Direct synthesis of ester-containing indium homoenolate and its application in palladium-catalyzed cross-coupling with aryl halide

Zhi-Liang Shen, Kelvin Kau Kiat Goh, Colin Hong An Wong, Yong-Sheng Yang, Yin-Chang Lai, Hao-Lun Cheong, and Teck-Peng Loh*

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore

E-mail: <u>teckpeng@ntu.edu.sg</u>

Supporting Information

Table of Contents

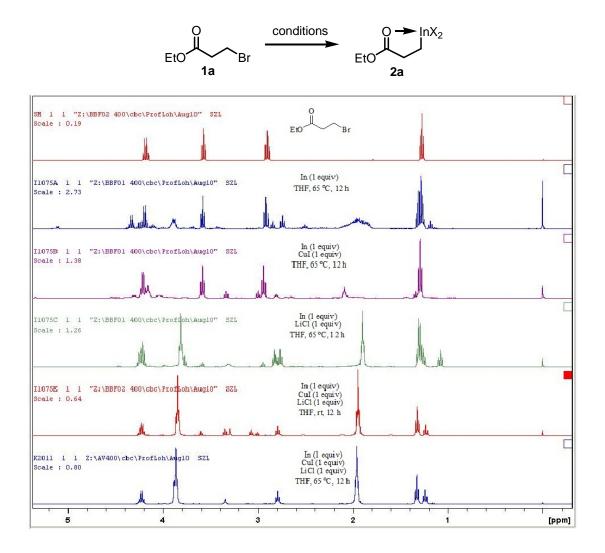
General Methods
¹ H NMR comparison of the reaction products performed under different conditions
Experimental procedure
Spectroscopic data of products
References
Copies of ¹ H NMR and ¹³ C NMR spectra of products

General methods

All β -halo esters and aryl halides were commercially available and used without further purification. Analytical grade THF and DMA were used in all the reactions without purification such as dehydration or re-distillation. All indium, copper iodide, palladium catalysts and lithium chloride were purchased from chemical companies and used directly without further purifications.

Analytical thin layer chromatography (TLC) was performed using Merck 60 F254 precoated silica gel plate (0.2 mm thickness). Subsequent to elution, plates were visualized using UV radiation (254 nm) on Spectroline Model ENF-24061/F 254 nm. Further visualization was possible by staining with acidic solution of ceric molybdate.

Flash chromatography was performed using Merck silica gel 60 with freshly distilled solvents. Columns were typically packed as slurry and equilibrated with the appropriate solvent system prior to use.


Infrared spectra were recorded on a Bio-Rad FTS 165 FTIR spectrometer. The oil samples were examined under neat conditions.

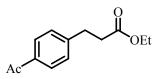
High Resolution Mass (HRMS) spectra were obtained using Finnigan MAT95XP GC/HRMS (Thermo Electron Corporation).

Proton nuclear magnetic resonance spectra (¹H NMR) were recorded on a Bruker Avance DPX 300 and Bruker AMX 400 and 500 spectrophotometer (CDCl₃ as solvent). Chemical shifts for ¹H NMR spectra are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-*d* (δ 7.2600, singlet). Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quartet); or m (multiplets). The number of protons (n) for a given resonance is indicated by nH. Coupling constants are reported as a *J* value in Hz. Carbon nuclear magnetic resonance spectra (¹³C NMR) are reported as δ in units of parts per million (δ 77.03, triplet).

¹H NMR comparison of the reaction products performed under

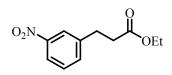
different conditions

Experimental procedure

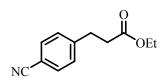

General procedure for the synthesis of ester-containing indium homoenolate from β -halo ester and palladium-catalyzed cross-coupling with aryl halide (Tables 3-4): To an 8 mL sample vial was added β -halo ester (1 mmol), indium (1 mmol), Cul (1 mmol), LiCl (1 mmol), and analytical grade THF (3 mL) sequentially. The reaction was stirred vigorously at 65 °C for 12 hrs. After reaction, it was kept still for around 10 minutes. Then the upper clear solution was carefully separated from the bottom black precipitate by syringe. The residual black precipitate was washed with 3 mL THF and the THF layer was carefully separated by syringe. The combined organic layers were concentrated under vacuo. Then the residue was dissolved in 3 mL DMA and transferred to another 8 mL sample vial. Aryl halide (0.7 mmol), LiCl (1 mmol), and Pd(PPh₃)₄ (0.05 mmol, 0.05 equiv) was added to the sample vial sequentially. The reaction mixture was stirred at 90 °C for 24 hrs. After reaction, it was directly purified by silica gel column chromatography using EtOAc/hexane as eluant to afford the desired product.

Spectroscopic data of products

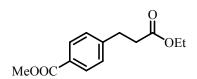
$$\operatorname{EtO}^{O \rightarrow \operatorname{In}X_2}$$


Indium homoenolate 2a

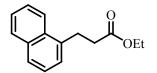
¹H NMR (500 MHz, CDCl₃): δ 1.24 (t, J = 7.18 Hz, 2H), 1.33 (t, J = 7.14 Hz, 3H), 2.80 (t, J = 7.18 Hz, 2H), 4.23 (q, J = 7.14 Hz, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ 14.0, 14.3, 31.6, 62.8, 180.4 ppm.


