 (ABX, J = 11.0, 3.0 Hz, 1H), 3.95-3.80 (m, 1H), 3.60 (ABX, J = 11.0, 11.0 Hz, 1H), 3.12 (ABX, J = 15.6, 2.5 Hz, 1H), 2.70 (ABX, J = 15.6, 9.5 Hz, 1H), 2.19 (s, 3H), 1.31 (d, J = 6.2 Hz, 3H), 1.20 (t, J = 7.2 Hz, 3H). ¹³C NMR (100MHz, CDCl₃, DEPT): δ 170.83 (C), 135.30 (C), 129.94 (C), 128.81 (C), 121.33 (CH), 119.46 (CH), 118.40 (CH), 108.44 (CH), 103.86 (CH), 71.27 (CH), 70.06

(CH), 60.77 (CH₂), 47.97 (CH₂), 40.65 (CH₂), 19.02 (CH₃), 14.33 (CH₃), 9.38 (CH₃). **HRMS (ESI, M+H⁺):** m/z calcd. For C₁₇H₂₂NO₃ 288.1600, found 288.1606.

Ethyl [(1*R**,3*S**)-10-methyl-3-phenyl-3,4-dihydro-1*H*-[1,4]oxazino[4,3-*a*]indol-1-yl]acetate (1k):

Reaction of the vinylogous carbonate $2\mathbf{k}$ (60 mg, 0.172 mmol) with TMSOTf (35 μ L, 0.189 mmol) in dry CH₂Cl₂ (6 mL) for 1 h, as described for the oxazinoindole **1a** followed by purification on a silica gel column using ethyl acetate-hexanes (1:24) as eluent furnished the oxazinoindole **1k** (67 mg, 61 %) as a syrupy liquid. Me

Physical appearance: syrupy liquid

R_f: 0.6 (1:9, EtOAc:Hexanes).

Ki. 0.0 (1.9, Etoric. Hexailes).

IR (neat): 2926, 1729, 1615, 1459, 1367, 1240, 1162, 1098, 1031, 735, 695 cm⁻¹.

¹**H NMR (400MHz, CDCl₃):** δ 7.85 (d, *J* = 7.6 Hz, 1H), 7.80-7.75 (m, 2H), 7.75-7.60 (m, 3H), 7.55-7.40 (m, 3H), 5.96 (dd, *J* = 9.1, 3.0 Hz, 1H), 5.20 (dd, *J* = 11.0, 3.0 Hz, 1H), 4.60 (ABX, *J* = 11.0, 3.0 Hz, 1H), 4.55-4.40 (m, 2H), 4.24 (ABX, *J* = 11.0, 11.0 Hz, 1H), 3.56 (ABX, *J* = 15.4, 3.0 Hz, 1H), 3.22 (ABX, *J* = 15.4, 9.1 Hz, 1H), 2.62 (s, 3H), 1.55 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100MHz, CDCl₃, DEPT): δ 170.68 (C), 138.82 (C), 135.35 (C), 129.66 (C), 128.82 (C), 128.67 (CH, 2C), 128.40 (CH), 126.09 (CH, 2C), 121.51 (CH), 119.61 (CH), 118.52 (CH), 108.49 (CH), 104.28 (CH), 75.63 (CH), 71.73 (CH), 60.85 (CH₂), 48.33 (CH₂), 40.90 (CH₂), 14.35 (CH₃), 9.38 (CH₃).

HRMS (ESI, M+H⁺): m/z calcd. for $C_{22}H_{24}NO_3$ 350.1756, found 350.1759.

Ethyl [(1*R**,3*S**)-3,10-diphenyl-3,4-dihydro-1*H*-[1,4]oxazino[4,3-*a*]indol-1-yl]acetate (11):

Reaction of the vinylogous carbonate **2l** (55 mg, 0.134 mmol) with TMSOTf (25 μ L, 0.142 mmol) in dry CH₂Cl₂ (6 mL) for 35 min., as described for the oxazinoindole **1a** followed by purification on a silica gel column using ethyl acetate-hexanes (1:9) as eluent furnished the oxazinoindole **1l** (40 mg, 74 %) as a syrupy liquid.

Physical appearance: syrupy liquid

Ph CO₂Et

R_f: 0.5 (1:9, EtOAc:Hexanes).

IR (neat): 3051, 2930, 1733, 1605, 1458, 1370, 1281, 1245, 1170, 1104, 1026, 965, 928, 749, 695 cm⁻¹.

¹**H NMR (400MHz, CDCl₃):** δ 7.65 (d, *J* = 7.8 Hz, 2H), 7.55-7.30 (m, 11H), 7.20-7.10 (m, 1H), 5.97 (dd, *J* = 9.2, 2.4 Hz, 1H), 5.10 (dd, *J* = 11.0, 3.0 Hz, 1H), 4.43 (ABX, *J* = 11.0, 3.0 Hz, 1H), 4.15-4.00 (m, 3H), 2.88 (ABX, *J* = 15.9, 2.4 Hz, 1H), 2.57 (ABX, *J* = 15.9, 9.2 Hz, 1H), 1.17 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100MHz, CDCl₃, DEPT): δ 170.79 (C), 138.73 (C), 135.37 (C), 135.01 (C), 130.36 (C), 129.84 (CH, 2C), 128.89 (CH, 2C), 128.75 (CH, 2C), 128.51 (CH), 127.61 (C), 126.68 (CH), 126.09 (CH, 2C), 122.08 (CH), 120.71 (CH), 119.42 (CH), 111.97 (C), 108.73 (CH), 75.45 (CH), 72.17 (CH), 60.66 (CH₂), 48.25 (CH₂), 39.63 (CH₂), 14.28 (CH₃).

