Novel Methodologies for the One-Pot Synthesis of Functionalized

Pyroglutamates

Srinivas Tekkam,^a M. A. Alam,^a Subash C. Jonnalagadda,^b and

Venkatram R. Mereddy*^a

^aDepartment of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth,

MN 55812. ^bDepartment of Chemistry and Biochemistry, Rowan University, Glassboro,

NJ 08028.

Table of contents

Contents	Page Numbers
Experimental Details	S5-S20
¹ H NMR Spectrum for Compound 10a	S21
¹³ C NMR Spectrum for Compound 10a	S22
¹ H NMR Spectrum for Compound 10b	S23
¹³ C NMR Spectrum for Compound 10b	S24
¹ H NMR Spectrum for Compound 10c	S25
¹³ C NMR Spectrum for Compound 10c	S26
¹ H NMR Spectrum for Compound 10d	S27
¹³ C NMR Spectrum for Compound 10d	S28
¹ H NMR Spectrum for Compound 10e	S29
¹³ C NMR Spectrum for Compound 10e	S30
¹ H NMR Spectrum for Compound 10f	S31

¹³ C NMR Spectrum for Compound 10f	\$32
¹ H NMR Spectrum for Compound 10g	S33
¹³ C NMR Spectrum for Compound 10g	S34
¹ H NMR Spectrum for Compound 10h	S35
¹³ C NMR Spectrum for Compound 10h	S36
¹ H NMR Spectrum for Compound 10i	S37
¹³ C NMR Spectrum for Compound 10i	S38
¹ H NMR Spectrum for Compound 11a	S39
¹³ C NMR Spectrum for Compound 11a	S40
¹ H NMR Spectrum for Compound 11b	S41
¹³ C NMR Spectrum for Compound 11b	S42
¹ H NMR Spectrum for Compound 11c	S43
¹³ C NMR Spectrum for Compound 11c	S44
¹ H NMR Spectrum for Compound 11d	S45
¹³ C NMR Spectrum for Compound 11d	S46
¹ H NMR Spectrum for Compound 11e	S47
¹³ C NMR Spectrum for Compound 11e	S48
¹ H NMR Spectrum for Compound 11f	S49
¹³ C NMR Spectrum for Compound 11f	S50
¹ H NMR Spectrum for Compound 16a	S51
¹³ C NMR Spectrum for Compound 16a	S52
¹ H NMR Spectrum for Compound 16b	S53
¹³ C NMR Spectrum for Compound 16b	S54

¹ H NMR Spectrum for Compound 16c	S55
¹³ C NMR Spectrum for Compound 16c	S56
¹ H NMR Spectrum for Compound 17a	S57
¹³ C NMR Spectrum for Compound 17a	S58
¹ H NMR Spectrum for Compound 17b	S59
¹³ C NMR Spectrum for Compound 17b	S60
¹ H NMR Spectrum for Compound 17c	S61
¹³ C NMR Spectrum for Compound 17c	S62
¹ H NMR Spectrum for Compound 18a	S63
¹³ C NMR Spectrum for Compound 18a	S64
¹ H NMR Spectrum for Compound 18b	S65
¹³ C NMR Spectrum for Compound 18b	S66
¹ H NMR Spectrum for Compound 18c	S67
¹³ C NMR Spectrum for Compound 18c	S68
¹ H NMR Spectrum for Compound 19a	S69
¹³ C NMR Spectrum for Compound 19a	S70
¹ H NMR Spectrum for Compound 19b	S71
¹³ C NMR Spectrum for Compound 19b	S72
¹ H NMR Spectrum for Compound 19c	S73
¹³ C NMR Spectrum for Compound 19c	S74
¹ H NMR Spectrum for Compound 20a	S75
¹³ C NMR Spectrum for Compound 20a	S76
¹ H NMR Spectrum for Compound 20b	S77

¹³ C NMR Spectrum for Compound 20b	S78
¹ H NMR Spectrum for Compound 20c	S79
¹³ C NMR Spectrum for Compound 20c	S80
¹ H NMR Spectrum for Compound 21a	S81
¹³ C NMR Spectrum for Compound 21a	S82
¹ H NMR Spectrum for Compound 21b	S83
¹³ C NMR Spectrum for Compound 21b	S84
¹ H NMR Spectrum for Compound 21c	S85
¹³ C NMR Spectrum for Compound 21c	S86

Experimental:

Valine *a*-methylene- γ -carboxy- γ -lactam 10a: To a solution of imine 7a (2g, 5.82 mmol) in anhydrous THF was added LiHMDS (8.72 mL, 8.72 mmol, 1.0M in THF) drop wise at 0°C under nitrogen atmosphere and allowed to stir for one hour at 0°C. After 1h, BH bromide 8a (1.56g, 8.72 mmol) was added drop wise at 0°C and allowed the reaction mixture to stir for 8h. The reaction was quenched with 3N HCl (15 mL) and stirred for additional 30 min. It was extracted with ethyl acetate (3x30 mL), washed with brine, dried over MgSO₄ and concentrated *in vacuo*. The crude product was refluxed in toluene (20 mL) for 1h, concentrated *in vacuo* and purified by column chromatography (30% EtOAc in hexanes) to yield (67%). ¹H NMR (500MHz, CDCl₃) δ 7.52 (br s, 1H), 7.36 - 7.32 (m, 5H), 6.01 (t, *J* = 2.5 Hz, 1H), 5.36 (d, *J* = 2.5 Hz, 1H), 5.20 (d, *J* = 12.5 Hz, 1H), 5.19 (d, *J* = 12.5 Hz, 1H), 0.87 (d, *J* = 7 Hz, 3H), 0.85 (d, *J* = 7 Hz, 3H); ¹³C NMR (125MHz, CDCl₃) δ 173.2, 169.9, 138.6, 135.4, 128.8, 128.7, 128.5, 116.8, 67.6, 66.4, 36.0, 33.9, 17.2, 16.3; HRMS (ESI) m/z: calc'd for C₁₆H₁₉NO₃ [M+H]⁺ : 274.1398, found 274.1386.