Ethyl 3-(4-acetylphenyl)propanoate^{1,2} ¹H NMR (CDCl₃, 400 MHz): δ 1.23 (t, *J* = 7.20 Hz, 3H), 2.58 (s, 3H), 2.65 (t, *J* = 7.64 Hz, 2H), 3.01 (t, *J* = 7.64 Hz, 2H), 4.12 (q, *J* = 7.20 Hz, 2H), 7.30 (d, *J* = 8.08 Hz, 2H), 7.89 (d, *J*

= 8.08 Hz, 2H) ppm; ¹³C NMR (CDCl₃, 100 MHz): δ 14.1, 26.5, 30.8, 35.2, 60.5, 128.5, 128.5, 135.3, 146.2, 172.4, 197.7 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₃H₁₇O₃: 221.1178, found: 221.1181. FTIR (KBr, neat): *v* 1732, 1682 cm⁻¹.


Ethyl 3-(3-nitrophenyl)propanoate^{3,4}

¹H NMR (300 MHz, CDCl₃): δ 1.24 (t, J = 7.12 Hz, 3H), 2.68 (t, J = 7.53 Hz, 2H), 3.07 (t, J = 7.52 Hz, 2H), 4.14 (q, J = 7.13 Hz, 2H), 7.44-7.58 (m, 2H), 8.06-8.09 (m, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 14.1, 30.4, 35.2, 60.7, 121.5, 123.2, 129.3, 134.7, 142.5, 148.3, 172.1 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₁H₁₄NO₄: 224.0923, found: 224.0920. FTIR (KBr, neat): v 1732 cm⁻¹.

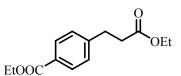

Ethyl 3-(4-cyanophenyl)propanoate¹

¹H NMR (400 MHz, CDCl₃): δ 1.23 (t, J = 7.18 Hz, 3H), 2.64 (t, J = 7.60 Hz, 2H), 3.01 (t, J = 7.60 Hz, 2H), 4.12 (q, J = 7.18 Hz, 2H), 7.32 (d, J = 8.17 Hz, 2H), 7.58 (d, J = 8.20 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 14.2, 30.9, 35.1, 60.7, 110.2, 118.9, 129.2, 132.3, 146.2, 172.2 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₂H₁₄NO₂: 204.1025, found: 204.1031. FTIR (KBr, neat): v 2230, 1732 cm⁻¹.

Methyl 4-(3-ethoxy-3-oxopropyl)benzoate¹

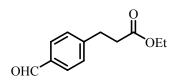
¹H NMR (400 MHz, CDCl₃): δ 1.22 (t, J = 7.18 Hz, 3H), 2.63 (t, J = 7.94 Hz, 2H), 3.00 (t, J = 7.64 Hz, 2H), 3.89 (s, 3H), 4.12 (q, J = 7.18 Hz, 2H), 7.27 (d, J = 8.36 Hz, 2H), 7.96 (d, J = 8.36 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 14.0, 30.7, 35.2, 51.8, 60.4, 128.1, 128.2, 129.7, 145.9, 166.8, 172.3 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₃H₁₇O₄: 237.1127, found: 237.1119. FTIR (KBr, neat): v 1720 cm⁻¹.

Ethyl 3-(naphthalen-1-yl)propanoate⁵


¹H NMR (400 MHz, CDCl₃): δ 1.23 (t, J = 7.12 Hz, 3H), 2.74 (t, J = 8.14 Hz, 2H), 3.41 (t, J = 7.72 Hz, 2H), 4.14 (q, J = 7.12 Hz, 2H), 7.33-7.40 (m, 2H), 7.45-7.53 (m, 2H), 7.71 (d, J = 7.89 Hz, 1H), 7.84 (d, J = 7.73 Hz, 1H), 8.02 (d, J = 8.24 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 14.2, 28.1, 35.2, 60.5, 123.4, 125.5, 125.6, 125.9, 126.0, 127.1, 128.9, 131.6, 133.9, 136.6, 173.0 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₅H₁₇O₂: 229.1229, found: 229.1238. FTIR (KBr, neat): v 1732 cm⁻¹.

Ethyl 3-(pyridin-3-yl)propanoate¹

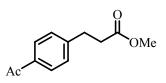
¹H NMR (300 MHz, CDCl₃): δ 1.23 (t, J = 7.14 Hz, 3H), 2.63 (t, J = 7.71 Hz, 2H), 2.95 (t, J = 7.53 Hz, 2H), 4.12 (q, J = 7.14 Hz, 2H), 7.21 (dd, J = 4.83, 7.75 Hz, 1H), 7.53 (d, J = 7.84 Hz, 1H), 8.45-8.48 (m, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 14.1, 28.1, 35.4, 60.6, 123.3, 135.8, 135.8, 147.8, 149.8, 172.3 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₀H₁₄NO₂: 180.1025, found: 180.1030. FTIR (KBr, neat): v 1732 cm⁻¹.


Ethyl 3-(5-formylfuran-2-yl)propanoate

¹H NMR (400 MHz, CDCl₃): δ 1.25 (t, J = 7.16 Hz, 3H), 2.73 (t, J = 7.52 Hz, 2H), 3.07 (t, J = 7.36 Hz, 2H), 4.15 (q, J = 7.16 Hz, 2H), 6.31 (d, J = 3.52 Hz, 1H), 7.18 (d, J = 3.52 Hz, 1H), 9.53 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 14.1, 23.7, 31.8, 60.7, 109.1, 123.2, 151.9, 161.4, 171.7, 177.0 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₀H₁₃O₄: 197.0814, found: 197.0810. FTIR (KBr, neat): v 1732, 1670 cm⁻¹.