HRMS (**ESI**, **M**+**H**⁺): m/z calcd. for C₂₇H₂₆NO₃ 412.1913, found 412.1914.

Procedure for the preparation of oxazinoindoles 1m-u:

Ethyl [(1*R**,3*S**)-10-acetyl-3-methyl-3,4-dihydro-1*H*-[1,4]oxazino[4,3-*a*]indol-1yl]acetate (1m):

To a cold (0 $^{\circ}$ C), magnetically stirred solution of the vinylogous carbonate **2a** (51 mg, 0.187 mmol) in dry CH₂Cl₂ (6 mL) was added TMSOTf (40 µL, 0.224 mmol). The reaction mixture was slowly allowed to warm up to r.t. and stirred for 30 min. After the vinylogous carbonate was completely consumed (TLC control), Ac₂O (35 µL, 0.373 mmol) was added at r.t. and stirred for 3 h. After completion of the reaction, quenched by adding saturated NaHCO₃. The reaction mixture was extracted with CH₂Cl₂ (3 x 10 mL), washed with brine and dried (*anhyd*. Na₂SO₄). Evaporation of the solvent and purification

of the residue on a silica gel column using ethyl acetate-hexanes (1:9) as eluent furnished

the oxazinoindole **1m** (44 mg, 75 %) as a syrupy liquid.

Physical appearance: syrupy liquid

R_f: 0.3 (1:3, EtOAc:Hexanes).

IR (neat): 2979, 2928, 1732, 1634, 1493, 1460, 1427, 1373, 1290, 1160, 1093, 1025, 966, 739 cm^{-1} .

¹**H** NMR (400MHz, CDCl₃): δ 7.84 (dd, J = 7.0, 1.5 Hz, 1H), 7.30-7.10 (m, 3H), 5.71 (dd, J = 6.3, 3.4 Hz, 1H), 4.10-3.90 (m, 3H), 3.90-3.80 (m, 1H), 3.75 (ABX, J = 10.5, 10.5)10.5 Hz, 1H), 3.22 (ABX, J = 16.3, 3.4 Hz, 1H), 2.97 (ABX, J = 16.3, 6.3 Hz, 1H), 2.62 (s, 3H), 1.34 (d, J = 6.1 Hz, 3H), 1.11 (t, J = 7.2 Hz, 3H).

¹³C NMR (100MHz, CDCl₃, DEPT): δ 193.65 (C), 170.92 (C), 144.16 (C), 136.09 (C), 126.21 (C), 122.79 (CH), 122.35 (CH), 120.68 (CH), 112.38 (C), 109.69 (CH), 72.07 (CH), 68.99 (CH), 60.42 (CH₂), 48.26 (CH₂), 39.53 (CH₂), 31.44 (CH₃), 18.80 (CH₃), 14.27 (CH₃).

HRMS (ESI, M+H⁺): m/z calcd. for C₁₈H₂₂NO₄ 316.1549, found 316.1545.

Ethyl $[(1R^*, 3S^*)$ -3-methyl-10-propionyl-3,4-dihydro-1*H*-[1,4]oxazino[4,3-*a*]indol-1vl]acetate (1n):

Reaction of the vinylogous carbonate 2a (42 mg, 0.154 mmol) with TMSOTf (40 µL, 0.230 mmol) and propionic anhydride (40 μ L, 0.307 mmol) in dry CH₂Cl₂ (6 mL) for 6 h, as described for the oxazinoindole **1m** followed by purification on a silica gel column using ethyl acetate-hexanes (1:9) as eluent furnished the oxazinoindole 1n (38 mg, 77 %) as a syrupy liquid.

Physical appearance: syrupy liquid

R_f: 0.3 (1:4, EtOAc:Hexanes).

CO₂Et

IR (neat): 2976, 2935, 1734, 1639, 1492, 1459, 1373, 1268, 1166, 1098, 1042, 960, 752 cm⁻¹. ¹**H NMR (400MHz, CDCl₃):** δ 7.91 (br d, J = 8.4 Hz, 1H), 7.40-7.25 (m, 3H), 5.80 (dd, J = 6.2, 3.4 Hz, 1H), 4.15-4.00 (m, 3H), 4.00-3.90 (m, 1H), 3.82 (ABX, J = 11.0, 11.0Hz, 1H), 3.30 (ABX, J = 16.2, 3.4 Hz, 1H), 3.15-3.00 (m, 3H), 1.41 (d, J = 6.0 Hz, 3H), 1.26 (t, *J* = 7.2 Hz, 3H), 1.18 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100MHz, CDCl₃, DEPT): δ 196.85 (C), 170.96 (C), 144.08 (C), 136.09 (C), 125.76 (C), 122.70 (CH), 122.26 (CH), 120.98 (CH), 112.01 (C), 109.66 (CH), 72.13 (CH), 68.96 (CH), 60.41 (CH₂), 48.27 (CH₂), 39.52 (CH₂), 36.22 (CH₂), 18.80 (CH₃), 14.26 (CH₃), 8.28 (CH₃).

