Organocatalytic Chemoselective Asymmetric N-Allylic Alkylation of Enamides

Ji-Rong Huang, Hai-Lei Cui, Jie Lei, Xun-Hao Sun, and Ying-Chun Chen*a,b

^a Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China, ^b State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.

E-mail: ycchenhuaxi@yahoo.com.cn

Supplementary Information

Table of Contents

- 1. General Methods
- 2. General procedure for asymmetric *N*-allylic alkylation reaction
- 3. General procedure for one-pot N-alkylation—aza-Cope rearrangement
- 4. Transformation of *N*-allylic alkylation product
- 5. Crystal data of enantiopure 3t
- 6. NMR spectra and HPLC chromatograms

1. General Methods:

NMR spectra were recorded with tetramethylsilane as the internal standard. TLC was performed on glass-backed silica plates. Column chromatography was performed using silica gel (200-300 mesh) eluting with ethyl acetate and petroleum ether (EtOAc/PE). 1 H NMR spectra were recorded at 400 MHz (Varian) and 13 C NMR spectra were recorded at 100 or 50 MHz (Varian). Chemical shifts are reported in ppm downfield from CDCl₃ (δ = 7.27 ppm) for 1 H NMR and relative to the central CDCl₃ resonance (δ = 77.0 ppm) for 13 C NMR spectroscopy. Coupling constants are given in Hz. Optical rotations were measured at 589 nm at 20 $^{\circ}$ C. Enantiomeric excess was determined by HPLC analysis on Chiralpak AS, AD and Chiralcel OD columns in comparison with authentic racemic samples. Toluene was distilled from CaH₂. All other chemicals were used without purification as commercially available. Cinchona alkaloid catalysts (DHQD)₂PHAL, (DHQD)₂PYR, (DHQD)₂AQN and (DHQ)₂AQN were purchased from Aldrich Chemical Company. Morita–Baylis–Hillman carbonates were prepared according to the literature. Enamides $1a^2$, 1d– $1k^2$, 1b- $1c^3$, $1h^4$ and $1i^5$ were prepared according to the reported methods.

- (1) J. Feng, X. Lu, A. Kong and X. Han, Tetrahedron, 2007, 63, 6035.
- (2) C. Sun and S. M. Weinreb, Synthesis, 2006, 21, 3585.
- (3) H. Kiyohara, R. Matsubara and S. Kobayashi, Org. Lett., 2006, 8, 5333.
- (4) G. Zhu, Z. Chen and X. Zhang, J. Org. Chem., 1999, **64**, 6907.
- (5) B. S. Jursic, S. Sagiraju, D. K. Ancalade, T. Clark, E. D. Stevens, Synth. Commun., 2007, 37, 1709.

2. General procedure for asymmetric *N*-allylic alkylation reaction

To a solution of **1a** (32.2 mg, 0.2 mmol) and (DHQD)₂AQN (8.6 mg, 5 mol%) in dry toluene (1.0 mL) was added **2a** (116.8 mg, 0.4 mmol). The reaction mixture was stirred at 50 °C until consumption of **1a**, which was monitored by TLC. Flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) give **3a** as a colourless oil (45.6 mg, 68%).

3a, 68% yield;
$$[\alpha]_D^{20} = -37.0$$
 ($c = 1.75$ in CHCl₃); 85% ee, determined by HPLC analysis [Daicel Chiralpak AD, n -hexane/ i -PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 11.154 min, t (minor) = 7.511 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.26$ -7.11 (m, 10H), 6.40 (s, 1H), 6.39 (s, 1H), 5.72 (s, 1H), 5.66 (s, 1H), 5.30 (s, 1H), 3.62 (s, 3H), 2.08 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 171.0$, 166.6, 146.9, 139.6, 137.4, 136.7, 129.8, 128.6,

128.3, 127.7, 127.5, 126.6, 125.9, 115.8, 61.9, 51.9, 23.4 ppm; ESI-HRMS: calcd. for $C_{21}H_{21}NO_3+Na$ 358.1419, found 358.1424.

3b, 71% yield; $[\alpha]_D^{20} = +13.6$ (c = 0.22 in CHCl₃); 82% ee, determined by HPLC analysis [Daicel Chiralpak AD, n-hexane/i-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 8.280 min, t (minor) = 6.804 min]; ¹H NMR (400 MHz, CDCl₃): major

rotational isomer: δ = 7.30-7.06 (m, 5.67H), 6.39 (s, 0.57H), 6.28 (s, 0.57H), 6.23 (s, 0.57H), 5.90 (q, J = 6.8 Hz, 0.57H), 3.60 (s, 1.71H), 2.16 (s, 1.71H), 1.51 (d, J = 6.8 Hz, 1.71H) ppm; minor rotational isomer: δ = 7.30-7.06 (m, 4.33H), 5.83 (s, 0.43H), 5.82-5.77 (m, 0.43H), 5.76 (s, 0.43H), 5.67 (s, 0.43H), 3.66 (s, 1.29H), 2.14 (s, 1.29H), 1.74 (d, J = 7.2 Hz, 1.29H) ppm; ¹³C NMR (100 MHz, CDCl₃): major rotational isomer: δ = 171.7, 166.6, 155.8, 141.3, 139.2, 136.1, 129.9, 128.3, 128.0, 127.8, 127.5, 126.6, 126.3, 125.0, 62.3, 51.9, 22.5, 14.6 ppm; minor rotational isomer: δ = 170.4, 162.5, 152.8, 140.1, 137.2, 130.2, 128.5, 128.2, 127.9, 127.6, 127.4, 126.4, 125.8, 111.3, 61.2, 51.8, 22.4, 14.6 ppm; ESI-HRMS: calcd. for $C_{22}H_{23}NO_3+Na$ 372.1576, found 372.1571.

3c, 94% yield; $[\alpha]_D^{20} = -52.7$ (c = 1.30 in CHCl₃); 87% ee, determined by HPLC analysis [Daicel Chiralpak AD, n-hexane/i-PrOH = 70/30, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 5.930 min, t (minor) = 5.297 min]; 1 H NMR (400 MHz, CDCl₃): major rotational isomer: $\delta = 7.26$ -7.04 (m, 4.68H),

6.36 (s, 0.52H), 6.26 (s, 0.52H), 6.25 (s, 0.52H), 5.88 (q, J = 7.2 Hz, 0.52H), 3.60 (s, 1.56H), 2.13 (s, 1.56H), 1.52 (d, J = 6.8 Hz, 1.56H) ppm; minor rotational isomer: $\delta = 7.26$ -7.04 (m, 4.32H), 5.81-5.77 (m, 0.96H), 5.69 (s, 0.48H), 5.64 (s, 0.48H), 3.66 (s, 1.44H), 2.11 (s, 1.44H), 1.71 (d, J = 6.8 Hz, 1.44H) ppm; ¹³C NMR (100 MHz, CDCl₃): major rotational isomer: $\delta = 171.6$, 166.4, 140.3, 139.7, 137.8, 137.0, 133.9, 129.9, 128.5, 128.0, 127.7, 127.6, 127.0, 124.9, 62.3, 51.9, 22.5, 14.6 ppm; minor rotational isome: $\delta = 171.1$, 166.4, 140.1, 139.2, 137.1, 135.9, 133.9, 130.1, 129.1, 128.4, 127.9, 127.7, 127.1, 126.3, 61.2, 51.9, 22.4, 14.5 ppm; ESI-HRMS: calcd. for $C_{22}H_{22}$ ClNO₃+Na 406.1186, found 406.1188.

3d, 63% yield; $[\alpha]_D^{20} = -56.4$ (c = 2.40 in CHCl₃); 86% ee, determined by HPLC analysis [Daicel Chiralpak AS, n-hexane/i-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 8.638 min, t (minor) = 5.927 min]; 1 H NMR (400 MHz, CDCl₃): major rotational isomer: $\delta = 7.27$ -7.04 (m,

3.92H), 6.83-6.76 (m, 1.12H), 6.34 (s, 0.56H), 6.27 (s, 0.56H), 6.25 (s, 0.56H), 5.78 (q, J = 6.8 Hz, 0.56H), 3.82 (s, 1.68H), 3.60 (s, 1.68H), 2.15 (s, 1.68H), 1.50 (d, J = 7.2 Hz, 1.68H) ppm; minor rotational isomer: $\delta = 7.27-7.04$ (m, 3.08H), 6.83-6.76 (m, 0.88H), 5.84 (s, 0.44H), 5.71 (s, 0.44H), 5.67 (q, J = 7.2 Hz, 0.44H), 5.64 (s, 0.44H), 3.80 (s, 1.32H), 3.66 (s, 1.32H), 2.12 (s, 1.32H), 1.68 (d, J = 7.2 Hz, 0.44H), 3.80 (s, 1.32H), 3.66 (s, 1.32H), 3.66 (s, 1.32H), 3.68 (d, J = 7.2 Hz, 0.44H), 3.80 (s, 1.32H), 3.66 (s, 1.32H), 3.66 (s, 1.32H), 3.68 (d, J = 7.2 Hz, 0.44H), 3.80 (s, 1.32H), 3.66 (s, 1.32H), 3.66 (s, 1.32H), 3.68 (d, J = 7.2 Hz, 0.44H), 3.80 (s, 1.32H), 3.66 (s, 1.32H),Hz, 1.32H) ppm; 13 C NMR (100 MHz, CDCl₃): major rotational isomer: $\delta = 171.7$, 166.5, 159.5, 140.8, 140.1, 137.4, 131.8, 130.2, 127.9, 127.6, 127.4, 126.8, 125.1, 113.7, 62.3, 55.3, 51.9, 22.5, 14.5 ppm; minor rotational isomer: $\delta = 171.2$, 166.5, 159.5, 140.2, 139.4, 136.1, 131.1, 129.8, 127.8, 127.5, 127.2, 126.1, 124.7, 113.5, 61.3, 55.3, 51.8, 22.4, 14.3 ppm; ESI-HRMS: calcd. for C₂₃H₂₆NO₄+H 380.1862, found 380.1867.