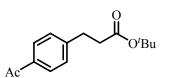
Ethyl 4-(3-ethoxy-3-oxopropyl)benzoate¹

¹H NMR (400 MHz, CDCl₃): δ 1.22 (t, *J* = 7.18 Hz, 3H), 1.38 (t, *J* = 7.16 Hz, 3H), 2.63 (t, *J* = 7.85 Hz, 2H), 3.00 (t, *J* = 7.63 Hz, 2H), 4.12 (q, *J* = 7.18 Hz, 2H), 4.36 (q, *J* = 7.16 Hz, 2H), 7.27 (d, *J* = 8.24 Hz, 2H), 7.97 (d, *J* = 8.24 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 14.1, 14.2, 30.8, 35.3, 60.4, 60.7, 128.2, 128.6, 129.7, 145.8, 166.4, 172.4 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₄H₁₉O₄: 251.1283, found: 251.1280. FTIR (KBr, neat): *v* 1720 cm⁻¹.

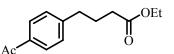


Ethyl 3-(4-formylphenyl)propanoate⁶

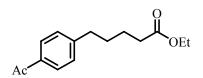
¹H NMR (400 MHz, CDCl₃): δ 1.23 (t, *J* = 7.18 Hz, 3H), 2.66 (t, *J* = 7.77 Hz, 2H), 3.03 (t, *J* = 7.60 Hz, 2H), 4.13 (q, *J* = 7.18 Hz, 2H), 7.38 (d, *J* = 8.08 Hz, 2H), 7.81 (d, *J* = 8.08 Hz, 2H), 9.97 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 14.1, 30.9, 35.1, 60.5, 128.9, 129.9, 134.8, 147.8, 172.2, 191.7 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₂H₁₅O₃: 207.1021, found: 207.1023. FTIR (KBr, neat): *v* 1732, 1701 cm⁻¹.


Ethyl 3-(pyridin-2-yl)propanoate⁷

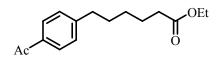
¹H NMR (400 MHz, CDCl₃): δ 1.23 (t, J = 7.12 Hz, 3H), 2.80 (t, J = 7.53 Hz, 2H), 3.12 (t, J = 7.47 Hz, 2H), 4.13 (q, J = 7.12 Hz, 2H), 7.11-7.14 (m, 1H), 7.19 (d, J = 7.79 Hz, 1H), 7.59 (td, J = 1.85, 7.70 Hz, 1H), 8.53 (d, J = 4.36 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 14.2, 32.9, 33.5, 60.4, 121.3, 123.0, 136.4, 149.3, 160.1, 173.1 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₀H₁₄NO₂: 180.1025, found: 180.1021. FTIR (KBr, neat): v 1728 cm⁻¹.


Methyl 3-(4-acetylphenyl)propanoate⁸

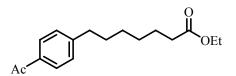
¹H NMR (300 MHz, CDCl₃): δ 2.58 (s, 3H), 2.66 (t, *J* = 7.83 Hz, 2H), 3.01 (t, *J* = 7.60 Hz, 2H), 3.67 (s, 3H), 7.30 (d, *J* = 8.30 Hz, 2H), 7.89 (d, *J* = 8.30 Hz, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 26.5, 30.8, 35.1, 51.7, 128.5, 128.6, 135.4, 146.2, 172.9, 197.7 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₂H₁₅O₃: 207.1021, found: 207.1030. FTIR (KBr, neat): *v* 1736, 1682 cm⁻¹.


Tert-Butyl 3-(4-acetylphenyl)propanoate

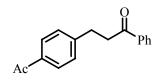
¹H NMR (300 MHz, CDCl₃): δ 1.41 (s, 9H), 2.54-2.59 (m, 5H), 2.97 (t, J = 7.57 Hz, 2H), 7.30 (d, J = 8.30 Hz, 2H), 7.88 (d, J = 8.30 Hz, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 26.5, 28.0, 31.0, 36.4, 80.6, 128.5 (CHx4), 135.3, 146.5, 171.8, 197.7 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₅H₂₁O₃: 249.1491, found: 249.1495. FTIR (KBr, neat): v 1732, 1682 cm⁻¹.


Ethyl 4-(4-acetylphenyl)butanoate²

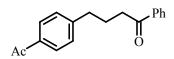
¹H NMR (300 MHz, CDCl₃): δ 1.26 (t, *J* = 7.13 Hz, 3H), 1.92-2.02 (m, 2H), 2.32 (t, *J* = 7.40 Hz, 2H), 2.58 (s, 3H), 2.72 (t, *J* = 7.41 Hz, 2H), 4.13 (q, *J* = 7.13 Hz, 2H), 7.28 (d, *J* = 8.26 Hz, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 14.2, 26.1, 26.5, 33.5, 35.1, 60.3, 128.5, 128.7, 135.2, 147.2, 173.2, 197.7 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₄H₁₉O₃: 253.1334, found: 253.1336. FTIR (KBr, neat): *v* 1732, 1682 cm⁻¹.


Ethyl 5-(4-acetylphenyl)pentanoate²

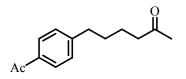
¹H NMR (300 MHz, CDCl₃): δ 1.25 (t, J = 7.14 Hz, 3H), 1.65-1.70 (m, 4H), 2.32 (t, J = 6.95 Hz, 2H), 2.58 (s, 3H), 2.69 (t, J = 7.05 Hz, 2H), 4.12 (q, J = 7.14 Hz, 2H), 7.26 (d, J = 8.22 Hz, 2H), 7.88 (d, J = 8.22 Hz, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 14.2, 24.5, 26.5, 30.4, 34.1, 35.6, 60.2, 128.5, 128.6, 135.1, 148.0, 173.4, 197.8 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₅H₂₁O₃: 249.1491, found: 249.1490. FTIR (KBr, neat): v 1732, 1682 cm⁻¹.