HRMS (**ESI**, **M**+**H**⁺): m/z calcd. for C₁₉H₂₄NO₄ 330.1705, found 330.1710.

Ethyl $[(1R^*, 3S^*)-1-(2-\text{ethoxy-2-oxoethyl})-3-\text{methyl-3,4-dihydro-1}H-[1,4]oxazino[4,3$ a]indol-10-yl)-2-oxoacetate (10):

Reaction of the vinylogous carbonate **2a** (98 mg, 0.358 mmol) with TMSOTf (100 μ L, 0.538 mmol) and ethylchlorooxoacetate (100 μ L, 0.732 mmol) in dry CH₂Cl₂ (8 mL) for 6 h, as described for the oxazinoindole **1m** followed by purification on a silica gel column using ethyl acetate-hexanes (1:9) as eluent furnished the oxazinoindole **1a** (42 mg, 43 %) and **1o** (59 mg, 36 %, 77% based on recovered **1a**) as a syrupy liquid.

Physical appearance: syrupy liquid

R_f: 0.3 (1:4, EtOAc:Hexanes).

IR (neat): 2925, 1731, 1623, 1458, 1373, 1262, 1184, 1092, 1018, 964, 858, 750 cm⁻¹.

¹**H NMR (400MHz, CDCl₃):** δ 7.60-7.55 (m, 1H), 7.30-7.15 (m, 3H), 5.66 (dd, *J* = 6.0, 3.4 Hz, 1H), 4.41 (q, *J* = 7.1 Hz, 2H), 4.10-3.95 (m, 3H), 3.95-3.80 (m, 1H), 3.85-3.70 (m, 1H), 3.21 (ABX, *J* = 16.6, 3.4 Hz, 1H), 3.05 (ABX, *J* = 16.6, 6.2 Hz, 1H), 1.40-1.30 (m, 6H), 1.11 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100MHz, CDCl₃, DEPT): δ 180.53 (C), 170.45 (C), 166.22 (C), 147.37 (C), 136.20 (C), 125.72 (C), 123.72 (CH), 123.32 (CH), 119.79 (CH), 109.81 (CH), 107.24 (C), 71.65 (CH), 69.06 (CH), 62.23 (CH₂), 60.60 (CH₂), 48.22 (CH₂), 39.27 (CH₂), 18.70 (CH₃), 14.22 (CH₃).

HRMS (ESI, M+H⁺): m/z calcd. for C₂₀H₂₄NO₆ 374.1604, found 374.1606.

Ethyl $[(1R^*, 3S^*)$ -3-methyl-10-(2,2,2-trifluoroacetyl)-3,4-dihydro-1*H*-[1,4]oxazino[4,3*a*]indol-1-yl]acetate (1p):

Reaction of the vinylogous carbonate **2a** (21 mg, 0.077 mmol) with TMSOTf (20 μ L, 0.115 mmol) and TFAA (40 μ L, 0.230 mmol) in dry CH₂Cl₂ (4 mL) for 4 h, as described for the oxazinoindole **1m** followed by purification on a silica gel column using ethyl acetate-hexanes (1:9) as eluent furnished the oxazinoindole **1a** (11 mg, 52 %) and **1p** (9 mg, 32 %, 69% based on recovered **1a**) as a syrupy liquid.

Physical appearance: syrupy liquid

COCO₂Et

CO₂Et

R_f: 0.5 (1:4, EtOAc:Hexanes).

IR (neat): 2935, 2253, 1735, 1652, 1476, 1381, 1273, 1192, 1147, 1094, 913, 741 cm⁻¹.

¹**H NMR (400MHz, CDCl₃):** δ 7.99 (d, *J* = 7.2 Hz, 1H), 7.40-7.30 (m, 3H), 5.76 (dd, *J* = 4.8, 4.3 Hz, 1H), 4.20-4.00 (m, 3H), 4.00-3.90 (m, 1H), 3.87 (ABX, *J* = 11.5, 10.4 Hz, 1H), 3.18 (ABX, *J* = 16.6, 3.6 Hz, 1H), 3.07 (ABX, *J* = 16.6, 5.6 Hz, 1H), 1.44 (d, *J* = 6.1 Hz, 3H), 1.17 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100MHz, CDCl₃, DEPT): δ 174.17 (q, *J* = 36.4 Hz, CO), 170.41 (C), 150.41 (C), 136.42 (C), 124.31 (C), 124.10 (CH), 123.61 (CH), 121.19 (CH), 121.14 (CH), 117.40 (q, *J* = 287.4 Hz, CF₃), 109.82 (CH), 106.11 (C), 71.90 (CH), 68.93 (CH), 60.63 (CH₂), 48.33 (CH₂), 38.67 (CH₂), 18.61 (CH₃), 14.16 (CH₃).