3e, 59% yield; $[\alpha]_D^{20} = -63.7$ (c = 2.10 in CHCl₃); 89% ee, determined by HPLC analysis [Daicel Chiralpak AD, n-hexane/i-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 8.607 min, t (minor) = 6.613 min]; ¹H NMR (400 MHz, CDCl₃): major rotational isomer: $\delta = 7.27-7.08$ (m, 3.24H), 6.95-6.90 (m, 0.54H), 6.84-

6.83 (m, 0.54H), 6.35 (s, 0.54H), 6.34 (s, 0.54H), 6.30 (s, 0.54H), 5.96-5.91 (m, 0.54H), 3.62 (s, 1.62H), 2.16 (s, 1.62H), 1.54 (d, J = 6.8 Hz, 1.62H) ppm; minor rotational isomer: $\delta = 7.27-7.08$ (m, 2.76H), 6.95-6.90 (m, 0.92H), 5.98 (s, 0.46H), 5.88-5.82 (m, 0.92H), 5.77 (s, 0.46H), 3.65 (s, 1.38H), 2.10 (s, 1.38H), 1.69 (d, J = 7.2 Hz, 1.38H) ppm; ¹³C NMR (100 MHz, CDCl₃): major rotational isomer: $\delta = 174.2$, 166.5, 143.6, 139.7, 136.8, 135.9, 129.9, 128.8, 127.8, 127.6, 127.2, 125.8, 124.8, 124.5, 62.5, 51.8, 22.6, 14.2 ppm; minor rotational isomer: $\delta = 171.2, 166.5, 143.1, 139.2, 136.0, 135.2, 129.8, 128.3, 127.7, 127.5,$ 127.1, 125.0, 124.7, 124.2, 61.8, 51.8, 22.4, 14.0 ppm; ESI-HRMS: calcd. for C₂₀H₂₁NO₃S+Na 378.1140, found 378.1149.

3f, 52% yield; $[\alpha]_D^{20} = -11.22$ (c = 1.80 in CH₂Cl₂); 87% ee, determined by HPLC COOMe analysis [Daicel Chiralpak AD, n-hexane/i-PrOH = 80/20, 1.0 mL/min, λ = 254 nm, t (major) = 7.478 min, t (minor) = 6.691 min]; 1 H NMR (400 MHz, CDCl₃): δ

= 7.34-7.24 (m, 5H), 6.46 (s, 1H), 6.23 (s, 1H), 5.73 (s, 1H), 5.59 (s, 1H), 4.13 (q, J = 7.2 Hz, 2H), 3.71 (s, 3H), 2.14 (s, 3H), 2.12 (s, 3H), 1.26 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 169.0$, 166.5, 165.4, 154.8, 139.2, 137.0, 128.8, 128.4, 127.9, 127.7, 122.1, 61.9, 60.3, 52.1, 23.2, 21.1, 14.1 ppm; ESI-HRMS: calcd. for C₁₉H₂₃NO₅+Na 368.1474, found 368.1469.

3g, 92% yield; $[\alpha]_D^{20} = -222.0$ (c = 3.60 in CHCl₃); 84% ee, determined by HPLC analysis [Daicel Chiralpak AD, n-hexane/i-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 14.599 min, t (minor) = 8.522 min]; ¹H NMR (400

MHz, CDCl₃): major rotational isomer: δ = 7.57-6.91 (m, 9.02H), 6.68 (s, 0.82H), 6.51 (s, 0.82H), 6.22 (s, 0.82H), 3.78 (s, 2.46H), 3.60 (s, 2.46H), 1.94 (s, 2.46H) ppm; minor rotational isomer: δ = 7.57-6.91 (m, 1.98H), 6.24 (s, 0.18H), 6.18 (s, 0.18H), 5.52 (s, 0.18H), 3.74 (s, 0.54H), 3.44 (s, 0.54H), 2.05 (s, 0.54H) ppm; ¹³C NMR (100 MHz, CDCl₃): major rotational isomer: δ = 170.4, 166.5, 166.2, 140.5, 138.1, 134.8, 131.0, 130.3, 129.8, 128.8, 128.7, 128.3, 127.7, 125.0, 62.0, 52.4, 51.6, 22.7 ppm; minor rotational isomer: δ = 170.4, 166.5, 166.2, 139.8, 137.6, 132.3, 130.8, 130.1, 129.2, 128.8, 128.5, 127.8, 127.7, 127.3, 62.8, 52.4, 52.4, 22.7 ppm; ESI-HRMS: calcd. for C₂₃H₂₃NO₅+Na 416.1474, found 416.1474.

3h, 68% yield; $[\alpha]_D^{20} = -11.88$ (c = 1.65 in CH₂Cl₂); 82% ee, determined by HPLC analysis [Daicel Chiralcel OD, n-hexane/i-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 15.194 min, t (minor) = 13.537 min]; ¹H NMR (400)

MHz, CDCl₃): δ = 7.37-7.15 (m, 9H), 6.63 (s, 1H), 6.54 (s, 1H), 6.43 (s, 1H), 5.66 (s, 1H), 3.69 (s, 3H), 3.27 (d, J = 22.8 Hz, 1H), 2.97 (d, J = 22.4 Hz, 1H), 2.72 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 170.2, 166.6, 145.8, 141.9, 141.0, 139.6, 137.5, 128.6, 128.5, 127.8, 127.5, 127.3, 126.7, 125.6, 123.6, 121.6, 61.1, 52.1, 41.2, 23.2 ppm; ESI-HRMS: calcd. for C₂₂H₂₁NO₃+Na 370.1419, found 370.1413.

3i, 26% yield; $[\alpha]_D^{20} = -47.31$ (c = 1.60 in CHCl₃); 69% ee, determined by HPLC analysis [Daicel Chiralpak AD, n-hexane/i-PrOH = 80/20, 1.0 mL/min, $\lambda = 220$ nm, t (major) = 9.197 min, t (minor) = 6.617 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.30$ -7.21 (m, 5H), 6.40 (s, 1H), 6.31 (s, 1H), 5.60 (brs, 2H), 3.65 (s, 3H), 2.09 (s,

3H), 1.96-1.26 (m, 8H) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = 169.9$, 166.8, 137.7, 130.7, 129.3, 128.0, 127.5, 126.2, 61.0, 51.9, 30.7, 24.9, 22.6, 22.5, 21.1 ppm; ESI-HRMS: calcd. for $C_{19}H_{23}NO_3+Na$ 336.1576, found 336.1571.

3j, 94% yield; $[\alpha]_D^{20} = -67.69$ (c = 2.28 in CHCl₃); 90% ee, determined by HPLC analysis [Daicel Chiralpak AD, n-hexane/i-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 8.017 min, t (minor) = 7.156 min]; ¹H NMR (400 MHz, CDCl₃): major rotational isomer: $\delta = 7.30$ -7.01 (m, 4.16H), 6.30 (s, 0.52H), 6.29 (s, 0.52H), 6.27 (s, 0.52H), 5.93 (q, J = 7.2 Hz, 0.52H), 3.62 (s, 1.56H), 2.14 (s, 1.56H), 1.58

(d, J = 7.2 Hz, 1.56H) ppm; minor rotational isomer: $\delta = 7.30$ -7.01 (m, 3.84H), 5.85-5.82 (m, 0.96H), 5.69 (s, 0.48H), 5.66 (s, 0.48H), 3.68 (s, 1.44H), 2.12 (s, 1.44H), 1.74 (d, J = 7.2 Hz, 1.44H) ppm; ¹³C NMR (100 MHz, CDCl₃): major rotational isomer: $\delta = 171.6$, 166.3, 140.2, 139.6, 137.5, 135.7, 134.1, 133.8, 131.3, 128.9, 128.5, 127.8, 127.2, 126.6, 61.7, 52.0, 22.4, 14.7 ppm; minor rotational isomer: $\delta = 171.1$, 166.1, 139.7, 138.8,

136.9, 134.7, 133.9, 133.5, 131.1, 128.6, 127.9, 127.8, 127.1, 125.3, 60.8, 51.9, 22.3, 14.5 ppm; ESI-HRMS: calcd. for C₂₂H₂₁Cl₂NO₃+Na 440.0796, found 440.0789.

3k, 78% yield; $[\alpha]_D^{20} = -51.29$ (c = 1.70 in CHCl₃); 82% ee, determined by HPLC analysis [Daicel Chiralcel OD, n-hexane/i-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 6.253 min, t (minor) = 14.444 min]; 1 H NMR (400 MHz, CDCl₃): major rotational isomer: $\delta = 7.28$ -6.95 (m, 4.0H), 6.30 (s, 0.5H), 6.29 (s, 0.5H), 6.27 (s, 0.5H), 5.93-5.90 (m, 0.5H), 3.67 (s, 1.5H), 2.14 (s, 1.5H), 1.73 (d, J = 6.8 Hz, 1.5H) ppm; minor rotational

isomer: $\delta = 7.28$ -6.95 (m, 4.0H), 5.83-5.80 (m, 1.0H), 5.73 (s, 0.5H), 5.63 (s, 0.5H), 3.61 (s, 1.5H), 2.11 (s, 1.5H), 1.56 (d, J = 6.8 Hz, 1.5H) ppm; ¹³C NMR (100 MHz, CDCl₃): major rotational isomer: $\delta = 171.6$, 166.3, 140.1, 139.3, 138.2, 136.9, 133.5, 130.0, 129.1, 128.9, 128.6, 128.2, 127.8, 127.4, 126.9, 125.9, 61.6, 52.1, 22.4, 14.7 ppm; minor rotational isomer: $\delta = 171.1$, 166.1, 139.7, 138.5, 137.6, 134.1, 134.0, 133.5, 129.8, 129.1, 128.6, 128.2, 127.9, 127.8, 127.2, 125.9, 60.8, 52.0, 22.3, 14.6 ppm; ESI-HRMS: calcd. for $C_{22}H_{21}Cl_2NO_3$ +Na 440.0796, found 440.0791.