Ethyl 6-(4-acetylphenyl)hexanoate

¹H NMR (300 MHz, CDCl₃): δ 1.24 (t, *J* = 7.15 Hz, 3H), 1.29-1.42 (m, 2H), 1.61-1.71 (m, 4H), 2.29 (t, *J* = 7.42 Hz, 2H), 2.58 (s, 3H), 2.67 (t, *J* = 7.57 Hz, 2H), 4.12 (q, *J* = 7.15 Hz, 2H), 7.26 (d, *J* = 8.19 Hz, 2H), 7.88 (d, *J* = 8.19 Hz, 2H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 14.2, 24.7, 26.5, 28.7, 30.7, 34.2, 35.7, 60.2, 128.5, 128.6, 135.0, 148.4, 173.7, 197.8 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₆H₂₃O₃: 263.1647, found: 263.1656. FTIR (KBr, neat): *v* 1732, 1682 cm⁻¹.


Ethyl 7-(4-acetylphenyl)heptanoate

¹H NMR (400 MHz, CDCl₃): δ 1.25 (t, *J* = 7.12 Hz, 3H), 1.33-1.37 (m, 4H), 1.60-1.66 (m, 4H), 2.28 (t, *J* = 7.45 Hz, 2H), 2.58 (s, 3H), 2.66 (t, *J* = 7.56 Hz, 2H), 4.12 (q, *J* = 7.12 Hz, 2H), 7.26 (d, *J* = 8.57 Hz, 2H), 7.88 (d, *J* = 8.24 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 14.2, 24.8, 26.5, 28.8, 28.9, 30.9, 34.3, 35.9, 60.2, 128.5, 128.6, 134.9, 148.6, 173.8, 197.9 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₇H₂₅O₃: 277.1804, found: 277.1803. FTIR (KBr, neat): *v* 1732, 1682 cm⁻¹.


3-(4-Acetylphenyl)-1-phenylpropan-1-one⁹

¹H NMR (400 MHz, CDCl₃): δ 2.58 (s, 3H), 3.13 (t, J = 7.60 Hz, 2H), 3.33 (t, J = 7.22 Hz, 2H), 7.35 (d, J = 8.21 Hz, 2H), 7.46 (t, J = 7.81 Hz, 2H), 7.56 (t, J = 7.45 Hz, 1H), 7.90 (d, J = 8.21 Hz, 2H), 7.96 (d, J = 7.24 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 26.6, 29.9, 39.7, 128.0, 128.6, 128.7, 133.2, 135.3, 136.6, 147.1, 197.7, 198.6 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₇H₁₇O₂: 253.1229, found: 253.1229.FTIR (KBr, neat): v 1670, 1676 cm⁻¹.

4-(4-Acetylphenyl)-1-phenylbutan-1-one

¹H NMR (400 MHz, CDCl₃): δ 2.07-2.15 (m, 2H), 2.59 (s, 3H), 2.78 (t, *J* = 7.41 Hz, 2H), 2.99 (t, *J* = 7.20 Hz, 2H), 7.31 (d, *J* = 8.20 Hz, 2H), 7.45 (t, *J* = 7.89 Hz, 2H), 7.54-7.58 (m, 1H), 7.88-7.93 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 25.2, 26.6, 35.2, 37.5, 128.0, 128.6, 128.7, 133.1, 135.2, 136.9, 147.6, 197.9, 199.7 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₈H₁₉O₂: 267.1385, found: 267.1380. FTIR (KBr, neat): *v* 1678 cm⁻¹.

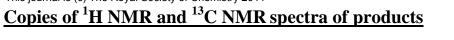
6-(4-Acetylphenyl)hexan-2-one¹⁰

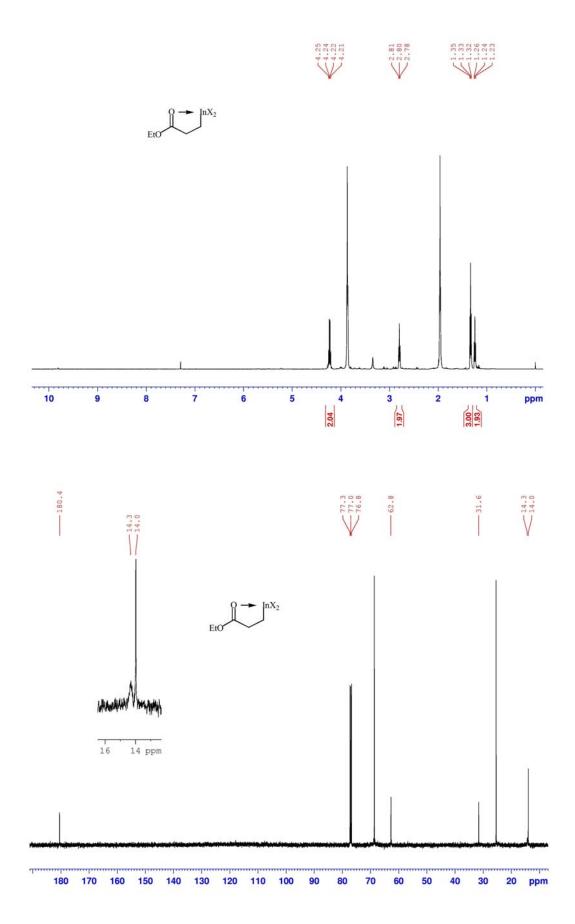
¹H NMR (400 MHz, CDCl₃): δ 1.62-1.64 (m, 4H), 2.13 (s, 3H), 2.46 (t, J = 6.76 Hz, 2H), 2.58 (s, 3H), 2.68 (t, J = 7.04 Hz, 2H), 7.26 (d, J = 8.22 Hz, 2H), 7.88 (d, J = 8.22 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 23.3, 26.6, 29.9, 30.5, 35.7, 43.4, 128.5, 128.6, 135.1, 148.0, 197.8, 208.7 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₄H₁₉O₂: 219.1385, found: 219.1385. FTIR (KBr, neat): ν 1713, 1678 cm⁻¹.