HRMS (**ESI**, **M**+**H**⁺): m/z calcd. for C₁₈H₁₉NO₄F₃ 370.1266, found 370.1261.

Ethyl [(1*R**,3*S**)-3-methyl-10-(3-oxobutyl)-3,4-dihydro-1*H*-[1,4]oxazino[4,3-*a*]indol-1-yl]acetate (1q):

To a cold (0 °C), magnetically stirred solution of the vinylogous carbonate **2a** (13 mg, 0.048 mmol) and methyl vinyl ketone (10 μ L, 0.110 mmol) in dry CH₂Cl₂ (6 mL) was added TMSOTf (15 μ L, 0.071 mmol) in two portions over a period of 30 min. The reaction mixture was quenched by adding saturated NaHCO₃, extracted with CH₂Cl₂ (3 x 5 mL), washed with brine and dried (*anhyd*. Na₂SO₄). Evaporation of the solvent and purification of the residue on a silica gel column using ethyl acetate-hexanes (1:9) as eluent furnished the oxazinoindole **1q** (11 mg, 69 %) as a syrupy liquid.

Physical appearance: syrupy liquid

R_f: 0.5 (1:3, EtOAc:Hexanes).

IR (neat): 2926, 2857, 1722, 1613, 1461, 1366, 1268, 1158, 1029, 973, 902, 855, 743 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ 7.41 (d, J = 8.0 Hz, 1H), 7.14 (d, J = 8.0 Hz, 1H), 7.09 (td, J = 8.1, 1.0 Hz, 1H), 7.02 (td, J = 8.0, 1.0 Hz, 1H), 5.21 (dd, J = 9.0, 3.1 Hz, 1H), 4.10 (q, J = 7.1 Hz, 2H), 3.95 (ABX, J = 11.0, 2.9 Hz, 1H), 3.95-3.80 (m, 1H), 3.60 (t, J = 11.0 Hz, 1H), 3.08 (ABX, J = 15.5, 3.1 Hz, 1H), 2.95-2.80 (m, 2H), 2.80-2.65 (m, 2H), 2.65-2.50 (m, 1H), 2.03 (s, 3H), 1.30 (d, J = 6.2 Hz, 3H), 1.17 (t, J = 7.1 Hz, 3H).

¹³C NMR (100MHz, CDCl₃, DEPT): δ 208.36 (C), 170.62 (C), 135.50 (C), 130.24 (C), 127.75 (C), 121.52 (CH), 119.69 (CH), 118.42 (CH), 108.71 (CH), 107.67 (C), 71.14

(CH), 69.96 (CH), 60.85 (CH₂), 47.99 (CH₂), 44.43 (CH₂), 40.91 (CH₂), 30.22 (CH₃), 19.02 (CH₂), 18.68 (CH₃), 14.34 (CH₃).

HRMS (ESI, M+H⁺): m/z calcd. for C₂₀H₂₆NO₄ 344.1862, found 344.1861.

Methyl $[(1R^*, 3S^*)-1-(2-\text{ethoxy-2-oxoethyl})-3-\text{methyl-3}, 4-\text{dihydro-1}H-[1,4]oxazino[4,3$ a]indol-10-yl]propanoate (1r):

Reaction of the vinylogous carbonate **2a** (80 mg, 0.293 mmol) with TMSOTf (100 μ L, 0.585 mmol) and methylacrylate (100 μ L, 1.097 mmol) in dry CH₂Cl₂ (6 mL) for 19 h, as described for the oxazinoindole **1m** followed by purification on a silica gel column using ethyl acetate-hexanes (1:9) as eluent furnished the oxazinoindole **1r** (72 mg, 69 %) as a syrupy liquid.

Physical appearance: syrupy liquid

R_f: 0.5 (1:4, EtOAc:Hexanes).

CO₂CH₃ CO₂Et

IR (neat): 2937, 1733, 1613, 1459, 1363, 1253, 1166, 1097, 1033, 746 cm⁻¹.

¹**H NMR (400MHz, CDCl₃):** δ 7.54 (d, *J* = 7.8 Hz, 1H), 7.25-7.15 (m, 2H), 7.12 (dt, *J* = 8.0, 1.0 Hz, 1H), 5.48 (dd, *J* = 9.2, 3.0 Hz, 1H), 4.21 (q, *J* = 7.2 Hz, 2H), 4.06 (ABX, *J* = 11.3, 2.9 Hz, 1H), 4.00-3.95 (m, 1H), 3.70 (ABX, *J* = 10.9, 10.9 Hz, 1H), 3.68 (s, 3H), 3.18 (ABX, *J* = 15.4, 3.0 Hz, 1H), 3.10-2.95 (m, 2H), 2.81 (ABX, *J* = 15.4, 9.2 Hz, 1H), 2.75-2.60 (m, 1H), 2.60-2.50 (m, 1H), 1.44 (d, *J* = 6.2 Hz, 3H), 1.27 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100MHz, CDCl₃, DEPT): δ 173.56 (C), 170.60 (C), 135.47 (C), 130.34 (C), 127.72 (C), 121.56 (CH), 119.77 (CH), 118.47 (CH), 108.71 (CH), 107.31 (C), 71.12 (CH), 69.97 (CH), 60.87 (CH₂), 51.82 (CH₃), 47.97 (CH₂), 40.87 (CH₂), 35.14 (CH₂), 20.28 (CH₂), 19.02 (CH₃), 14.34 (CH₃).