Valine α-methylene-β-methyl-γ-carboxy-γ-lactam 10b: Yield (58%); Viscous liquid. ¹H NMR (500MHz, CDCl₃) δ 7.4 - 7.37 (m, 5H), 6.65 (br s, 1H), 5.98 (d, J = 4 Hz, 1H), 5.25 (d, J = 4 Hz, 1H), 5.24 (d, J = 12 Hz, 1H), 5.19 (d, J = 12 Hz, 1H), 3.07 (m, 1H), 2.35 (septet, J = 6.5 Hz, 1H), 1.45 (d, J = 7Hz, 3H), 0.80(d, J = 6.5 Hz, 3H), 0.78 (d, J = 6.5 Hz, 3H); ¹³CNMR (125MHz, CDCl₃) δ 173.1, 169.5, 144.5, 135.3, 129.0, 128.9, 128.6, 114.1, 68.9, 67.5, 42.1, 32.3, 18.4, 17.2, 12.2; HRMS (ESI) m/z: calc'd for C₁₇H₂₁NO₃ [M+H]⁺ : 288.1594, found 288.1535.

Valine α-methylene-γ-carboxy-γ-lactam 10c: Yield (66%); Yellow oil. ¹H NMR (500MHz, CDCl₃) δ 7.52 (br s, 1H), 7.39 -7.30 (m, 10H), 6.24 (d, 1H), 5.31 (d, J = 12 Hz, 1H), 5.3 (s, 1H), 5.18 (d, J = 12 Hz, 1H), 4.56 (s, 1H), 1.9 (septet, J = 6.5 Hz, 1H), 0.83 (d, J = 6.5 Hz, 3H), 0.62 (d, J = 6.5 Hz, 3H); ¹³C NMR (125MHz, CDCl₃) δ 172.8, 169.8, 142.4, 137.0, 135.2, 130.7, 129.0, 128.8, 128.6, 128.5, 128.0, 118.9, 70.5, 67.7, 52.6, 32.3, 18.6, 17.7; HRMS (ESI) m/z: calc'd for C₂₂H₂₃NO₃ [M+H]⁺ : 350.1751, found 350.1758.

Leucine α -methylene- γ -carboxy- γ -lactam 10d: Yield (60%); ¹HNMR (500MHz, CDCl₃) δ 7.39 - 7.34 (m, 5H), 6.83(br s, 1H), 6.03 (dd, J = 2.5, 2.5 Hz, 1H), 5.38 (m, 1H), 5.20 (d, J = 12.5 Hz, 1H), 5.14 (d, J = 12.0 Hz, 1H), 3.22 (ddd, J = 2.25, 2.5, 17.5 Hz, 1H), 2.78 (ddd, J = 2.25, 2.5, 17.5 Hz, 1H), 1.86 (m, 1H), 1.69 (m, 1H), 1.64 (m, 1H), 0.9 (d, J = 6.5 Hz, 3H), 0.86 (d, J = 6.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ

173.5, 169.3, 137.8, 135.2, 128.9, 128.8, 128.7, 117.4, 67.8, 62.7, 48.9, 38.1, 24.9, 24.2, 23.3; HRMS (ESI) m/z: calc'd for C₁₇H₂₁NO₃ [M+H]⁺ : 288.1591, found 288.1585.

Leucine α-methylene-β-methyl-γ-carboxy-γ-lactam 10e: Yield (53%); Yellow oil. ¹H NMR (500MHz, CDCl₃) δ 7.47 (br s, 1H), 7.36 -7.34 (m, 5H), 6.03 (d, J = 3.5 Hz, 1H), 5.26 (d, J = 3 Hz, 1H), 5.24 (d, J = 11.5 Hz, 1H), 5.15 (d, J = 11.5 Hz, 1H), 3.00 (m, 1H), 1.78 (dd, J = 8.5, 14 Hz, 1H), 1.66 (m, 1H), 1.30 (d, J = 4 Hz, 13.5 Hz, 1H), 0.90 (d, J = 6.5 Hz, 3H), 0.79 (d, J = 6.5 Hz, 3H); ¹³C NMR (125MHz, CDCl₃) δ 173.5, 169.2, 143.9, 135.2, 128.9, 128.8, 128.7, 128.6, 115.8, 67.6, 65.5, 43.6, 42.9, 24.6, 24.3, 22.5, 12.4; HRMS (ESI) m/z: calc'd for C₁₈H₂₃NO₃ [M+H]⁺: 302.1751, found 302.1745.