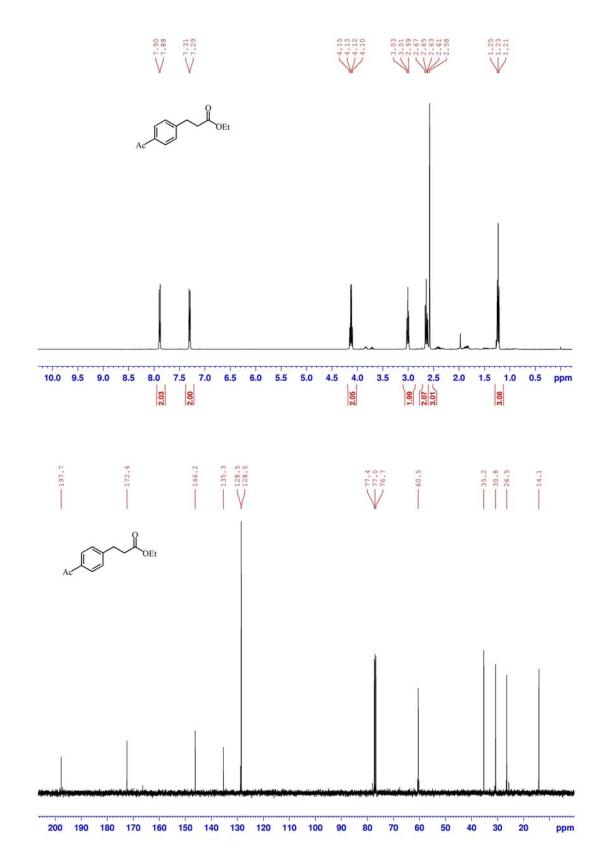
References

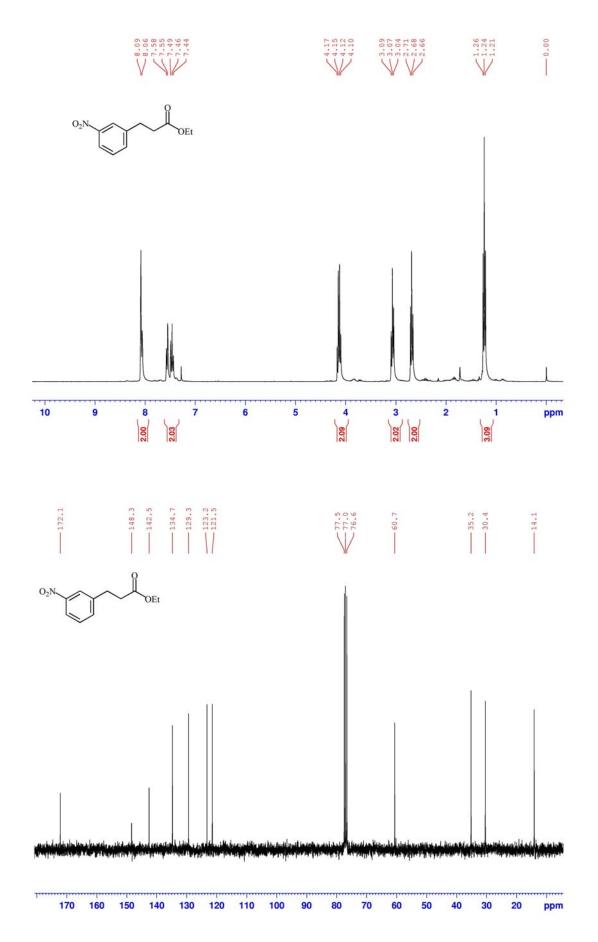
- 1. M. Amatore, C. Gosmini, J. Périchon, J. Org. Chem. 2006, 71, 6130.
- 2. N. Kurono, K. Sugita, S. Takasugi, M. Tokuda, Tetrahedron 1999, 55, 6097.
- 3. R. Fuchs, J. A. Caputo, J. Org. Chem. 1966, 31, 1524.
- 4. W. Peng, B. S. J. Blagg, Org. Lett. 2006, 8, 975.