HRMS (ESI, M+H⁺): m/z calcd. for C₂₀H₂₆NO₅ 360.1811, found 360.1806.

Ethyl $[(1R^*,3S^*)-10-(1,4-dioxo-1,4-dihydronaphthalen-2-yl)-3-methyl-3,4-dihydro-1H-[1,4]oxazino[4,3-a]indol-1-yl]acetate (1s):$

Reaction of the vinylogous carbonate **2a** (20 mg, 0.073 mmol) with TMSOTf (20 μ L, 0.110 mmol) and naphthaquinone (22 mg, 0.146 mmol) in dry CH₂Cl₂ (6 mL) for 11 h, as described for the oxazinoindole **1m** followed by purification on a silica gel column using ethyl acetate-hexanes (1:9) as eluent furnished the oxazinoindole **1s** (21 mg, 68 %) as a dark brown solid.

Physical appearance: dark brown solid

m.p.: 182-184 °C.

R_f: 0.3 (1:4, EtOAc:Hexanes).

IR (neat): 2980, 1736, 1657, 1588, 1462, 1370, 1293, 1243, 1169, 1093, 1034, 787 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ 8.25-8.20 (m, 2H), 7.90-7.75 (m, 2H), 7.70 (d, J = 7.6 Hz, 1H), 7.39 (d, J = 7.9 Hz, 1H), 7.35-7.20 (m, 3H), 5.86 (dd, J = 8.1, 2.7 Hz, 1H), 4.35-4.25 (m, 1H), 4.22 (ABX, J = 11.1, 2.8 Hz, 1H), 4.15-4.05 (m, 2H), 3.86 (ABX, J = 11.1, 11.0 H, 1H), 2.77 (ABX, J = 15.9, 2.8 Hz, 1H), 2.66 (ABX, J = 15.9, 8.2 Hz, 1H), 1.53 (d, J = 6.1 Hz, 3H), 1.17 (t, J = 7.1 Hz, 3H).

¹³C NMR (100MHz, CDCl₃, DEPT): δ 185.18 (C), 184.82 (C), 169.88 (C), 143.85 (C), 136.70 (C), 135.72 (C), 134.80 (CH), 134.10 (C), 133.68 (CH), 132.56 (CH), 132.48 (C), 127.24 (CH), 127.02 (C), 126.15 (CH), 122.50 (CH), 121.84 (CH), 119.06 (CH), 109.29 (CH), 103.03 (C), 71.71 (CH), 69.41 (CH), 60.70 (CH₂), 47.99 (CH₂), 41.12 (CH₂), 19.04 (CH₃), 14.16 (CH₃).

HRMS (**ESI**, **M**+**H**⁺): m/z calcd. for C₂₆H₂₄NO₅ 430.1654, found 430.1649.

Ethyl [(1*R**,3*S**)-10-((diethylamino)methyl)-3-methyl-3,4-dihydro-1*H*-[1,4]oxazino[4,3*a*]indol-1-yl]acetate (1t):

Reaction of the vinylogous carbonate **2a** (55 mg, 0.201 mmol) with TMSOTf (55 μ L, 0.305 mmol) and preformed iminium salt **9** [prepared by mixing 40% aq formalin (20 μ L, 0.302 mmol), diethylamine (30 μ L, 0.302 mmol) and AcOH (0.1 mL) in EtOH (2 mL)] in dry CH₂Cl₂ (6 mL) for 12 h, as described for the oxazinoindole **1m** followed by purification on a silica gel column using ethyl acetate-hexanes (1:9) as eluent furnished the oxazinoindole **1t** (38 mg, 77 %) as a hygroscopic solid.

Physical appearance: hygroscopic solid

R_f: 0.3 (1:4, EtOAc:Hexanes).

IR (neat): 2971, 2880, 1733, 1461, 1372, 1284, 1247, 1163, 1094, 1051, 962, 916, 734 cm⁻¹. ¹**H** NMR (400MHz, CDCl₃): δ 7.52 (d, *J* = 7.7 Hz, 1H), 7.20-7.10 (m, 1H), 7.07 (dt, *J* = 7.2, 0.6 Hz, 1H), 7.02 (dt, *J* = 8.0, 1.1 Hz, 1H), 5.38 (dd, *J* = 9.2, 2.0 Hz, 1H), 4.10 (q, *J* = 7.1 Hz, 2H), 3.97 (ABX, *J* = 11.3, 2.8 Hz, 1H), 3.95-3.80 (m, 1H), 3.72 (ABX, *J* = 15.9, 2.4 Hz, 1H), 3.70-3.50 (m, 3H), 2.73 (ABX, *J* = 15.9, 9.3 Hz, 1H), 2.39 (q, *J* = 7.1 Hz, 4H), 1.31 (d, *J* = 6.1 Hz, 3H), 1.16 (t, *J* = 7.1 Hz, 3H), 0.91 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (100MHz, CDCl₃, DEPT): δ 171.38 (C), 135.08 (C), 132.25 (C), 129.05 (C), 121.03 (CH), 119.67 (CH), 118.71 (CH), 108.50 (CH), 106.56 (C), 71.70 (CH), 69.88 (CH), 60.43 (CH₂), 47.99 (CH₂), 47.91 (CH₂), 46.38 (2C, CH₂), 40.40 (CH₂), 19.05 (CH₃), 14.37 (CH₃), 11.73 (2C, CH₃).