31, 99% yield; $[\alpha]_D^{20} = +146.1$ (c = 3.30 in CHCl₃); 87% ee, determined by HPLC analysis [Daicel Chiralpak AD, n-hexane/i-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 7.483 min, t (minor) = 5.630 min]; 1 H NMR (400 MHz, CDCl₃): major rotational isomer: $\delta = 7.54$ -7.00 (m, 5.28H), 6.18 (s, 0.66H), 6.13 (s, 0.66H), 5.81 (q, J = 6.8 Hz, 0.66H), 5.24 (s,

0.66H), 3.67 (s, 1.98H), 2.11 (s, 1.98H), 1.60 (d, J = 6.8 Hz, 1.98H) ppm; minor rotational isomer: $\delta = 7.54-7.00$ (m, 2.72H), 6.69 (s, 0.34H), 6.25 (s, 0.34H), 5.84-5.79 (m, 0.34H), 5.61 (s, 0.34H), 3.54 (s, 1.02H), 2.14 (s, 1.02H), 1.74 (d, J = 6.8 Hz, 1.02H) ppm; ¹³C NMR (100 MHz, CDCl₃): major rotational

isomer: δ = 171.2, 166.1, 140.0, 138.8, 137.5, 136.8, 133.7, 132.5, 130.7, 129.7, 128.9, 128.2, 127.7, 126.6, 126.3, 124.9, 60.9, 51.8, 22.1, 14.4 ppm; minor rotational isomer: δ = 171.3, 165.9, 139.6, 138.6, 137.8, 136.6, 133.5, 132.7, 131.3, 129.1, 128.9, 128.2, 128.1, 126.9, 126.5, 125.5, 61.2, 51.7, 22.3, 15.3 ppm; ESI-HRMS: calcd. for $C_{22}H_{21}BrClNO_3+Na$ 484.0291, found 484.0296.

3m, 70% yield; $[\alpha]_D^{20} = +128.2$ (c = 1.48 in CHCl₃); 92% ee, determined by HPLC analysis [Daicel Chiralpak AD, n-hexane/i-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 8.190 min, t (minor) = 7.248 min]; 1 H NMR (400 MHz, CDCl₃): major rotational isomer: $\delta = 7.80$ -7.06 (m, 5.52H), 6.45 (s, 0.69H), 6.21 (s, 0.69H), 5.84 (q, J = 7.2 Hz, 0.69H), 5.16 (s,

0.69H), 3.72 (s, 2.07H), 2.13 (s, 2.07H), 1.55 (d, J = 6.8 Hz, 2.07H) ppm; minor rotational isomer: $\delta = 7.80$ -7.06 (m, 2.48H), 6.77 (s, 0.31H), 6.31 (s, 0.31H), 5.90 (q, J = 7.2 Hz, 0.31H), 5.64 (s, 0.31H), 3.59 (s, 0.93H), 2.15 (s, 0.93H), 1.70 (d, J = 7.2 Hz, 0.93H) ppm; ¹³C NMR (100 MHz, CDCl₃): major rotational isomer: $\delta = 171.4$, 165.8, 148.8, 137.8, 137.2, 134.1, 133.7, 132.3, 131.0, 129.1, 128.5, 128.3, 128.2, 127.8, 127.5, 124.4, 56.6, 52.0, 22.0, 14.3 ppm; minor rotational isomer: $\delta = 171.5$, 165.8, 148.8, 139.8, 137.4, 136.8, 133.8, 132.4, 131.6, 130.7, 128.9, 128.4, 128.3, 128.0, 127.8, 124.5, 56.3, 51.9, 22.2, 14.6 ppm; ESI-HRMS: calcd. for $C_{22}H_{21}CIN_2O_5+Na$ 451.1037, found 451.1033.

3n, 99% yield; $[\alpha]_D^{20} = -56.57$ (c = 1.75 in CHCl₃); 91% ee, determined by HPLC analysis [Daicel Chiralcel OD, n-hexane/i-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 6.452 min, t (minor) = 13.795 min]; ¹H NMR (400 MHz, CDCl₃): major rotational isomer: $\delta = 7.30$ -6.92 (m, 3.5H), 6.32 (s, 0.5H), 6.17 (s, 0.5H), 5.94 (q, J = 7.2 Hz, 0.5H), 5.73 (s, 0.5H), 3.67 (s, 1.5H), 2.13 (s, 1.5H), 1.74 (d, J = 7.2 Hz, 1.5H) ppm; minor rotational

isomer: $\delta = 7.30$ -6.92 (m, 3.5H), 6.32 (s, 0.5H), 5.86 (q, J = 7.2 Hz, 0.5H), 5.84 (s, 0.5H), 5.64 (s, 0.5H), 3.61 (s, 1.5H), 2.12 (s, 1.5H), 1.60 (d, J = 6.8 Hz, 1.5H) ppm; ¹³C NMR (100 MHz, CDCl₃): major rotational isomer: $\delta = 171.6$, 166.1, 140.1, 139.1, 138.8, 137.6, 136.8, 136.4, 134.3, 131.7, 129.6, 129.2, 128.7, 127.8, 127.2, 126.4, 61.2, 52.1, 22.4, 14.7 ppm; minor rotational isomer: $\delta = 171.1$, 165.9, 140.0, 139.8, 138.5, 138.2, 137.3, 136.9, 136.7, 134.2, 131.5, 129.6, 128.9, 128.6, 127.5, 127.1, 60.5, 52.0, 22.2, 14.6 ppm; ESI-HRMS: calcd. for $C_{22}H_{20}Cl_3NO_3+Na$ 474.0406, found 474.0412.

30, 88% yield; $[\alpha]_D^{20} = -44.71$ (c = 1.72 in CH₂Cl₂); 87% ee, determined by HPLC analysis [Daicel Chiralcel OD, n-hexane/i-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 5.916 min, t (minor) = 12.014 min]; 1 H NMR (400 MHz, CDCl₃): major rotational isomer: $\delta = 7.26$ -7.19 (m, 1.12H), 7.08-6.76 (m, 3.36H), 6.30 (s, 0.56H), 6.27 (s, 0.56H), 6.25 (s,

0.56H), 5.87 (q, J = 7.2 Hz, 0.56H), 3.60 (s, 1.68H), 2.18 (s, 1.68H), 2.14 (s, 1.68H), 1.53 (d, J = 7.2 Hz, 1.68H) ppm; minor rotational isomer: $\delta = 7.26$ -7.19 (m, 0.88H), 7.08-6.76 (m, 2.64H), 5.79 (s, 0.44H), 5.75 (q, J = 6.8 Hz, 0.44H), 5.70 (s, 0.44H), 5.65 (s, 0.44H), 3.67 (s, 1.32H), 2.15 (s, 1.32H), 2.11 (s, 1.32H), 1.73 (d, J = 7.2 Hz, 1.32H) ppm; ¹³C NMR (100 MHz, CDCl₃): major rotational isomer: $\delta = 171.5$, 166.6, 140.3, 139.7, 138.0, 137.1, 135.7, 133.6, 130.9, 128.8, 128.3, 127.6, 127.3, 126.9, 125.8, 62.1, 51.9, 22.5, 21.3, 14.7 ppm; minor rotational isomer: $\delta = 171.1$, 166.4, 140.1, 139.2, 137.2, 136.7, 133.8, 131.0, 129.0, 128.4, 127.9, 127.5, 127.2, 126.7, 124.8, 61.4, 51.9, 22.4, 21.2, 14.5 ppm; ESI-HRMS: calcd. for C₂₃H₂₄ClNO₃+Na 420.1342, found 420.1349.

3p, 99% yield; $[\alpha]_D^{20} = -66.25$ (c = 2.85 in CHCl₃); 90% ee, determined by HPLC analysis [Daicel Chiralcel OD, n-hexane/i-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 8.842 min, t (minor) = 19.214 min]; 1 H NMR (400 MHz, CDCl₃): major rotational isomer: $\delta = 7.28$ -7.22 (m, 1.0H), 7.11-7.08 (m, 1.0H), 6.62-6.46 (m, 1.5H), 6.26 (s, 0.5H), 6.25 (s, 0.5H), 6.24 (s, 0.5H), 5.93-5.82 (m, 1.5H), 3.68 (s, 1.5H), 2.14 (s, 1.5H), 1.74 (d, J

= 7.2 Hz, 1.5H) ppm; minor rotational isomer: δ = 7.28-7.22 (m, 1.0H), 7.11-7.08 (m, 1.0H), 6.62-6.46 (m, 1.5H), 5.93-5.82 (m, 1.5H), 5.79 (s, 0.5H), 5.67 (s, 0.5H), 5.63 (s, 0.5H), 3.62 (s, 1.5H), 2.11 (s, 1.5H), 1.57 (d, J = 7.2 Hz, 1.5H) ppm; 13 C NMR (100 MHz, CDCl₃): major rotational isomer: δ = 171.5, 166.5, 147.0, 146.9, 140.2, 139.7, 137.8, 133.8, 130.6, 129.0, 128.4, 127.1, 125.7, 123.9, 110.5, 107.5, 101.1, 61.9, 51.9, 22.5, 14.7 ppm; minor rotational isomer: δ = 171.1, 166.3, 147.2, 147.0, 140.2, 139.3, 137.1, 133.7, 129.6, 128.4, 127.8, 127.0, 124.4, 123.8, 110.2, 107.3, 101.0, 61.0, 51.9, 22.3, 14.5 ppm; ESI-HRMS: calcd. for $C_{23}H_{22}CINO_5+Na$ 450.1084, found 450.1089.

3q, 75% yield; $[\alpha]_D^{20} = -60.16$ (c = 1.27 in CHCl₃); 71% ee, determined by HPLC analysis [Daicel Chiralcel OD, n-hexane/i-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 7.290 min, t (minor) = 9.252 min]; ¹H NMR (400 MHz, CDCl₃): major rotational isome: $\delta = 7.27$ -7.11 (m, 2.9H), 6.88-6.81 (m,

1.16H), 6.63 (s, 0.58H), 6.27 (s, 0.58H), 6.01 (s, 0.58H), 5.96 (q, J = 6.8Hz, 0.58H), 3.68 (s, 1.74H), 2.11 (s, 1.74H), 1.52 (d, J = 6.8 Hz, 1.74H) ppm; minor rotational isomer: $\delta = 7.27-7.11$ (m, 2.1H), 6.74-6.68 (m, 0.84H), 6.38 (s, 0.42H), 6.37 (s, 0.42H), 6.03 (q, J = 7.2 Hz, 0.42H), 5.92 (s, 0.42H), 3.70 (s, 1.26H), 2.09 (s, 1.26H), 1.72 (d, J = 6.8 Hz, 1.26H) ppm; ¹³C NMR (100

MHz, CDCl₃): major rotational isomer: δ = 171.7, 170.8, 166.4, 150.6, 139.5, 138.8, 136.9, 133.9, 128.9, 128.6, 128.4, 127.6, 127.0, 125.9, 55.9, 52.2, 22.4, 14.5 ppm; minor rotational isomer: δ = 171.3, 170.5, 166.4, 150.1, 140.3, 139.2, 137.4, 133.9, 128.7, 128.5, 128.3, 127.2, 126.2, 125.9, 54.9, 52.1, 22.2, 14.5 ppm; ESI-HRMS: calcd. for $C_{20}H_{20}CINO_3S+K$ 428.0489, found 428.0464.