Leucine α-methylene-β-phenyl-γ-carboxy-γ-lactam 10f: Yield (57%); ¹H NMR(500MHz, CDCl₃): δ 7.6 (br s, 1H), 7.4 - 7.36 (m, 5H), 7.3 -7.29 (m, 3H), 7.19 - 7.17 (m, 2H), 6.26 (d, J = 3 Hz, 1H), 5.32 (d, J = 12 Hz, 1H), 5.26 (d, J = 2 Hz, 1H), 5.16 (d, J = 12 Hz, 1H), 4.33 (t, J = 3 Hz, 1H), 1.59 (m, 1H), 1.35 (dd, J = 7 Hz, 14 Hz, 1H), 1.24 (dd, J = 5 Hz, 14 Hz, 1H), 0.81 (d, J = 6.5 Hz, 1H), 0.66 (d, J = 6.5 Hz, 1H); ¹³C NMR (125MHz, CDCl₃): δ 173.9, 169.5, 142.1, 137.0, 135.2, 130.8, 129.0, 128.9, 128.8, 128.4, 128.0, 119.7, 67.8, 66.4, 54.4, 45.3, 24.6, 24.4, 22.9; HRMS (ESI) m/z: calc'd for C₂₃H₂₅NO₃ [M+H]⁺: 364.1907, found 364.1887.

Phenylalanine α-methylene-γ-carboxy-γ-lactam 10g: Yield (58%); Viscous liquid. ¹H NMR (500MHz, CDCl₃) δ 7.38 -7.37 (m, 3H), 7.29 -7.25 (m, 5H), 7.07 - 7.05 (m, 2H), 6.56 (br s, 1H), 6.03 (t, J = 2.5 Hz, 1H), 5.38 (s, 1H), 5.14 (s, 2H), 3.31 (d, J = 13.5 Hz, 1H), 3.22 (dt, J = 2.5 Hz, 17.5 Hz, 1H), 2.95 (dt, J = 2.5 Hz, 17.5 Hz, 1H), 2.92 (d, J =13.5 Hz, 1H); ¹³CNMR (125MHz, CDCl₃) δ 172.7, 169.1, 135.0, 134.5, 130.1, 129.2, 129.1, 128.9, 128.8, 127.8, 117.8, 67.9, 63.7, 46.1, 37.3; HRMS (ESI) m/z: calc'd for C₂₀H₁₉NO₃ [M+H]⁺: 322.1438, found 322.1434.

Phenylalanine α-methylidene-β-methyl-γ-carboxy-γ-lactam 10h: Yield (51%); yellow oil. ¹H NMR (500MHz, CDCl₃) δ 7.38 - 7.36 (m, 3H), 7.29 - 7.26 (m, 2H), 7.25 - 7.22 (m, 3H), 6.99 - 6.97 (m, 2H), 6.14 (d, J = 3.5 Hz, 1H), 6.11 (br s, 1H), 5.39 (d, J = 3.5Hz, 1H), 5.15 (s, 2H), 3.32 (d, J = 13, 1H), 3.19 (m, 1H), 2.56 (d, J = 13, 1H), 1.48 (d, J = 7 Hz, 3H); ¹³C NMR (125MHz, CDCl₃) δ 172.2, 168.4, 143.5, 135.0, 134.6, 129.9, 129.1, 128.9, 128.8, 127.7, 116.7, 67.7, 66.7, 42.7, 40.9, 12.8; HRMS (ESI) m/z: calc'd for C₂₁H₂₁NO₃ [M+H]⁺ : 336.1594, found 336.1598.

Phenylalanine α-methylene-β-phenyl-γ-carboxy-γ-lactam 10i: Yield (56%); Viscous liquid. ¹H NMR (500MHz, CDCl₃) δ 7.41 - 7.37 (m, 5H), 7.36 - 7.34 (m, 3H), 7.26 - 7.24

(m, 2H), 7.21 - 7.18 (m, 3H), 6.94 - 6.92 (m, 2H), 6.34 (d, J = 3 Hz, 1H), 6.31 (br s, 1H), 5.37 (d, J = 3 Hz, 1H), 5.18 (d, J = 12 Hz, 1H), 5.12 (d, J = 12 Hz, 1H), 4.51 (t, J = 3 Hz, 1H), 2.72 (d, J = 13.5, 1H), 2.40 (d, J = 13.5 Hz, 1H); ¹³CNMR (125MHz, CDCl₃) δ 172.8, 168.6, 141.9, 137.0, 134.9, 130.8, 129.9, 129.1, 129.0, 128.9, 128.8, 128.3, 127.7, 120.5, 68.0, 67.2, 53.5, 43.4; HRMS (ESI) m/z: calc'd for C₂₆H₂₃NO₃ [M+H]⁺ : 398.1751, found 398.1725.

Valine α-ethylidene-γ-carboxy-γ-lactam 11a: Yield (62%); White powder; mp 85-87 °C. ¹H NMR (500MHz, CDCl₃) δ 7.39 -7.35 (m, 5H), 6.68 (br s, 1H), 6.39 (m, 1H), 5.21 (d, J = 12 Hz, 1H), 5.16 (d, J = 12 Hz, 1H), 3.05 (d, J = 17.5 Hz, 1H), 2.73 (d, J = 17.5 Hz, 1H), 2.17 (septet, J = 7 Hz, 1H), 1.78 (d, J = 7 Hz, 3H), 0.87 (d, J = 7 Hz, 6H); ¹³C NMR (125MHz, CDCl₃) δ 173.4, 170.0, 135.4, 130.9, 129.6, 128.9, 128.8, 128.6, 67.6, 66.5, 36.1, 31.7, 17.2, 16.2, 15.1; HRMS (ESI) m/z: calc'd for C₁₇H₂₁NO₃ [M+H]⁺ : 288.1594, found 288.1546.