HRMS (ESI, M+H⁺): m/z calcd. for $C_{21}H_{31}N_2O_3$ 359.2335, found 359.2335.

Ethyl $[(1R^*,3S^*)-10$ -formyl-3-methyl-3,4-dihydro-1*H*-[1,4]oxazino[4,3-*a*]indol-1-yl]acetate (1u):

Reaction of the vinylogous carbonate **2a** (25 mg, 0.091 mmol) with TMSOTf (35 μ L, 0.183 mmol) and triethylorthoformate (45 μ L, 0.274 mmol) in dry CH₂Cl₂ (6 mL) for 30 min., as described for the oxazinoindole **1m** followed by purification on a silica gel column using ethyl acetate-hexanes (1:9) as eluent furnished the oxazinoindole **1n** (26 mg, 95 %) as a hygroscopic solid.

Physical appearance: hygroscopic solid

R_f: 0.5 (1:4, EtOAc:Hexanes).

IR (neat): 2980, 1734, 1649, 1514, 1464, 1364, 1287, 1242, 1178, 1096, 1039, 751 cm⁻¹. ¹H NMR (400MHz, CDCl₃): δ 10.24 (s, 1H), 8.08 (dd, J = 5.0, 2.5 Hz, 1H), 7.40-7.25 (m, 3H), 5.71 (dd, J = 6.8, 3.2 Hz, 1H), 4.20-4.10 (m, 3H), 4.05-3.95 (m, 1H), 3.83 (ABX, J = 11.4, 10.6 Hz, 1H), 3.39 (ABX, J = 16.4, 3.3 Hz, 1H), 3.14 (ABX, J = 16.4, 6.9 Hz, 1H), 1.45 (d, J = 6.1 Hz, 3H), 1.20 (t, J = 7.1 Hz, 3H).

¹³C NMR (100MHz, CDCl₃, DEPT): δ 183.40 (C), 170.31 (C), 143.47 (C), 135.74 (C), 127.35 (C), 123.42 (CH), 123.23 (CH), 119.28 (CH), 111.07 (C), 109.56 (CH), 71.15 (CH), 69.33 (CH), 60.72 (CH₂), 47.91 (CH₂), 40.30 (CH₂), 18.78 (CH₃), 14.25 (CH₃).

HRMS (ESI, M+H⁺): m/z calcd. for C₁₇H₂₀NO₄ 302.1392, found 302.1397.

2-[(1*R**,3*S**)-3-methyl-3,4-dihydro-1*H*-[1,4]oxazino[4,3-*a*]indol-1-yl]acetic acid (11a):

To a stirred solution of the oxazinoindole **1a** (88 mg, 0.32 mmol) in EtOH (5 mL) was added 10% aq. NaOH (5 mL) and stirred overnight at r.t. After completion of the reaction, the solvent was evaporated and the reaction mixture was acidified to pH 2 using 2N HCl and then extracted with ethyl acetate (3 x 5 mL), washed with brine and dried (anhyd. Na₂SO₄). Evaporation of the solvent and purification of the residue on a silica gel

column using ethyl acetate-hexanes (2:1) as the eluent furnished the acid **11a** (69 mg, 87%) as a syrupy liquid. $-CO_{2H}$

Physical appearance: syrupy liquid

R_f: 0.5 (3:1, EtOAc:Hexanes).

IR (neat): 3049, 2977, 2874, 1710, 1456, 1416, 1355, 1310, 1154, 1090, 1038, 955, 782, 738 cm⁻¹.

¹**H NMR (400MHz, CDCl₃):** δ 7.58 (d, *J* = 7.7 Hz, 1H), 7.28 (d, *J* = 8.0 Hz, 1H), 7.21 (dt, *J* = 7.7, 0.8 Hz, 1H), 7.13 (dt, *J* = 8.0, 0.8 Hz, 1H), 6.25 (s, 1H), 5.37 (dd, *J* = 8.6, 3.9 Hz, 1H), 4.25-4.15 (m, 1H), 4.13 (ABX, *J* = 11.0, 3.2 Hz, 1H), 3.67 (ABX, *J* = 11.0, 11.0 Hz, 1H), 3.12 (ABX, *J* = 16.2, 3.9 Hz, 1H), 2.94 (ABX, *J* = 16.2, 8.6 Hz, 1H), 1.47 (d, *J* = 6.1 Hz, 3H).