3r, 94% yield; $[\alpha]_D^{20} = -31.79$ (c = 1.40 in CH₂Cl₂); 80% ee, determined by HPLC analysis [Daicel Chiralpak AD, n-hexane/i-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 8.718 min, t (minor) = 6.386 min]; 1 H NMR (400 MHz, CDCl₃): major rotational isomer: $\delta = 7.28$ -7.04 (m,

4.86H), 5.96 (s, 0.54H), 5.82-5.76 (m, 0.54H), 5.56 (s, 0.54H), 5.40 (s, 0.54H), 2.36 (s, 1.62H), 2.07 (s, 1.62H), 1.56-1.53 (m, 1.62H) ppm; minor rotational isomer: $\delta = 7.28-7.04$ (m, 4.14H), 6.31 (s, 0.46H), 6.10 (s, 0.46H), 5.99 (s, 0.46H), 5.82-5.76 (m, 0.46H), 2.15 (s, 1.38H), 2.11 (s, 1.38H), 1.56-1.53 (m, 1.38H) ppm; ¹³C NMR (100 MHz, CDCl₃): major rotational isomer: $\delta = 198.8$, 171.4, 149.0, 140.3, 137.8, 136.5, 134.0, 130.0, 128.8, 128.4, 127.8, 127.7, 126.8, 123.0, 62.0, 26.5, 22.5, 14.7 ppm; minor rotational isomer: $\delta = 198.2$, 171.1, 147.5, 139.9, 137.5, 136.4, 133.8, 129.9, 128.5, 127.9, 127.8, 127.7, 126.0, 123.0, 60.3, 26.1, 22.4, 14.3 ppm; ESI-HRMS: calcd. for $C_{22}H_{23}CINO_2+H$ 368.1417, found 368.1424.

3s, 78% yield; $[\alpha]_D^{20} = -28.52$ (c = 1.35 in CHCl₃); 86% ee, determined by HPLC analysis [Daicel Chiralpak AD, n-hexane/i-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 9.257 min, t (minor) = 7.174 min]; ¹H NMR (400 MHz, CDCl₃): major rotational isomer: $\delta = 7.29$ -7.26 (m, 2.12H), 7.21-7.18 (m, 0.53H), 7.08-7.06 (m, 0.53H), 7.00-6.94 (m, 1.06H), 6.19 (s, 0.53H), 5.99 (s, 0.53H), 5.85-5.81 (m, 0.53H), 5.59 (s, 0.53H), 2.34 (s, 1.59H), 2.07 (s,

1.59H), 1.60-1.57 (m, 1.59H) ppm; minor rotational isomer: $\delta = 7.29-7.26$ (m, 1.88H), 7.21-7.18 (m, 0.47H), 7.08-7.06 (m, 0.47H), 7.00-6.94 (m, 0.94H), 6.13 (s, 0.47H), 6.03 (s, 0.47H), 5.85-5.81 (m, 0.47H), 5.41 (s, 0.47H), 2.16 (s, 1.41H), 2.11 (s, 1.41H), 1.60-1.57 (m, 1.41H) ppm; ¹³C NMR (100 MHz,

CDCl₃): major rotational isomer: δ = 198.5, 171.6, 148.4, 140.2, 137.4, 136.3, 134.2, 131.5, 131.0, 128.7, 127.9, 126.9, 123.5, 112.1, 61.3, 26.4, 22.5, 14.7 ppm; minor rotational isomer: δ = 198.5, 171.2, 147.1, 139.9, 136.7, 135.8, 134.1, 131.5, 130.8, 128.6, 127.5, 126.5, 121.7, 112.1, 59.9, 26.0, 22.4, 14.4 ppm; ESI-HRMS: calcd. for C₂₂H₂₁BrClNO₂+Na 468.0342, found 468.0349.

3t, 90% yield; $[\alpha]_D^{20} = +129.7$ (c = 2.05 in CHCl₃); 87% ee, determined by HPLC analysis [Daicel Chiralpak AD, n-hexane/i-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 7.990 min, t (minor) = 6.059 min]; ¹H NMR (400 MHz, CDCl₃): major rotational isomer: $\delta = 7.70$ -7.68 (m, 0.64H), 7.45-6.99 (m, 4.48H), 5.87-5.85 (m, 1.28H), 5.76 (q, J = 6.8 Hz, 0.64H), 5.12 (s,

0.64H), 2.38 (s, 1.92H), 2.08 (s, 1.92H), 1.43 (d, J = 7.2 Hz, 1.92H) ppm; minor rotational isomer: $\delta = 7.45$ -6.99 (m, 2.88H), 6.46 (s, 0.36H), 6.06 (s, 0.36H), 5.87-5.81 (m, 0.36H), 5.67 (s, 0.36H), 2.22 (s, 1.08H), 2.14 (s, 1.08H), 1.79 (d, J = 7.2 Hz, 1.08H) ppm; ¹³C NMR (100 MHz, CDCl₃): major rotational isomer: $\delta = 198.5$, 171.6, 148.1, 140.2, 138.3, 136.1, 134.1, 132.6, 131.3, 129.0, 128.3, 128.0, 127.3, 126.1, 124.8, 124.1, 61.0, 26.6, 22.3, 14.3 ppm; minor rotational isomer: $\delta = 198.5$, 171.6, 147.2, 140.2, 137.6, 136.1, 134.1, 132.8, 131.3, 129.2, 128.5, 128.2, 127.8, 126.6, 124.8, 124.1, 61.1, 26.3, 22.6, 15.4 ppm; ESI-HRMS: calcd. for C₂₂H₂₂BrClNO₂+H 446.0522, found 446.0524.

3u, 72% yield; $[\alpha]_D^{20} = -15.9$ (c = 1.35 in CHCl₃); 86% ee, determined by HPLC analysis [Daicel Chiralcel AD, n-hexane/i-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 6.888 min, t (minor) = 5.823 min]; ¹H NMR (400 MHz, CDCl₃): major rotational isomer: $\delta = 7.28$ -7.20 (m, 2.08H), 7.07-6.94 (m, 2.08H), 6.07 (s, 0.52H), 5.94 (s, 0.52H), 5.80-5.78 (m, 0.52H), 5.56 (s, 0.52H), 2.35 (s, 1.56H), 2.27 (s, 1.56H), 2.06 (s, 1.56H), 1.56-1.53 (m, 1.56H)

ppm; minor rotational isomer: δ = 7.28-7.20 (m, 1.92H), 7.07-6.94 (m, 1.92H), 6.26 (s, 0.48H), 5.99 (s, 0.48H), 5.80-5.78 (m, 0.48H), 5.37 (s, 0.48H), 2.28 (s, 1.44H), 2.14 (s, 1.44H), 2.11 (s, 1.44H), 1.56-1.53 (m, 1.44H) ppm; ¹³C NMR (100 MHz, CDCl₃): major rotational isomer: δ = 198.8, 171.4, 149.2, 140.4, 137.8, 137.4, 134.5, 133.4, 129.8, 128.5, 128.4, 128.0, 126.7, 122.9, 61.8, 26.5, 22.6, 21.1, 14.7 ppm; minor rotational isomer: δ = 198.2, 171.1, 147.7, 140.0, 137.5, 136.5, 134.0, 130.0, 128.7, 128.4, 128.4, 127.7, 125.7, 122.9, 60.2, 26.1, 22.4, 21.1, 14.3 ppm; ESI-HRMS: calcd. for C₂₃H₂₅ClNO₂+H 382.1574, found 382.1579.

3v, 45% yield; $[\alpha]_D^{20} = -37.9$ (c = 0.80 in CHCl₃); 39% ee, determined by HPLC analysis [Daicel Chiralpak AD, n-hexane/i-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 6.606 min, t (minor) = 7.474 min]; ¹H NMR (400 MHz, CDCl₃): major rotational isomer: $\delta = 7.34$ -7.23 (m, 2.6H), 6.24 (q, J = 7.2Hz, 0.65H),

6.13 (s, 0.65H), 6.09 (s, 0.65H), 5.21 (dd, J = 10.8 Hz, 5.6 Hz, 0.65H), 2.06 (s, 1.95H), 1.78 (d, J = 7.2 Hz, 1.95H), 1.42-1.21 (m, 1.3H), 0.73 (t, J = 7.2 Hz, 1.95H) ppm; minor rotational isomer: $\delta = 7.34-7.23$ (m, 1.4H), 6.29 (q, J = 7.2Hz, 0.35H), 5.95 (s, 0.35H), 5.83 (s, 0.35H), 4.93 (dd, J = 10.8 Hz, 5.6 Hz, 0.35H), 2.05 (s, 1.05H), 1.84 (d, J = 6.8 Hz, 1.05H), 1.42-1.21 (m, 0.7H), 0.85 (t, J = 7.2 Hz, 1.05H) ppm; 13 C NMR (100 MHz, CDCl₃): major rotational isomer: $\delta = 170.8$, 137.5, 137.1, 136.5, 134.3, 129.8, 128.8, 127.2, 122.1, 117.1, 58.6, 24.7, 21.5, 15.1, 10.9 ppm; minor rotational isomer: $\delta = 175.1$, 137.4, 136.7, 136.3, 134.2, 128.9, 128.8, 127.0, 122.0, 117.1, 59.1, 23.9, 21.7, 14.8, 10.7 ppm; ESI-HRMS: calcd. for $C_{17}H_{19}$ ClN₂O+K 341.0823, found 341.0826.