Valine α-benzylidene-γ-carboxy-γ-lactam 11b: Yield (68%); ¹H NMR (500MHz, CDCl₃) δ 7.51 -7.36 (m, 11H, ten aromatic and one olefinic hydrogen merged), 7.34 (br s, 1H), 5.23 (s, 2H), 3.46 (d, J = 16.5 Hz, 1H), 3.12 (d, J = 16.5 Hz, 1H), 2.25 septet, J = 6.5Hz, 1H), 0.91 (d, J = 6.5 Hz, 3H), 0.89 (d, J = 6.5 Hz, 3H); ¹³C NMR (125MHz, CDCl₃) δ 173.4, 171.1, 135.5, 135.3, 131.5, 130.0, 129.2, 129.1, 128.9, 128.6, 67.7, 67.0,

36.2, 34.2, 17.3, 16.3; HRMS (ESI) m/z: calc'd for C₂₂H₂₃NO₃ [M+H]⁺ : 350.1751, found 350.1772.

Leucine α -ethylidene- γ -carboxy- γ -lactam 11c: Yield (57%); ¹H NMR (500MHz, CDCl₃) δ 7.39 - 7.35 (m, 5H), 6.56 (m, 1H), 6.50 (br s, 1H), 5.20 (d, J = 12 Hz, 1H), 5.15 (d, J = 12 Hz, 1H), 3.14 (d, J = 17.5 Hz, 1H), 2.68 (d, J = 17.5 Hz, 1H), 1.88 (dd, J = 7 Hz, 14 Hz, 1H), 1.77 (d, J = 7 Hz, 3H), 1.69 (dd, J = 7, 14 Hz, 1H), 1.67 (m, 1H), 0.90 (d, J = 6.5 Hz, 3H), 0.85 (d, J = 6.5 Hz, 3H); ¹³C NMR (125MHz, CDCl₃) δ 173.8, 169.7, 135.2, 130.3, 130.1, 128.9, 128.8, 128.6, 67.7, 62.9, 49.2, 35.9, 24.9, 24.2, 23.4, 15.0; HRMS (ESI) m/z: calc'd for C₁₈H₂₃NO₃ [M+H]⁺: 302.1751, found 302.1743.

Leucine α-benzylidene-γ-carboxy-γ-lactam 11d: Yield (64%); ¹H NMR (500MHz, CDCl₃) δ 7.48 - 7.41 (m, 6H, five aromatic and one olefinic proton merged), 7.39 (m, 5H), 7.11 (s, 1H), 5.20 (s, 2H), 3.57 (d, J = 19.5 Hz, 1H), 3.08 (d, J = 19.5Hz, 1H), 1.95 (dd, J = 7.5 Hz, 14 Hz, 1H), 1.75 (dd, J = 5.5 Hz, 19.5 Hz, 1H), 1.7 (m, 1H), 0.93 (d, J = 6.5 Hz, 3H), 0.90 (d, J = 6.5 Hz, 3H); ¹³C NMR (125MHz, CDCl₃) δ 173.7, 170.9, 135.5, 135.2, 132.0, 130.0, 129.2, 129.0, 128.8, 128.7, 128.6, 67.9, 63.3, 49.2, 38.2, 25.0, 24.2, 23.5; HRMS (ESI) m/z: calc'd for C₂₃H₂₅NO₃ [M+H]⁺: 364.1907, found 364.1897.

Phenylalanine α-ethylidene-γ-carboxy-γ-lactam 11e: Yield (55%); yellow oil. ¹H NMR (500MHz, CDCl₃) δ 7.36 - 7.28 (m, 3H), 7.27 - 7.26 (m, 2H), 7.25 - 7.24 (m, 3H), 7.07 - 7.05 (m, 2H), 6.53 (m, 1H), 6.48 (br s, 1H), 5.13 (s, 2H), 3.31 (d, J = 13.5 Hz, 1H), 3.12 (d, J = 17.5 Hz, 1H), 2.91 (d, J = 13.5 Hz, 1H), 2.84 (d, J = 17.5 Hz, 1H), 1.75 (d, J = 7 Hz, 3H); ¹³C NMR (125MHz, CDCl₃) δ 173.0, 169.6, 135.1, 134.7, 130.3, 130.2, 130.1, 129.1, 129.0, 128.9, 128.8, 128.7, 127.7, 67.8, 64.0, 46.3, 35.0, 15.1; HRMS (ESI) m/z: calc'd for C₂₁H₂₁NO₃ [M+H]⁺: 336.1594, found 336.1630.