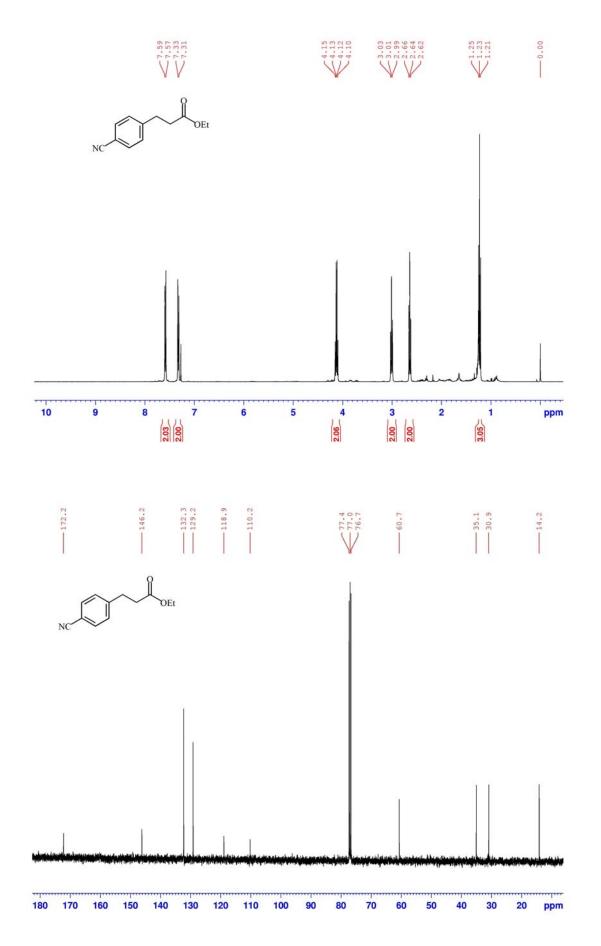
5. Z. J. Yao, C. R. King, T. Cao, J. Kelley, G. W. A. Milne, J. H. Voigt, T. R. Burke, *J. Med. Chem.* **1999**, *42*, 25.