3. General procedure for the one-pot *N*-alkylation—Aza-Cope rearrangement. Optimisation of the one-pot *N*-alkylation—aza-Cope rearrangement^a

To a solution of 1e (42.0 mg, 0.2 mmol) and (DHQD)₂AQN (8.6 mg, 5 mol%) in dry toluene (1.0 mL) was added 2a (116.8 mg, 0.4 mmol). The reaction mixture was stirred at 50 °C until consumption of 1e, which was monitored by TLC analysis. Then the solvent was removed under reduced pressure, DMF (400 μ L) and H₂O (100 μ L) were added to the residue, followed by PTSA (10.3 mg, 0.06 mmol). The mixture was stirred at 110 °C until consumption of 3c. The reaction mixture was cooled to room temperature,

^a Unless otherwise noted, reactions were performed with 0.2 mmol of **1e**, 0.4 mmol of **2a**, 0.01 mmol of catalyst in 1 mL toluene at 50 °C. After the consumption of **1e**, the solvent was removed under reduced pressure, and new solvent was added to the residue, followed by the additive. ^b Isolated yield of two steps. ^c Determined by chiral HPLC analysis. ^d Not determined.

extracted with ethyl acetate, washed with H_2O and brine, dried over anhydrous Na_2SO_4 and concentrated under vacuum after filtration. Purification by flash column chromatography on silica gel (EtOAc/PE = 1/100) afforded the product **4c** as a yellowish oil (44.0 mg, 64%).

4a, 84% yield; E/Z > 95/5 (determined by crude ¹H NMR); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.99-7.96$ (m, 2H), 7.77 (s, 1H), 7.58-7.31 (m, 8H), 3.84 (s, 1H), 3.25-3.21 (m, 2H), 3.00-2.96 (m, 2H) ppm; ¹³C NMR (50 MHz, CDCl₃): $\delta = 1.000$

199.1, 168.5, 140.3, 136.7, 135.3, 133.0, 131.7, 129.2, 128.7, 128.6, 128.1, 52.1, 38.0, 22.7 ppm; ESI-HRMS: calcd. for $C_{19}H_{18}O_3$ +Na 317.1154, found 317.1154.

4b, 62% yield; E/Z > 95/5 (determined by crude ¹H NMR); $[\alpha]_D^{20} = +63.93$ (c = 1.50 in CHCl₃); 80% ee, determined by HPLC analysis [Daicel Chiralpak AD, n-hexane/i-PrOH = 95/5, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 7.500 min, t (minor) = 7.069 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.98$ -7.96 (m, 2H), 7.77 (s, 1H), 7.56-7.13 (m, 7H), 3.87-

4c, 64% yield; E/Z = 89/11 (determined by crude ¹H NMR); $[\alpha]_D^{20} =$

3.81 (m, 4H), 2.95 (dd, J = 9.6 Hz, 4.8 Hz, 1H), 2.81 (dd, J = 13.6 Hz, 9.2 Hz, 1H), 2.35 (s, 3H), 1.08 (d, J = 6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 203.7$, 168.6, 141.7, 138.1, 136.2, 135.4, 132.9, 130.5, 129.7, 129.2, 128.5, 128.4, 128.4, 126.0, 52.0, 39.6, 30.8, 21.4, 16.2 ppm; ESI-HRMS: calcd. for $C_{21}H_{22}O_3$ +Na 345.1467, found 345.1469.

+61.63 (
$$c = 3.00$$
 in CHCl₃); 82% ee, determined by HPLC analysis [Daicel Chiralpak AD, n -hexane/ i -PrOH = 95/5, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 11.424 min, t (minor) = 10.065 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.95$ -7.90 (m, 2H), 7.80 (s, 1H), 7.45-7.31 (m, 7H), 3.82-3.76 (m, 4H), 2.92 (dd, $J = 13.6$ Hz, 5.2 Hz, 1H), 2.78 (dd, $J = 14.0$ Hz, 5.2 Hz, 1H), 1.06 (d, $J = 6.8$ Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 202.4$, 168.5, 141.7, 139.3,

136.7, 135.3, 134.5, 130.4, 129.9, 129.0, 128.6, 128.0, 52.1, 39.6, 30.8, 16.0 ppm; ESI-HRMS: calcd. for $C_{20}H_{19}ClO_3+Na$ 365.0920, found 365.0924.

4d, 58% yield; E/Z > 95/5 (determined by crude ¹H NMR); $[\alpha]_D^{20} = +23.5$ (c = 2.75 in CH₂Cl₂); 80% ee, determined by HPLC analysis [Daicel Chiralcel AD, n-hexane/i-PrOH = 95/5, 1.0 mL/min, $\lambda = 254$ nm, t

(major) = 20.158 min, t (minor) = 16.242 min]; ¹H NMR (400 MHz, CDCl₃): δ = 7.98-7.96 (m, 2H), 7.79 (s, 1H), 7.41-7.26 (m, 5H), 6.94-6.91 (m, 2H), 3.88-3.77 (m, 7H), 2.92 (dd, J = 13.6 Hz, 5.2 Hz, 1H), 2.80 (dd, J = 13.6 Hz, 5.2 Hz, 1H), 1.06 (d, J = 6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz,

CDCl₃): δ = 202.2, 168.7, 163.4, 141.5, 135.5, 130.8, 130.8, 129.2, 129.1, 128.6, 128.5, 113.7, 55.4, 52.1, 39.2, 31.0, 16.2 ppm; ESI-HRMS: calcd. for C₂₁H₂₂O₄+Na 361.1416, found 361.1417.

4e, 55% yield; E/Z > 95/5 (determined by crude ¹H NMR); $[\alpha]_D^{20} = +63.36$ (c = 0.72 in CHCl₃); 59% ee, determined by HPLC analysis [Daicel Chiralpak AD, n-hexane/i-PrOH = 95/5, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 9.193 min, t (minor) = 7.859 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.92$ -7.90 (m, 2H), 7.71 (s, 1H), 7.44-7.42 (m, 2H), 7.33-7.22

(m, 4H), 3.83-3.76 (m, 4H), 2.91 (dd, J = 13.6 Hz, 5.2 Hz, 1H), 2.70 (dd, J = 14.0 Hz, 5.2 Hz, 1H), 1.06 (d, J = 6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 202.1$, 168.1, 140.0, 139.4, 137.1, 134.5, 134.4, 131.8, 129.9, 128.9, 128.9, 128.5, 126.9, 52.2, 39.5, 30.9, 16.2 ppm; ESI-HRMS: calcd. for $C_{20}H_{18}Cl_2O_3+Na$ 399.0531, found 399.0529.

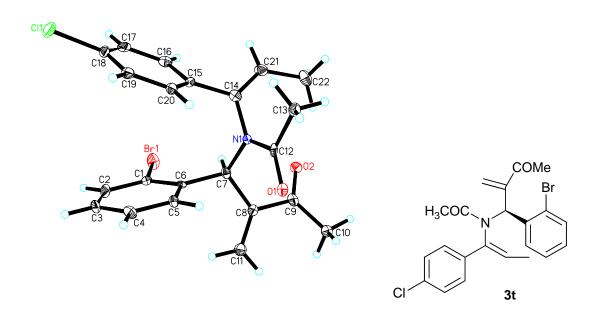
4f, 72% yield; E/Z > 95/5 (determined by crude ¹H NMR); $[\alpha]_D^{20} = +79.81$ (c = 2.70 in CHCl₃); 88% ee, determined by HPLC analysis [Daicel Chiralpak AD, n-hexane/i-PrOH = 95/5, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 15.641 min, t (minor) = 14.417 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.94$ -7.92 (m, 2H), 7.73 (s, 1H), 7.43-7.36 (m, 4H), 6.92-6.90 (m, 2H), 3.89-

3.81 (m, 7H), 2.94 (dd, J = 13.6 Hz, 5.2 Hz, 1H), 2.84 (dd, J = 13.6 Hz, 5.2 Hz, 1H), 1.09 (d, J = 6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 202.6$, 168.7, 159.9, 141.4, 139.3, 134.6, 130.9, 129.9, 128.8, 128.2, 127.6, 114.0, 55.3, 52.0, 39.6, 30.9, 16.1 ppm; ESI-HRMS: calcd. for C₂₁H₂₁ClO₄+Na 395.1026, found 395.1029.

4g, 66% yield;
$$E/Z > 95/5$$
 (determined by crude ¹H NMR); $[\alpha]_D^{20} = +89.12$ ($c = 2.50$ in CHCl₃); 85% ee, determined by HPLC analysis [Daicel Chiralpak AD, n -hexane/ i -PrOH = 95/5, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 21.284 min, t (minor) = 16.159 min]; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.95-7.92$ (m, 2H), 7.69 (s, 1H), 7.44-7.41 (m, 2H), 6.90-6.81 (m, 3H),

6.00 (s, 2H), 3.84-3.80 (m, 4H), 2.92 (dd, J = 14.0 Hz, 5.2 Hz, 1H), 2.79 (dd, J = 13.6 Hz, 5.2 Hz, 1H), 1.09 (d, J = 6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 202.5$, 168.6, 147.9, 147.8, 141.4, 139.3, 134.5, 129.9, 129.1, 128.9, 128.9, 124.0, 109.1, 108.5, 101.4, 52.0, 39.6, 30.9, 16.1 ppm; ESI-HRMS: calcd. for $C_{21}H_{19}ClO_5+Na$ 409.0819, found 409.0822.

Speculation of the absolute configuration of aza-Cope rearrangement products.


Currently we are not successful to obtain the crystals suitable for the assignment of the absolute configuration of the chiral ketone products $\bf 4$ by X-ray analysis. Nevertheless, based on the concerted mechanism of aza-Cope rearrangement, we proposed the possible configuration. The *N*-alkylation product $\bf 3c$ prefers to undergo the [3,3]-sigmatropic rearrangement process through the chair transition state, in which the aryl group orients pseudoequatorially, as shown in the above scheme. Thus the newly generated chiral centre would be assigned to R.

4. Transformation of N-allylic alkylation product

To a solution of **3a** (33.5 mg, 0.1 mmol) in dry DCM (0.5 mL) was added trifluoromethanesulfonic acid (17.6 μ L, 0.2 mmol). The mixture was stirred at ambient temperature for 2 days. Then the solution was extracted with DCM, washed with aqueous NaHCO₃, concentrated and purified by column chromatography on silica gel (EtOAc/PE = 1/2). **5** was obtained as a colourless oil (12.4 mg, 53%).