Phenylalanine α-benzylidene-γ-carboxy-γ-lactam 11f: Yield (63%); ¹H NMR (500MHz, CDCl₃) δ 7.48 – 7.43 (m, 3H), 7.40 - 7.37 (m, 2H), 7.36 - 7.34 (m, 3H), 7.28 - 7.26 (m, 2H), 7.26 - 7.24 (m, 3H), 7.08 -7.06 (m, 2H), 6.2 (br s, 1H), 5.16 (d, J = 12 Hz, 1H), 5.12 (d, J = 12 Hz, 1H), 3.53 (dd, J = 3 Hz, 17.5 Hz, 1H), 3.40 (d, J = 13 Hz, 1H), 3.26 (dd, J = 2.5 Hz, 17.5 Hz, 13.5 Hz, 1H), 2.92 (d, J = 13 Hz, 1H); ¹³C NMR (125MHz, CDCl₃) δ 172.8, 170.3, 135.3, 134.9, 134.6, 132.5, 130.1, 129.9, 129.3, 129.0, 128.9, 128.8, 128.1, 127.8, 68.0, 64.3, 46.8, 37.8; HRMS (ESI) m/z: calc'd for C₂₆H₂₃NO₃ [M+H]⁺: 398.1751, found 398.1726.

Valine *a*-methyl- γ -carboxy- γ -lactam 16a: To a stirred solution of lactam 10a (2.87g, 10.5 mmol) dissolved in THF (20 mL), RhCl₃.H₂O (0.227g, 1 mmol) was added and refluxed for 24 h. The reaction mixture was cooled to room temperature and concentrated *in vacuo*. Diethyl ether was added to the residue and insoluble inorganic impurities are filtered. The filtrate was evaporated in *vacuo* to give the isomer 16a (2.57g, 90%) as red colored viscous liquid which was used in next step without any further purification. ¹H NMR (500MHz, CDCl₃): δ 7.40 - 7.35 (m, 5H), 6.71 (br s, 1H), 6.66 (s, 1H), 5.18 (s, 2H), 2.39 (septet, J = 6.5 Hz, 1H), 1.90 (s, 3H), 0.91 (d, J = 6.5 Hz, 3H), 0.82 (d, J = 6.5 Hz, 3H); 13CNMR (125MHz, CDCl3) δ 174.4, 170.5, 141.4, 135.7, 135.3, 128.9, 128.8, 128.6, 72.5, 67.9, 34.0, 18.2, 16.2, 10.9.

Leucine α-methyl-γ-carboxy-γ-lactam 16b: Yield (90%), viscous dark liquid, ¹HNMR (500MHz, CDCl₃) δ 7.38 - 7.33 (m, 1H), 6.69 (s, 1H), 6.67 (br s, 1H), 5.17 (d, J = 12 Hz, 1H), 5.15 (d, J = 12 Hz, 1H), 1.98 (m, 1H), 1.88 (s, 3H), 1.65 (m, 2H), 0.91 (d, J = 6.5, 3H), 0.87 (d, J = 6.5 Hz, 3H); ¹³CNMR (125MHz, CDCl₃) δ 173.8, 170.7, 142.3, 135.1, 128.9, 128.8, 128.6, 68.5, 68.0, 45.4, 25.2, 24.1, 23.7, 10.9; HRMS (ESI) m/z: calc'd for $C_{17}H_{21}NO_3 [M+Na]^+$: 310.1414, found 310.1385.

Phenylalanine α-methyl-γ-carboxy-γ-lactam 16c: Yield (87%), viscous dark liquid ¹HNMR (500MHz, CDCl₃) δ 7.39 - 7.36 (m, 3H), 7.26 - 7.22 (m, 5H), 7.08 - 7.06 (m, 2H), 6.81 (s,1H), 6.40 (br s, 1H), 5.12 (s, 2H), 3.41 (d, J = 13.5 Hz, 1H), 2.88 (d, J = 13.5 Hz, 1H), 1.88 (s, 3H); ¹³CNMR (125MHz, CDCl₃) δ 173.3, 169.6, 141.4, 135.9, 134.9, 134.7, 129.9, 128.9, 128.8, 127.7, 69.4, 68.0, 43.7, 10.9; HRMS (ESI) m/z: calc'd for $C_{20}H_{19}NO_3 [M+Na]^+$: 344.1257, found 344.1241.

Valine diol lactam 17a: NMO (50% wt in water 1.63 mL, 6.96 mmol) and OsO₄ (17.7 mg, 0.07mmol) were added successively to the olefinic lactam **16a** (1g, 3.66 mmol) dissolved in acetone (20 mL). The reaction mixture was stirred at room temperature for 40h. After completion of the reaction, water was added, extracted with ethyl acetate (3 x 40 mL), washed with brine (50 mL), dried over MgSO₄ and concentrated *in vacuo*. The crude product was purified by column chromatography (70% EtOAc in hexanes) to afford inseparable mixture of diols **17a**. Yield (0.88g, 79%); >98% de (NMR). ¹HNMR (500MHz, DMSO-d₆) δ 8.44 (br s, 1H), 7.43 – 7.46 (m, 5H), 5.17 (s, 1H), 5.12 (d, J = 12 Hz, 1H), 5.10 (d, J = 12 Hz, 1H), 4.81 (d, J = 8.5 Hz, 1H), 3.76 (d, J = 8.5 Hz, 1H), 2.13 (septet, J = 7Hz, 1H), 1.18 (s, 3H), 0.93 (d, J = 7 Hz, 3H), 0.85 (d, J = 7 Hz, 3H); ¹³CNMR (125MHz, DMSO-d₆) δ 175.6, 172.8, 136.6, 129.0, 128.7, 128.6, 77.4, 72.9,

69.9, 66.7, 33.3, 22.1, 18.7, 17.4; HRMS (ESI) m/z: calc'd for C₁₆H₂₁NO₅ [M+Na]⁺ : 330.1312, found 330.1312.