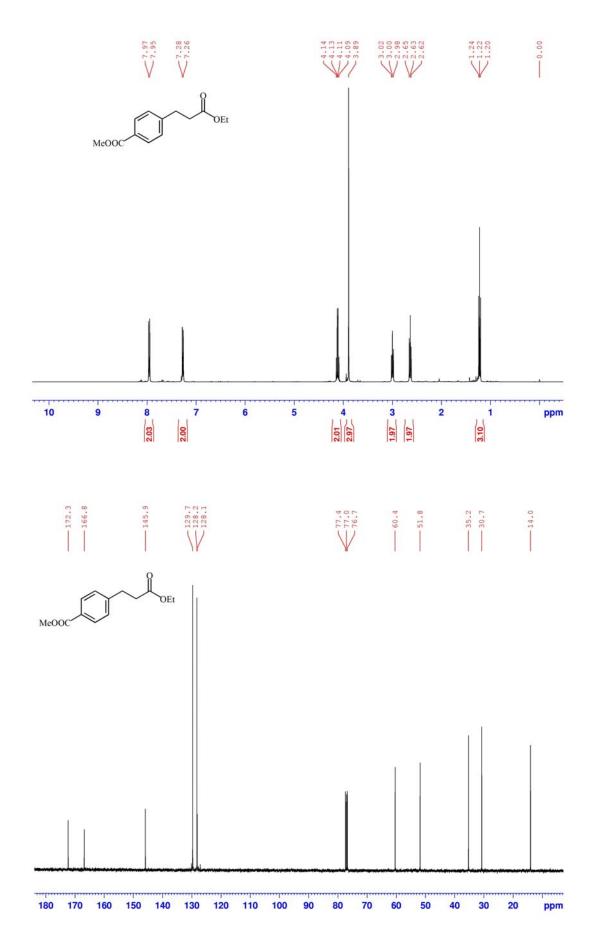

6. C. Nájera, L. Botella, Tetrahedron 2005, 61, 9688.

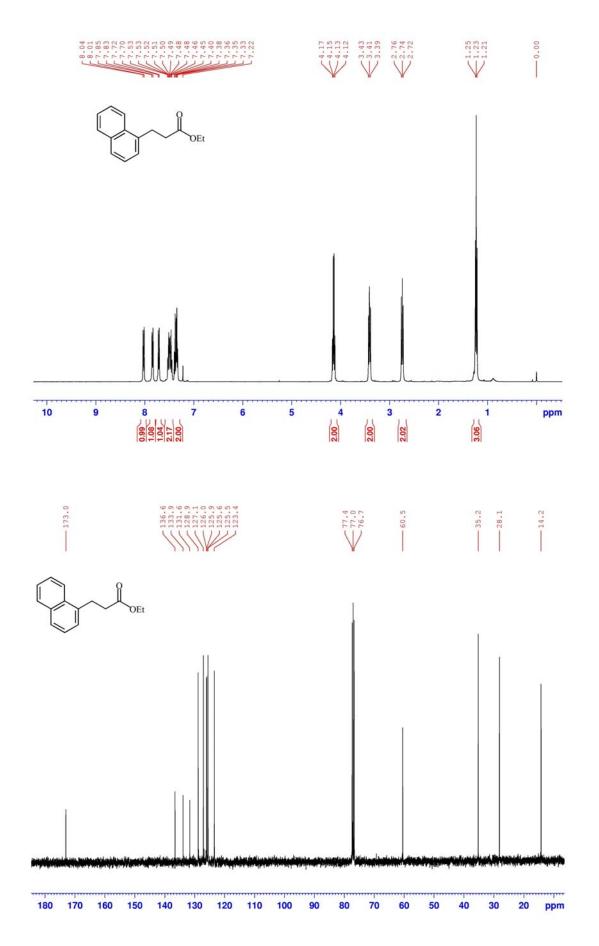

7. G. Barbe, G. Pelletier, A. B. Charette, Org. Lett. 2009, 11, 3398.

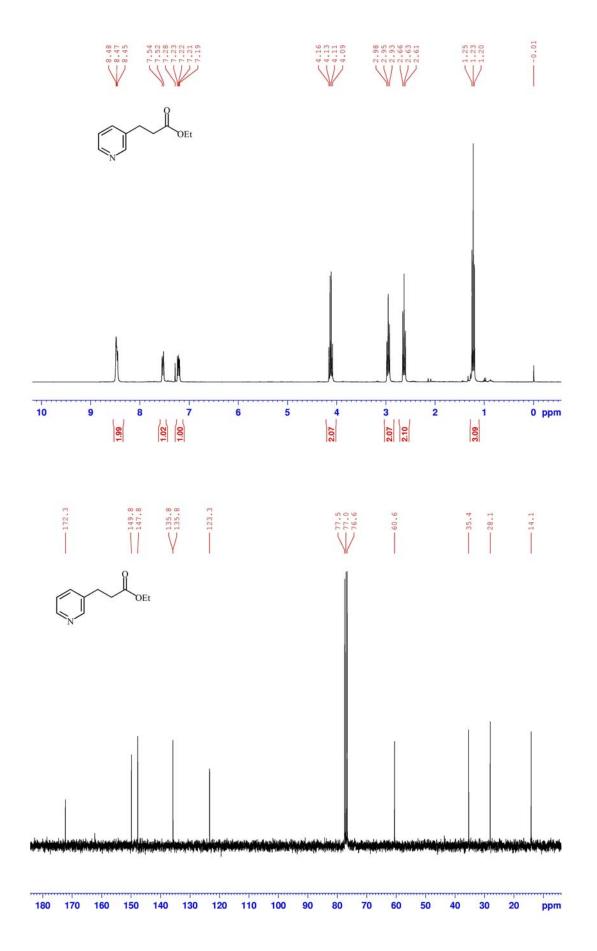

8. M. L. Kantam, R. Chakravarti, V. R. Chintareddy, B. Sreedhar, S. Bhargava, *Adv. Synth. Catal.* **2008**, *350*, 2544.