Ac N yield; $[\alpha]_D^{20} = -14.35$ (c = 1.15 in CH₂Cl₂); 85% ee, determined by HPLC analysis [Daicel Chiralpak AD, n-hexane/i-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 5.932 min, t (minor) = 5.289 min]; 1 H NMR (400 MHz, CDCl₃): $\delta = 7.33$ -7.23 (m, 5H), 6.67-6.65 (m, 1H), 6.37 (s, 1H), 6.01 (d, J = 4.8 Hz, 1H), 5.93 (s, 1H), 3.70 (s, 3H), 2.05 (s, 3H) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = 169.1$, 166.2, 139.5, 139.0, 128.5, 127.5, 127.4, 126.4, 54.7, 51.9, 23.3 ppm; ESI-HRMS: calcd. for C₁₃H₁₅NO₃+Na 256.0950, found 256.0955.

5. Crystal data of enantiopure 3t

Identification code 3t

Empirical formula C22 H21 Br Cl N O2

Formula weight 446.76

Temperature 103(2) K

Wavelength 0.71073 A

Crystal system, space group Monoclinic, P2(1)

Unit cell dimensions a = 7.0532(14) A alpha = 90 deg.

b = 15.697(3) A beta = 99.348(3) deg. c = 8.9730(19) A gamma = 90 deg.

Volume 980.3(3) A^3

Z, Calculated density 2, 1.514 Mg/m³

Absorption coefficient 2.250 mm^-1

F(000) 456

Crystal size $0.43 \times 0.40 \times 0.30 \text{ mm}$

Theta range for data collection 3.20 to 27.49 deg.

Limiting indices -9 <= h <= 9, -20 <= k <= 20, -9 <= l <= 11

Reflections collected / unique 9373 / 4423 [R(int) = 0.0321]

Completeness to theta = 27.49 99.7 %

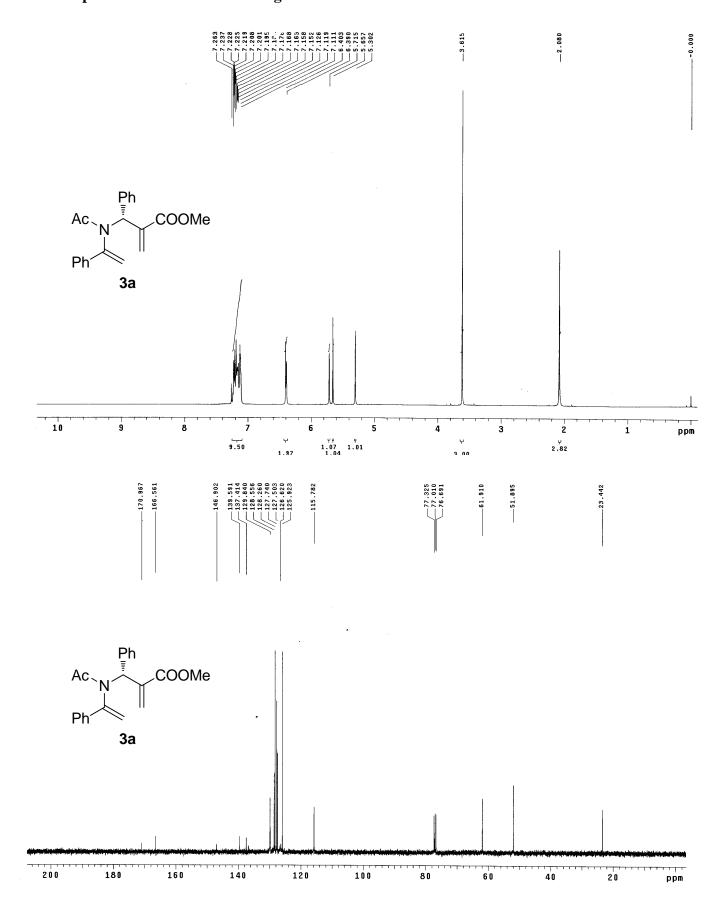
Absorption correction Semi-empirical from equivalents

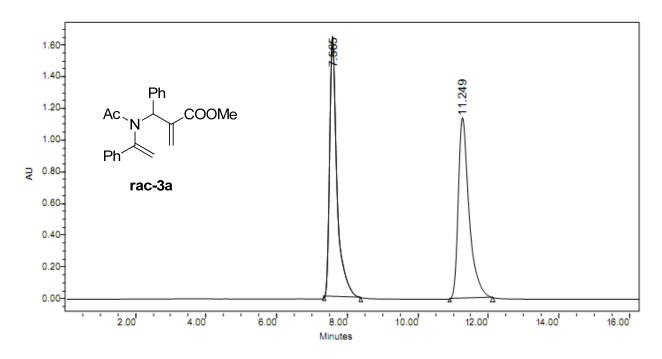
Max. and min. transmission 0.5517 and 0.4425

Refinement method Full-matrix least-squares on F²

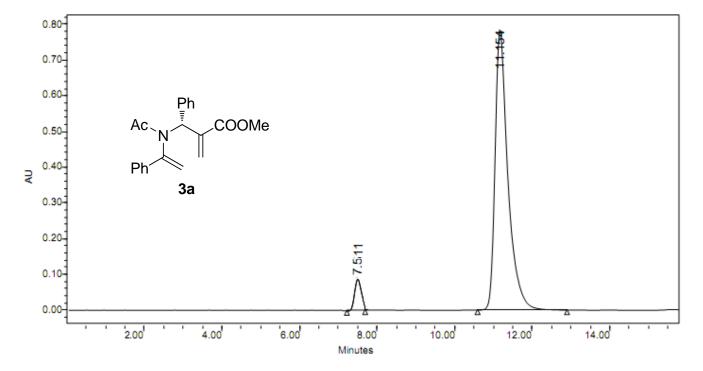
Data / restraints / parameters 4423 / 1 / 247

Goodness-of-fit on F² 0.795

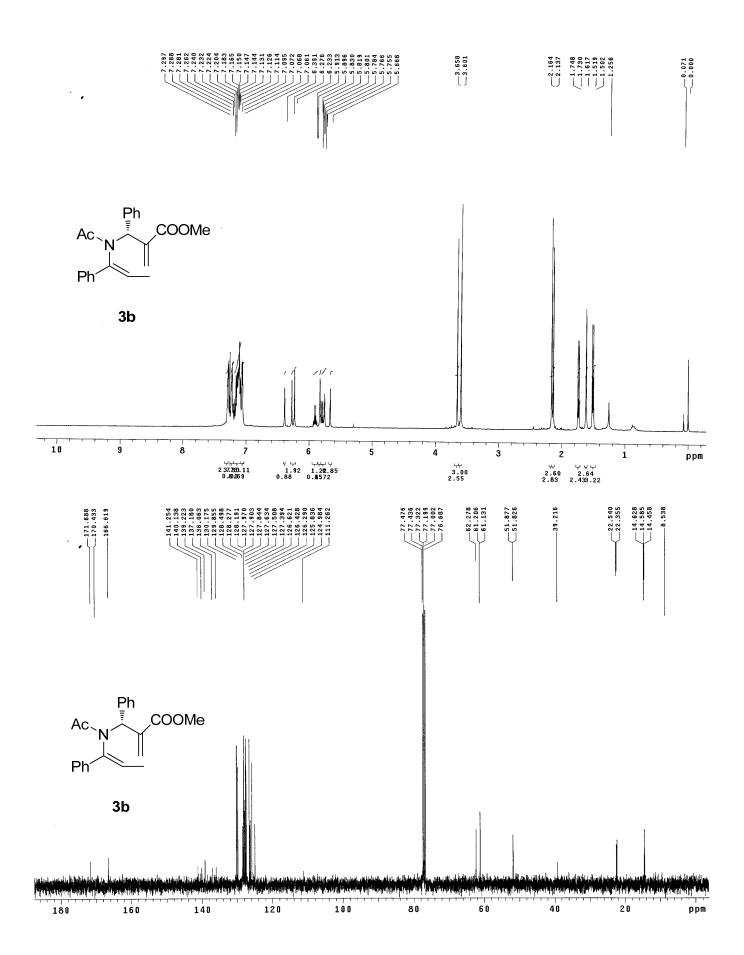

Final R indices [I>2sigma(I)] R1 = 0.0284, wR2 = 0.0336

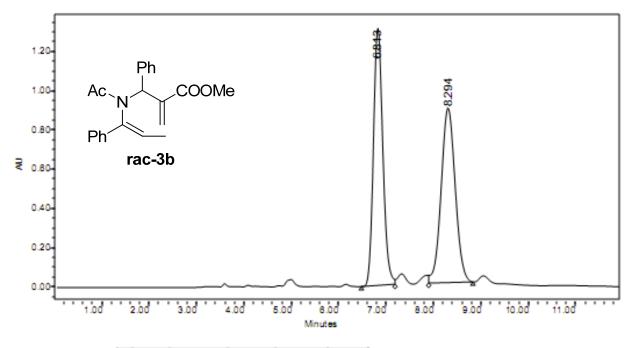

R indices (all data) R1 = 0.0353, wR2 = 0.0344

Absolute structure parameter 0.029(5)