Leucine diol lactam 17b: Yield (75%); (diastereomeric ratio of 9:1). ¹H NMR (500MHz, CDCl₃) δ (peaks corresponding to major isomer), 7.5 (br s, 1H), 7.40 - 7.35 (m, 5H), 5.24 (m, 2H), 4.61 (s, 1H), 4.18 (d, J = 6.5 Hz, 1H), 3.86 (d, J = 6.5 Hz, 1H), 2.20 (dd, J = 7Hz, 14 Hz, 1H), 1.68 (m, J = 6.5,7 Hz, 1H), 1.60 (dd, J = 7 Hz, 14 Hz, 1H), 1.46 (s, 3H), 0.94 (d, J = 6.5 Hz, 3H), 0.83 (d, J = 6.5 Hz, 3H); ¹³C NMR (125MHz, CDCl₃) δ 177.5, 172.4, 135.2, 128.9, 129.1, 129.0, 128.7, 80.9, 73.6, 68.5, 67.9, 45.6, 25.0, 24.2, 23.5, 22.9; HRMS (ESI) m/z: calc'd for C₁₇H₂₃NO₅ [M+Na]⁺ : 344.1468, found 344.1469.

Phenylalanine diol lactam 17c: Yield (80%); diastereomeric ratio of 10:1 by NMR, $R_f = (0.4, 60\% \text{ EtOAc in hexanes})$. ¹HNMR (500MHz, CDCl₃) δ 7.35 - 7.24 (m, 8H), 7.07 - 7.05 (m, 2H), 6.89 (br s, 1H), 5.16 (s, 2H), 4.75 (s, 1H), 4.20 (d, J = 6 Hz, 1H), 3.99 (d, J = 6 Hz, 1H), 3.55 (d, J = 13.5 Hz, 1H), 2.92 (d, J = 13.5 Hz, 1H), 1.43 (s, 3H); ¹³CNMR (125MHz, CDCl₃) δ 176.8, 171.3, 135.2, 134.4, 130.2, 129.1, 129.0, 128.9, 128.8, 128.7, 127.8, 79.3, 73.5, 69.1, 68.0, 42.5, 23.0; HRMS (ESI) m/z: calc'd for C₂₀H₂₁NO₅ [M+Na]⁺ : 378.1312, found 378.1295.

Valine diol thiocarbonate 18a: Leucine diol **17a** (1 g, 3.25 mmol) and thiocarbonyl imidazole (0.834 g, 4.68 mmol) were taken in dry THF (20 mL) refluxed for 8h. The reaction mixture was cooled to room temperature and concentrated *in vacuo*. The residue was purified by silica gel column chromatography to obtain .97g of thiocarbonate **18a** (85% yield). ¹H NMR (500MHz, DMSO-d₆) δ 8.5 (br s, 1H), 7.39 - 7.28 (m, 5H), 5.28 (d, J = 12 Hz, 1H), 5.20 (d, J = 12 Hz, 1H), 4.98 (s, 1H), 2.46 (septet, J = 6.5 Hz, 1H), 1.73 (s, 3H), 0.91 (d, J = 6.5 Hz, 3H), 0.84 (d, J = 6.5, 1H); ¹³C NMR (125MHz, DMSO-d₆) δ 188.0, 169.4, 168.5, 134.8, 129.0, 128.9, 128.8, 88.9, 87.3, 72.5, 68.7, 34.7, 18.5, 18.1, 16.6; HRMS (ESI) m/z: calc'd for C₁₇H₁₉NO₅S [M+Na]⁺ : 372.0876, found 372.0858.

Leucine diol thiocarbonate 18b: Yield (87%). ¹H NMR (500MHz, CDCl₃) δ 8.9 (br s, 1H), 7.33 - 7.27 (m, 5H), 5.19 (d, J = 12 Hz, 1H), 5.14 (d, J = 12 Hz, 1H), 4.8 (s, 1H), 2.05 (dd, J = 9, 13.5 Hz, 1H), 1.67 (s, 3H), 1.65 (m, 1H), 1.30 (dd, J = 9, 13.5 Hz, 1H), 0.85 (d, J = 6.5 Hz, 3H), 0.72 (d, J = 6.5 Hz, 3H); ¹³C NMR (125MHz, CDCl₃) δ 188.1, 169.1, 168.6, 134.6, 129.0, 128.9, 128.8, 89.3, 88.3, 68.6, 67.2, 46.9, 24.4, 24.3, 21.9, 19.1; HRMS (ESI) m/z: calc'd for C₁₈H₂₁NO₅S [M+Na]⁺ : 386.1033, found 386.1017.