¹³C NMR (100MHz, CDCl₃, DEPT): δ 175.79 (C), 136.18 (C), 134.91 (C), 128.05 (C), 121.61 (CH), 120.69 (CH), 120.39 (CH), 108.89 (CH), 96.01 (CH), 71.01 (CH), 70.64 (CH), 47.82 (CH₂), 40.12 (CH₂), 19.23 (CH₃).

HRMS (**ESI**, **M**+**H**⁺): m/z calcd. for C₁₄H₁₆NO₃ 246.1130, found 246.1126.

2-[(1*R**,3*S**)-3-methyl-3,4-dihydro-1*H*-[1,4]oxazino[4,3-*a*]indol-1-yl]ethanol (12a):

To a magnetically stirred solution of the oxazino indole **1a** (300 mg, 1.097 mmol) in dry THF (5 mL) at 0 $^{\circ}$ C was added LAH (62 mg, 1.64 mmol) in portions and allowed to warm to r.t for 3 h. After completion of the reaction (TLC control), moist Na₂SO₄ was added and the reaction mass was filtered and the filtrate was dried (*anhyd*. Na₂SO₄). Evaporation of the solvent and purification of the residue on a silica gel column using ethyl acetate-hexanes (1:3) furnished the alcohol **15b** (210 mg, 83%) as a sticky solid which was then recrystallized from hexanes and ether.

Physical appearance: white solid

R_f: 0.3 (1:3, EtOAc:Hexanes).

mp: 94-96 °C.

IR (neat): 3380, 2875, 1457, 1362, 1318, 1234, 1151, 1095, 1054, 781, 743 cm⁻¹.

¹**H NMR (400MHz, CDCl₃):** δ 7.58 (d, *J* = 7.7 Hz, 1H), 7.27 (d, *J* = 9.2 Hz, 1H), 7.19 (dt, *J* = 7.7, 0.8 Hz, 1H), 7.12 (dt, *J* = 7.7, 0.8 Hz, 1H), 6.22 (s, 3H), 5.15 (dd, *J* = 8.0, 2.9 Hz, 1H), 4.20-4.10 (m, 2H), 3.93 (t, *J* = 5.7 Hz, 2H), 3.67 (ABX, *J* = 11.8, 11.7 Hz, 1H), 2.45-2.30 (m, 1H), 2.25-2.10 (m, 1H), 1.46 (d, *J* = 6.0 Hz, 3H).

¹³C NMR (100MHz, CDCl₃, DEPT): δ 136.15 (C), 135.98 (C), 128.18 (C), 121.38 (CH), 120.59 (CH), 120.29 (CH), 108.80 (CH), 95.88 (CH), 74.66 (CH), 70.62 (CH), 60.74 (CH₂), 47.89 (CH₂), 36.76 (CH₂), 19.38 (CH₃).

HRMS (ESI, M+H⁺): m/z calcd. for $C_{14}H_{18}NO_2$ 232.1338, found 232.1338.

(3*aR**,5*S**,12*aR**)-5-methyl-3,3*a*,5,6-tetrahydro-2*H*,12*H*-furo[3',2':2,3][1,4]oxazino[4,3*a*]indole-2,12-dione (13a):

To a stirred solution of the acid **11a** (28 mg, 0.114 mmol) in dry CH_2Cl_2 (6 mL) at r.t., was added *m*-CPBA (50 mg, 0.290 mmol.) and stirred until completion of the reaction (1 h, TLC control). The reaction mixture was then quenched with saturated NaHCO₃, extracted with CH_2Cl_2 (3 x 10 mL), washed with brine and dried (*anhyd*. Na₂SO₄). Evaporation of the solvent and purification of the residue on a silica gel column using ethyl acetate-hexanes (1:19) gave the spirooxoindole **13a** (22 mg, 76%) as a brown syrupy liquid.

Physical appearance: brown syrupy liquid

R_f: 0.5 (1:19, EtOAc:Hexanes).

IR (neat): 2924, 2854, 1738, 1621, 1470, 1374, 1263, 1154, 1026, 878, 749 cm⁻¹.

¹**H** NMR (400MHz, C₆D₆): δ 7.42 (d, J = 7.5 Hz, 1H), 7.00 (td, J = 8.3, 1.2 Hz, 1H), 6.41 (t, J = 7.5 Hz, 1H), 6.14 (d, J = 8.3 Hz, 1H), 3.39 (d, J = 5.0 Hz, 1H), 3.09 (dd, J = 4.9, 4.8 Hz, 1H), 2.79 (d, J = 11.2 Hz, 1H), 2.75-2.60 (m, 2H), 2.40 (d, J = 17.2 Hz, 1H), 0.71 (d, J = 5.5 Hz, 3H).

¹³C NMR (100MHz, C₆D₆, DEPT): δ 195.00 (C), 172.71 (C), 159.32 (C), 138.37 (CH), 125.76 (CH), 119.88 (C), 119.07 (CH), 109.82 (CH), 90.63 (C), 73.09 (CH), 69.46 (CH), 46.45 (CH₂), 36.84 (CH₂), 17.74 (CH₃).