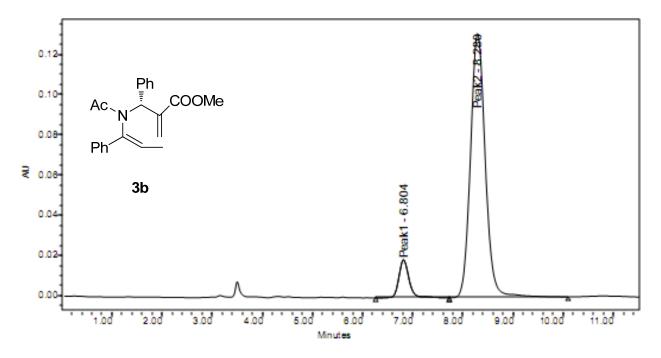

Largest diff. peak and hole 0.912 and -0.374 e.A^-3

6. NMR spectra and HPLC chromatograms:

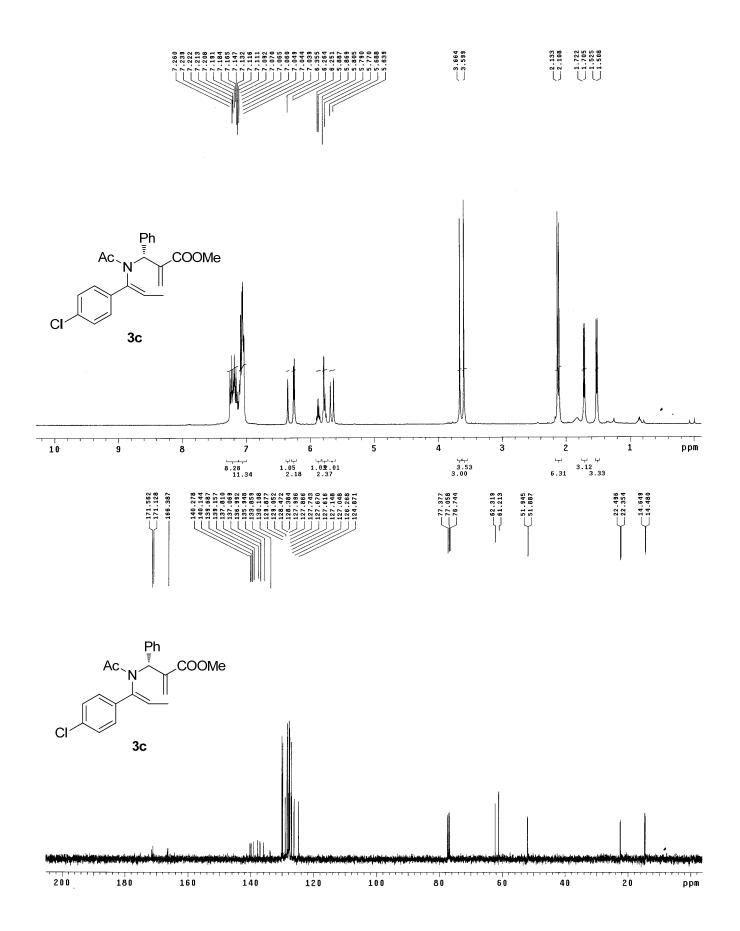


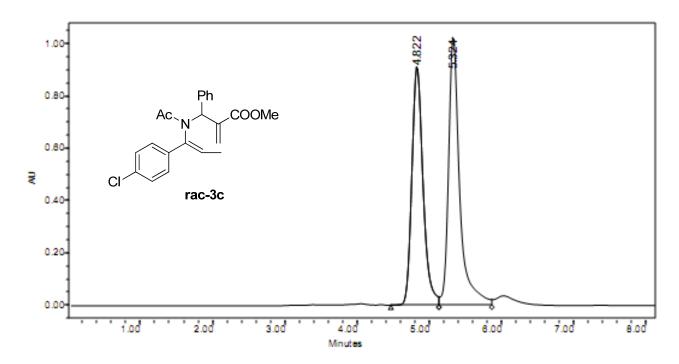


	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	7.565	23838826	49.60	1642577	59.04
2	11.249	24224415	50.40	1139406	40.96

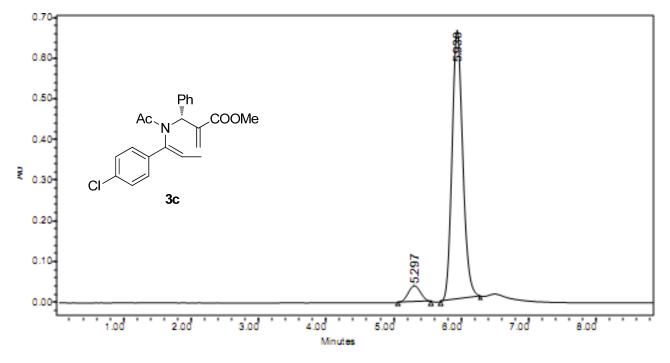


	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	7.511	1420390	7.31	89089	10.20
2	11.154	18009716	92.69	784656	89.80

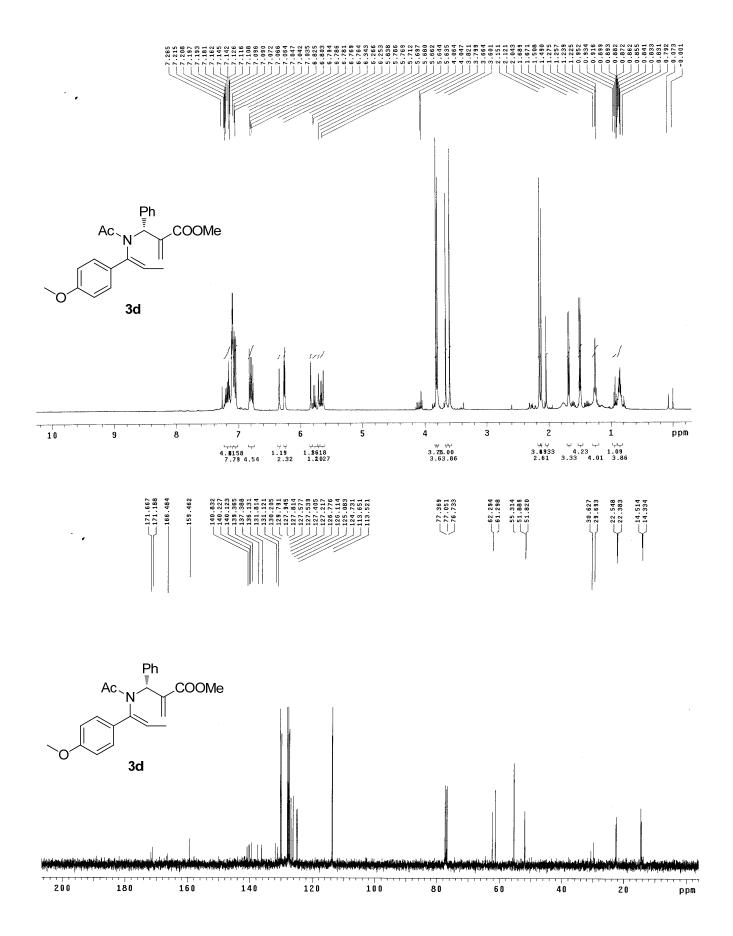


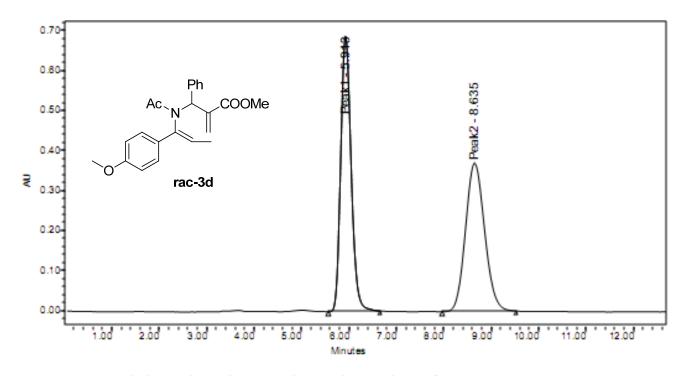


		RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
ľ	1	6.813	18138364	49.51	1313763	59.55
[2	8.294	18497730	50.49	892512	40.45

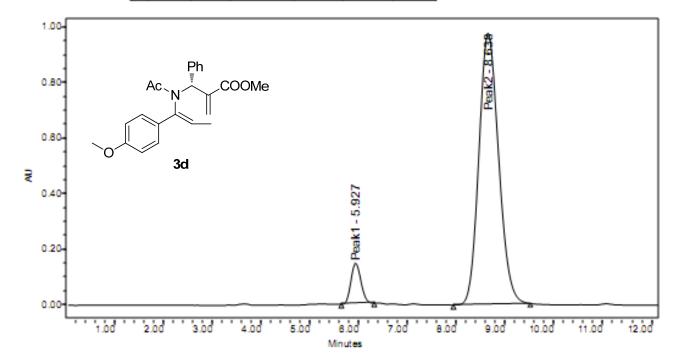


	Peak Name	RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
1	Peak1	6.804	266859	9.00	18900	12.59
[2	Peak2	8.280	2696962	91.00	131278	87.41

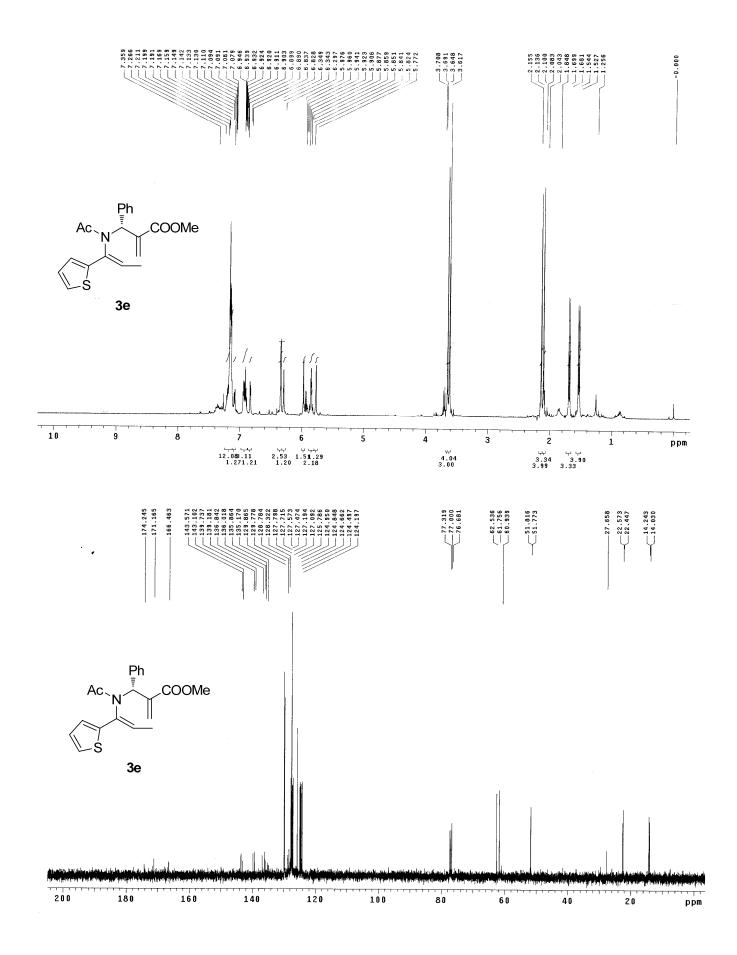


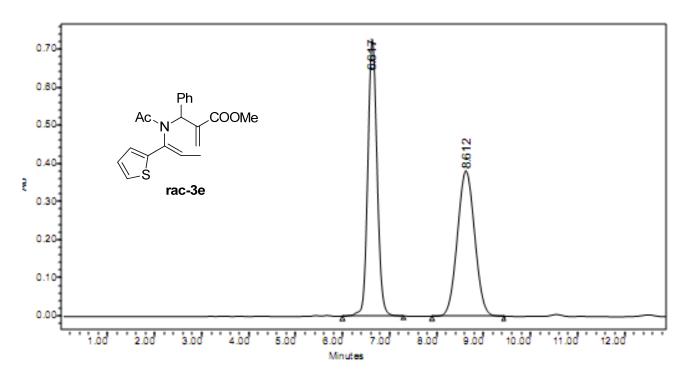


	RT (mir)	Area (V*sec)	% Area	Height (V)	% Height
1	4.822	9894774	47.17	914855	47.02
2	5.324	11082667	52.83	1030638	52.98