Phenylalanine thiocarbonate 18c: Yield (90%). ¹H NMR (500MHz, CDCl₃) δ 7.43 - 7.41 (m, 5H), 7.33 - 7.31(m, 3H), 7.26 (br s, 1H), 7.10 - 7.08 (m, 2H), 5.34 (d, J = 10.5 Hz, 1H), 5.31 (d, J = 10.5 Hz, 1H), 5.03 (s, 1H), 3.36 (d, J = 14 Hz, 1H), 3.10 (d, J = 14 Hz, 1H), 1.14 (s, 3H); ¹³C NMR (125MHz, CDCl₃) δ 187.7, 169.0, 167.7, 134.5, 132.2, 130.8, 129.6, 129.2, 129.1, 129.0, 128.8, 88.7, 87.2, 69.2, 68.6, 43.4, 17.6; HRMS (ESI) m/z: calc'd for C₂₁H₁₉NO₅S [M+Na]⁺ : 420.0876, found 420.0886.

Valine α-methyl-β-hydroxy-γ-carboxy-γ-lactam 19a: Thiocarbonate 18a (0.48 g, 1.38 mmol) and tributyltin hydride (0.742 mL, 2.75 mmol) in dichloromethane were cooled to -78°C. 20 mol % of triethylboron was added and stirred for 1h. The reaction was quenched with 3 mL dry HCl (1M) at -78°C and was warmed to 25°C. Water was added to the mixture and extracted with ethyl acetate (3x25 mL), washed with brine, dried over MgSO₄ and concentrated *in vacuo* to provide product as a colorless liquid. The crude reaction mixture was purified by column chromatography to get inseparable mixture of β-hydroxy lactams 19a (353 mg, 88%) colorless oil (dr:10:1 by crude NMR); diastereomers are separable by column. ¹H NMR (500MHz, CDCl₃) δ (only major isomer) 7.33 - 7.30 (m, 5H), 7.20 (br s, 1H), 5.21 (d, J = 12.5 Hz, 1H), 5.15 (d, J = 12.5 Hz, 1H), 4.28 (d, J = 7 Hz, 1H), 3.99 (dd, J = 7Hz, 8.5 Hz, 1H), 2.44 (m, 1H), 2.33 (septet, J = 7Hz, 1H), 1.22 (d, J = 7.5 Hz, 3H), 0.96 (d, J = 7 Hz, 3H), 0.93 (d, J = 7 Hz, 3H); ¹³C NMR (125MHz,

CDCl₃) δ 177.9, 172.6, 135.3, 128.8, 128.7, 128.4, 78.3, 71.2, 67.6, 44.1, 32.5, 18.1, 17.1, 13.2; HRMS (ESI) m/z: calc'd for C₁₆H₂₁NO₄ [M+Na]⁺ : 314.1363, found 314.1335.

Leucine α-methyl-β-hydroxy-γ-carboxy-γ-lactam 19b: Yield (88%); (dr: 6.7:1 by crude NMR). ¹H NMR (500MHz, CDCl₃) δ (major isomer) 8.42 (br s, 1H), 7.45 - 7.38 (m, 5H), 5.29 (m, 3H), 4.13 (dd, J = 5 Hz, 12.5 Hz, 1H), 2.73 (m, 1H), 2.06 (dd, J = 8.5 Hz, 13.5 Hz, 1H), 1.77 (m, 1H), 1.54 (dd, J = 8.5 Hz, 13.5 Hz, 1H), 1.24 (d, J = 7 Hz, 3H), 0.97 (d, J = 7 Hz, 3H), 0.86 (d, J = 7 Hz, 3H); ¹³C NMR (125MHz, CDCl₃) δ 178.3, 173.9, 135.3, 128.9, 128.8, 128.7, 79.1, 72.4, 68.1, 43.5, 40.3, 25.2, 24.1, 22.2, 7.8; HRMS (ESI) m/z: calc'd for C₁₇H₂₃NO₄ [M+Na]⁺ : 328.1519, found 328.1497.

Phenylalanine α-methyl-β-hydroxy-γ-carboxy-γ-lactam 19c: Yield (80%); colorless oil (dr 5:1 by crude NMR); diasteromers are inseparable by column;. ¹HNMR (500MHz, CDCl₃) δ (major isomer) 7.5 (br s, 1H), 7.28 - 7.24 (m, 5H), 7.15 - 7.10 (m, 3H), 6.89 - 6.88 (m, 2H), 5.08 (d, J = 13 Hz, 1H), 5.05 (d, J = 13 Hz, 1H), 4.85 (d, J = 11 Hz, 1H), 4.19 (dd, J = 5.5, 11.5 Hz, 1H), 3.17 (d, J = 13.5 Hz, 1H), 2.74 (d, J = 13.5 Hz, 1H), 2.33 (m,1H), 1.07 (d, J = 7.5 Hz, 3H); ¹³CNMR (125MHz, CDCl₃) δ 178.2, 171.1, 135.3, 134.9, 129.9, 129.0, 128.9, 128.8, 128.7, 128.6, 127.5, 73.3, 68.1, 41.6, 40.7, 7.9; HRMS (ESI) m/z: calc'd for C₂₀H₂₁NO₄ [M+Na]⁺ : 362.1363, found 362.1327.