HRMS (**ESI**, **M**+**H**⁺): m/z calcd. for C₁₄H₁₄NO₄ 260.0923, found 260.0921.

(3*aR**,5*S**,12*aR**)-5-methyl-3,3*a*,5,6-tetrahydro-2*H*,12*H*-furo[3',2':2,3][1,4]oxazino[4,3*a*]indole-12-one (14a):

To a stirred solution of the alcohol **12a** (33 mg, 0.142 mmol) in dry CH_2Cl_2 (6 mL) at r.t., was added *m*-CPBA (75 mg, 0.428 mmol.) and stirred until completion of the reaction (1 h, TLC control). The reaction mixture was then quenched with saturated NaHCO₃, extracted with CH_2Cl_2 (3 x 10 mL), washed with brine and dried (*anhyd*. Na₂SO₄).

Evaporation of the solvent and purification of the residue on a silica gel column using ethyl acetate-hexanes (1:19) and recrystallisation of the residue obtained, from ethyl acetate-hexanes gave the spirooxoindole **14a** (24 mg, 69%) as a brown solid.

Physical appearance: brown solid

R_f: 0.5 (1:19, EtOAc:Hexanes).

mp: 166-168 °C

N N Me

IR (neat): 2920, 1706, 1609, 1473, 1373, 1318, 1261, 1142, 1080, 1032, 934, 876, 755 cm⁻¹.

¹**H NMR (400MHz, CDCl₃):** δ 7.54 (d, J = 7.4 Hz, 1H), 7.47 (dt, J = 8.2, 1.0 Hz, 1H), 6.80-6.75 (m, 2H), 4.38 (dt, J = 10.5, 7.1 Hz, 1H), 4.29 (dt, J = 8.9, 1.2 Hz, 1H), 3.86 (d, J = 4.3 Hz, 1H), 3.52 (ABX, J = 13.6, 2.2 Hz, 1H), 3.50-3.40 (m, 1H), 3.15 (ABX, J = 13.6, 10.6 Hz, 1H), 2.75-2.65 (m, 1H), 2.12 (dd, J = 13.2, 5.6 Hz, 1H), 1.20 (d, J = 6.1 Hz, 3H).

¹³C NMR (100MHz, CDCl₃, DEPT): δ 199.73 (C), 159.33 (C), 138.06 (CH), 125.35 (CH), 119.58 (C), 118.90 (CH), 109.80 (CH), 93.99 (C), 75.13 (CH), 69.27 (CH), 68.14 (CH₂), 47.27 (CH₂), 31.64 (CH₂), 18.38 (CH₃).

HRMS (ESI, M+H⁺): m/z calcd. for $C_{14}H_{16}NO_3$ 246.1130, found 246.

66

CCDC No. 801688 Identification code Empirical formula Formula weight Temperature Wavelength Crystal system, space group Unit cell dimensions

Volume Z, Calculated density Absorption coefficient F(000) Crystal size Theta range for data collection Limiting indices Reflections collected / unique Completeness to theta = 25.00Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole

1a C16 H20 N O3 274.33 298(2) K 0.71073 A Monoclinic, P2(1)/na = 10.4764(4) A alpha = 90 deg. b = 8.4739(3) A beta = 102.944(2) deg. c = 17.5527(8) A gamma = 90 deg. 1518.66(11) A^3 4, 1.200 Mg/m^3 0.083 mm^-1 588 0.38 x 0.22 x 0.20 mm 2.54 to 29.06 deg. -14<=h<=12, -8<=k<=11,21<=l<=23 12548 / 3748 [R(int) = 0.0268]96.8 % None 0.9837 and 0.9693 Full-matrix least-squares on F^2 3748 / 0 / 184 1.021 R1 = 0.0707, wR2 = 0.2112R1 = 0.1213, wR2 = 0.25080.006(4)0.392 and -0.518 e.A^-3

Crystal data and structure refinement for 14a

CCDC No. 801689 Identification code Empirical formula Formula weight Temperature Wavelength Crystal system, space group Unit cell dimensions

Volume Z, Calculated density Absorption coefficient F(000) Crystal size Theta range for data collection Limiting indices Reflections collected / unique Completeness to theta = 25.00Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Largest diff. peak and hole

14a C14 H15 N O3 245.27 298(2) K 0.71073 A Monoclinic, P2(1)/ca = 6.05110(10) A alpha = 90 deg. b = 14.5244(5) A beta = 100.186(2) deg. c = 14.0584(5) A gamma = 90 deg. 1216.10(6) A^3 4, 1.340 Mg/m^3 0.095 mm^-1 520 0.35 x 0.28 x 0.15 mm 3.17 to 28.30 deg. -7<=h<=6, -15<=k<=19, -18<=l<=16 8987 / 2805 [R(int) = 0.0323]96.5 % None 0.9860 and 0.9677 Full-matrix least-squares on F² 2805 / 0 / 164 0.901 R1 = 0.0440, wR2 = 0.1207R1 = 0.0749, wR2 = 0.1434

0.216 and -0.191 e.A^-3