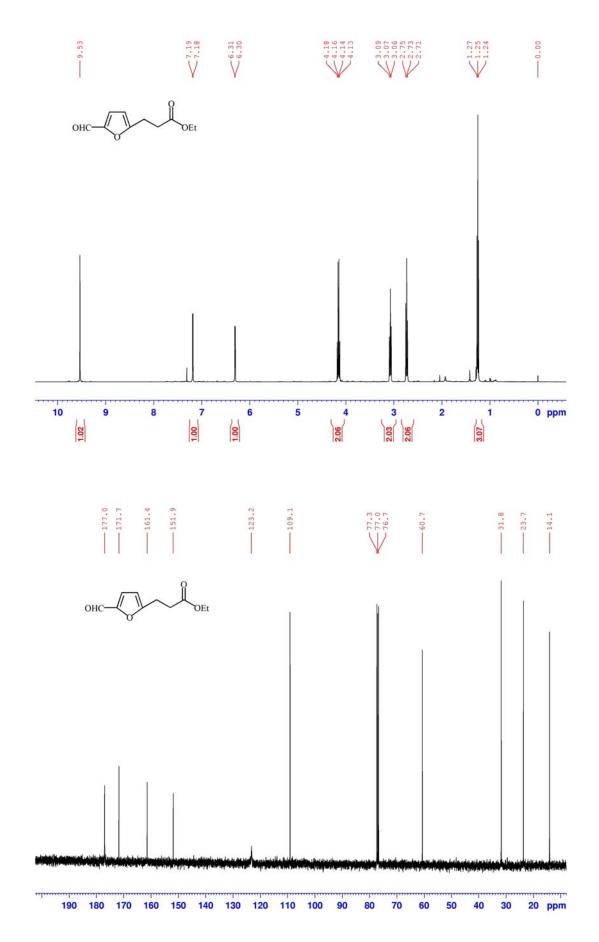

9. S. Liu, N. Thomson, A. Pettman, Z. Hyder, J. Mo, J. Xiao, J. Mol. Catal. A: Chem. 2008, 279, 210.

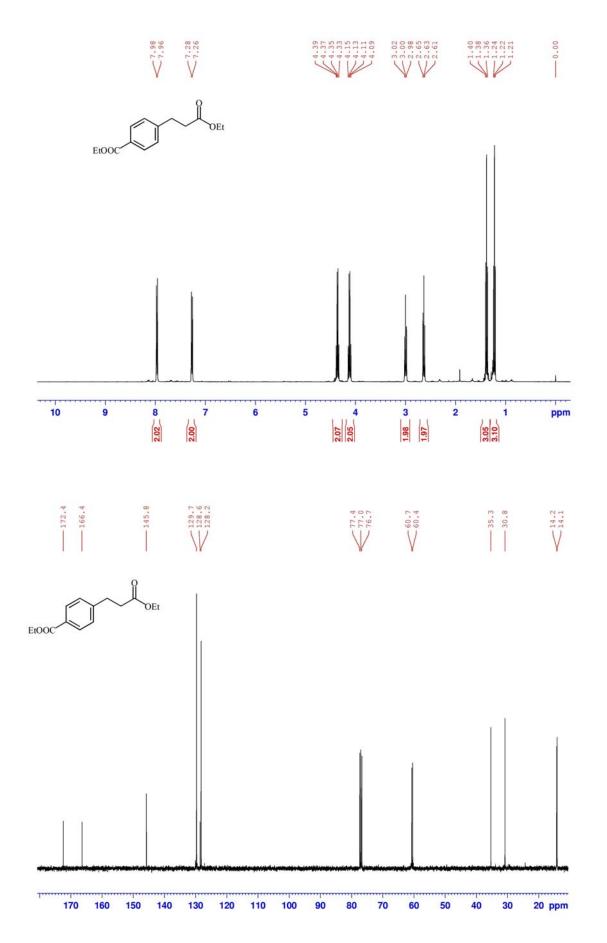

10. G. A. Molander, T. Ito, Org. Lett. 2001, 3, 393.

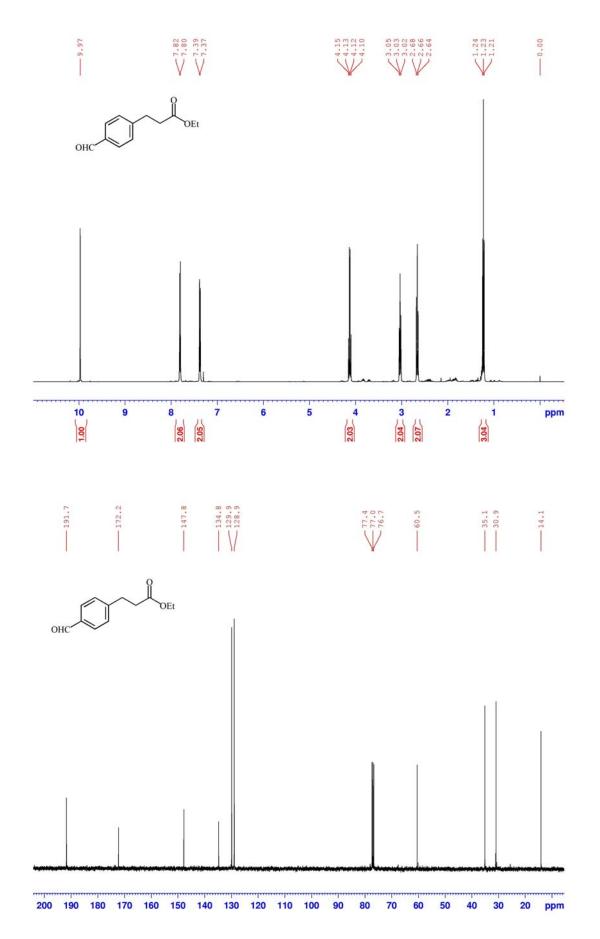


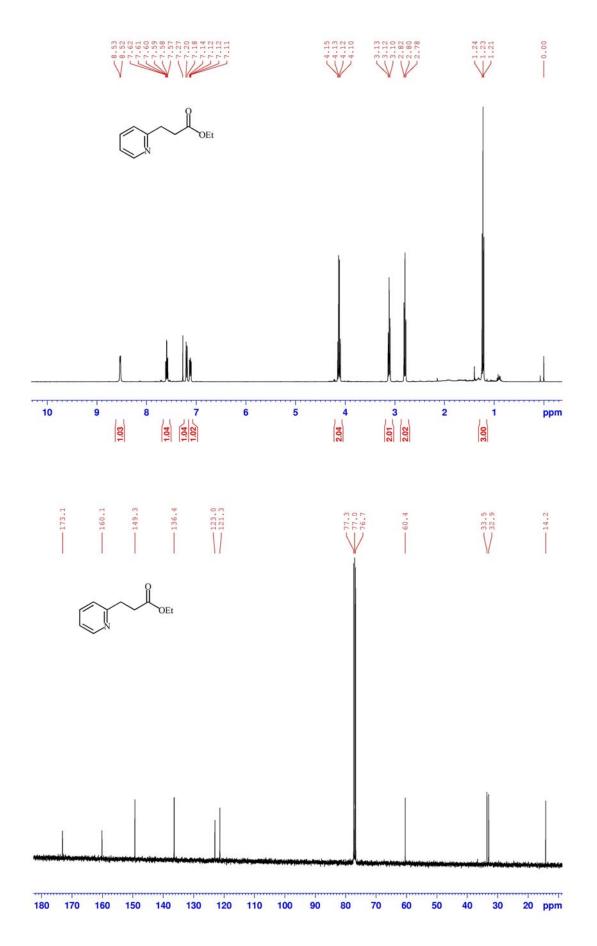


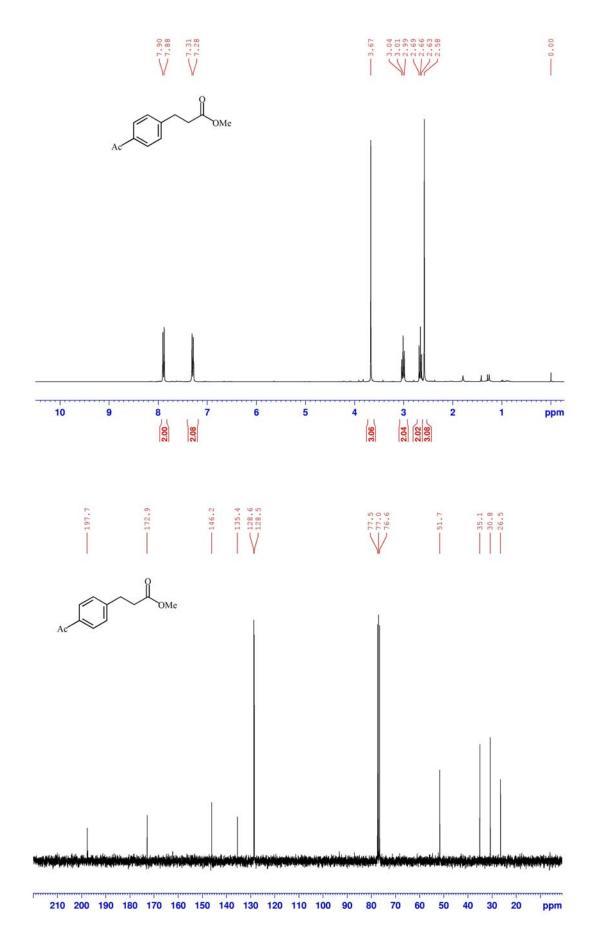











Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