Valine β-hydroxy acid 20a: To a solution of β-hydroxyl benzyl ester 19a (0.29 g, 1.00 mmol) in methanol (8 mL), was added Pd/C (32 mg) and stirred under hydrogen atmosphere for 1h. The reaction mixture was filtered and concentrated *in vacuo* to give hydroxy acid 20a (0.18 mg, 89% yield) which was used for next step without any further purification. ¹H NMR (500MHz, CD₃OD) δ (major isomer) 3.99 (d, J = 9 Hz, 1H), 2.48 (m, 1H), 2.41 (m, 1H), 1.20 (d, J = 7 Hz, 3H), 1.04 (d, J = 7 Hz, 3H), 0.98 (d, J = 7 Hz, 3H); ¹³CNMR (125MHz, CD₃OD) δ 179.2, 173.7, 90.9, 78.3, 77.4, 72.0, 30.8, 17.7, 15.9, 12.2.

Leucine β -hydroxy acid 20b: Yield (90%). ¹HNMR (500MHz, CD₃OD) δ (major isomer) 4.12 (d, J = 5 Hz, 1H), 2.78 (m,1H),1.97 (dd, J = 8.5 Hz, 13.5 Hz, 1H), 1.73 (m, 1H), 1.6 (dd, J = 8.5, 13.5 Hz, 1H), 1.13 (d, J = 7.5 Hz, 3H), 0.96 (d, J = 7 Hz, 3H), 0.94 (d, J = 7 Hz, 3H); ¹³CNMR (125MHz, CD₃OD) δ 178.9, 173.8, 76.9, 70.9, 47.4, 40.2, 24.7, 23.6, 21.6, 7.3.

Phenylalanine β-hydroxy acid 20c: Yield (86%). ¹H NMR (500MHz, CD₃OD) δ (major isomer) 7.30 - 7.22 (m, 5H), 4.34 (d, J = 5.5, 1H), 3.31 (d, J = 13.5 Hz, 1H), 3.05 (d, J = 13.5 Hz, 1H), 2.36 (m, 1H), 1.07 (d, J = 7.5 Hz, 3H); ¹³CNMR (125MHz, CD₃OD) δ

179.0, 172.5, 135.7, 130.8, 128.5, 128.4, 127.0, 75.2, 43.2, 41.5, 7.2; HRMS (ESI) m/z: calc'd for C₁₃H₁₅NO₄ [M+Na]⁺ : 272.0893, found 272.0867.

Valine [3.2.0] γ-lactam β-lactone 21a: To a suspension of β-hydroxy acid 20a (0.1 g, 0.5 mmol) in dichloromethane (20 mL), pyridine (0.12 mL, 3 mmol) and bis (2-oxo-3-oxazolidinyl) phosphonic chloride (191 mg, 1.5 mmol) were added successively. The reaction mixture was stirred at room temperature for 3h. Water was added and extracted with ethyl acetate (3 x10 mL), washed with brine, dried over MgSO₄ and concentrated *in vacuo*. The crude product was purified by column chromatography to afford 32 mg (35 % yield) of **21a**. ¹HNMR (500MHz, C₅D₅N) δ 9.34 (br s, 1H), 3.82 (s, 1H), 1.91 (q, J = 8 Hz, 1H), 1.24 (septet, J = Hz, 1H), 0.25 (d, J = 8 Hz, 3H), 0.07 (d, J = 7 Hz, 3H), 0.02 (d, J = 7 Hz, 3H); ¹³CNMR (500MHz, C₅D₅N) δ 178.8, 171.6, 81.9, 79.9, 42.3, 28.5, 17.3, 17.2, 14.8; HRMS (ESI) m/z: calc'd for C₉H₁₃NO₃ [M+Na]⁺ : 206.0788, found 206.0726.

Leucine [3.2.0] γ-lactam β-lactone 21b: (Yield 40%). Pure isomer obtained by column chromatography ¹H NMR (500MHz, CDCl₃) δ 7.32 (br s, 1H), 4.95 (d, J = 6 Hz, 1H), 2.77 (m, 1H), 2.0 (dd, J = 5 Hz, 14 Hz, 1H), 1.87 (m, 1H), 1.81 (dd, J = 5, 14 Hz, 1H), 1.33 (d, J = 7.5, 3H), 1.04 (d, J = 6.5 Hz, 3H), 0.94 (d, J = 6.5 Hz, 3H); ¹³CNMR (125MHz, CDCl₃) δ 177.2, 170.0, 78.8, 75.5, 39.0, 37.8, 24.4, 23.7, 23.0, 8.3; HRMS (ESI) m/z: calc'd for C₁₀H₁₅NO₃ [M+Na]⁺ : 220.0944, found 220.0929.

Phenylalanine [3.2.0] γ-lactam β-lactone 21c: Pure isomer obtained by column chromatography (Yield 33%). ¹HNMR (500MHz, C₅D₅N) δ 9.23 (br s, 1H), 6.15 - 6.13 (m, 2H),6.04 - 5.97 (m, 3H), 3.97 (d, J = 5.5 Hz, 1H), 2.18 (d, J = 14 Hz, 1H), 2.02 (d, J = 14 Hz, 1H), 1.39 (m, 1H), 0.17 (d, J = 7.5 Hz, 3H); ¹³CNMR (500MHz, C₅D₅N) δ 175.7, 170.0, 133.5, 129.2, 128.0, 126.6, 77.1, 75.4, 37.9, 34.5, 7.2; HRMS (ESI) m/z: calc'd for $C_{13}H_{13}NO_3 [M+Na]^+$: 254.0788, found 254.0751.

X-Ray crystal structure for lactams 10b and 10f.

X-Ray crystal structure for fused γ -lactam- β -lactone 21b.

S26

S45

S50