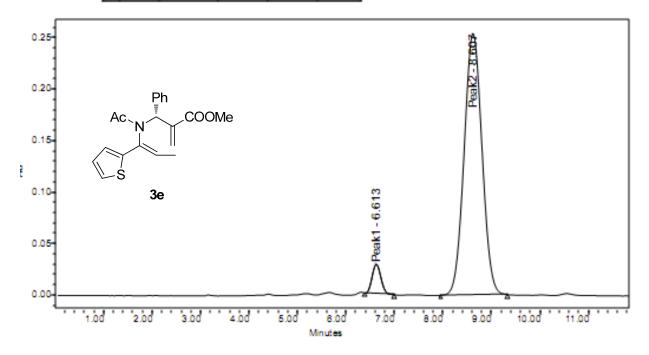


		RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
	1	5.297	515117	6.59	39907	5.69
1	2	5.930	7301502	93.41	661558	94.31

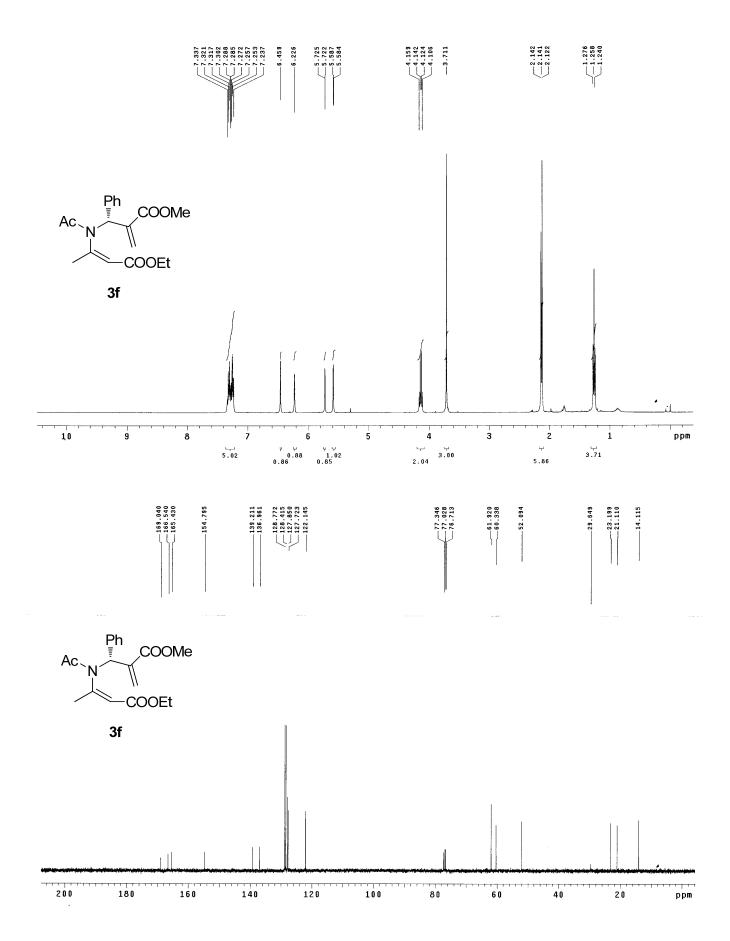


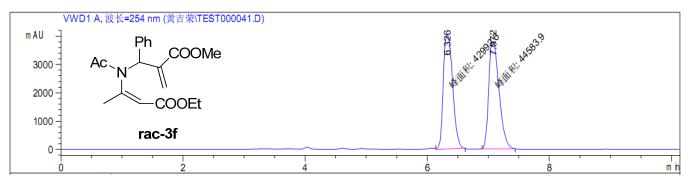


		Peak Name	RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
	1	Peak1	5.913	10483837	50.20	687974	64.99
1	2	Peak2	8.635	10401412	49.80	370646	35.01

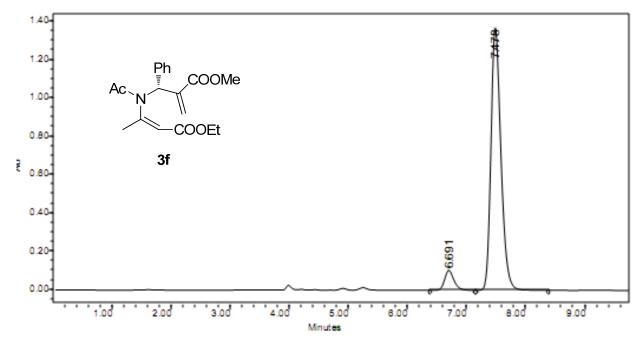


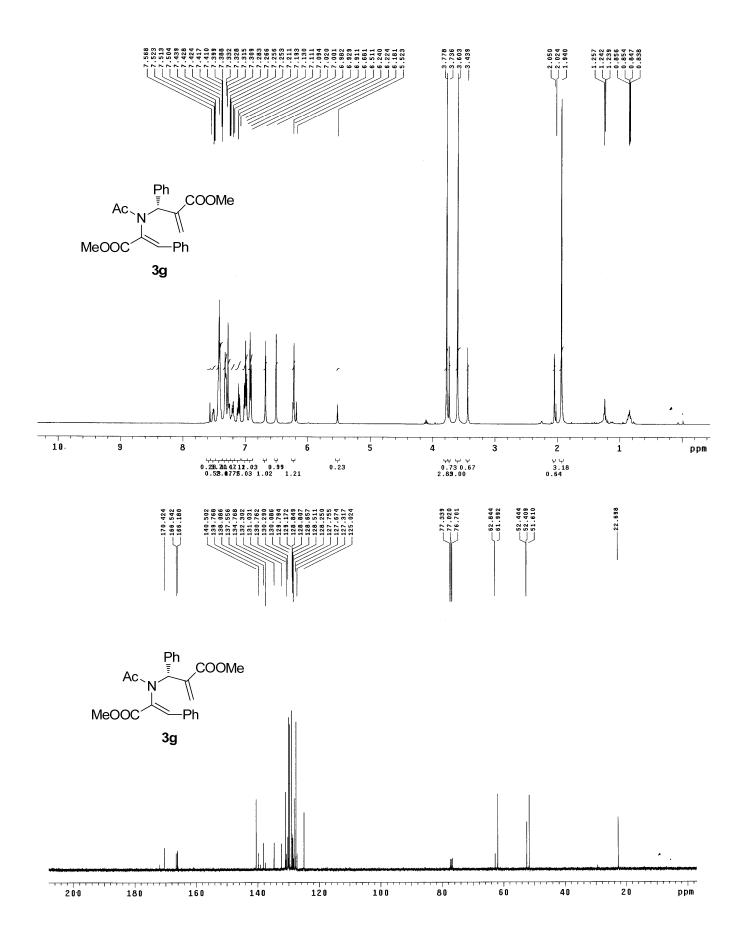
		Peak Name	RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
I	1	Peak1	5.927	2080576	7.06	145694	12.98
I	2	Peak2	8.638	27392832	92.94	976331	87.02

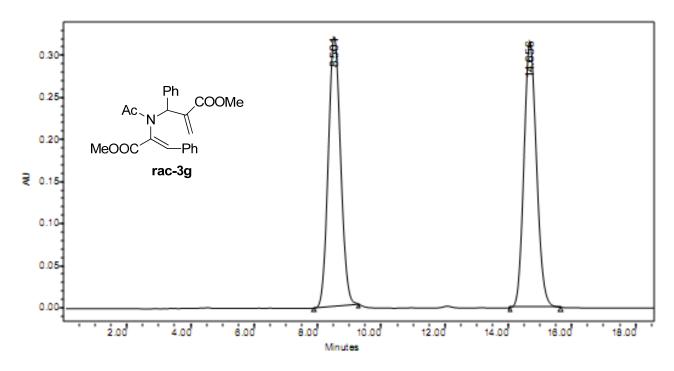




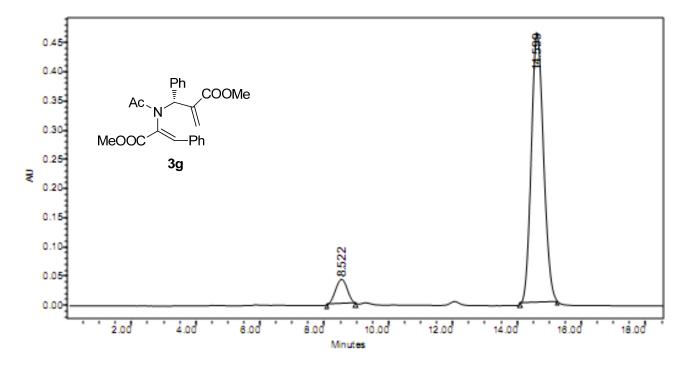
	RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
1	6.617	9979054	50.45	726168	65.58
2	8.612	9801535	49.55	381142	34.42


		Peak Name	RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
	1	Peak1	6.613	365375	5.32	28710	10.16
1	2	Peak2	8.607	6507272	94.68	254004	89.84

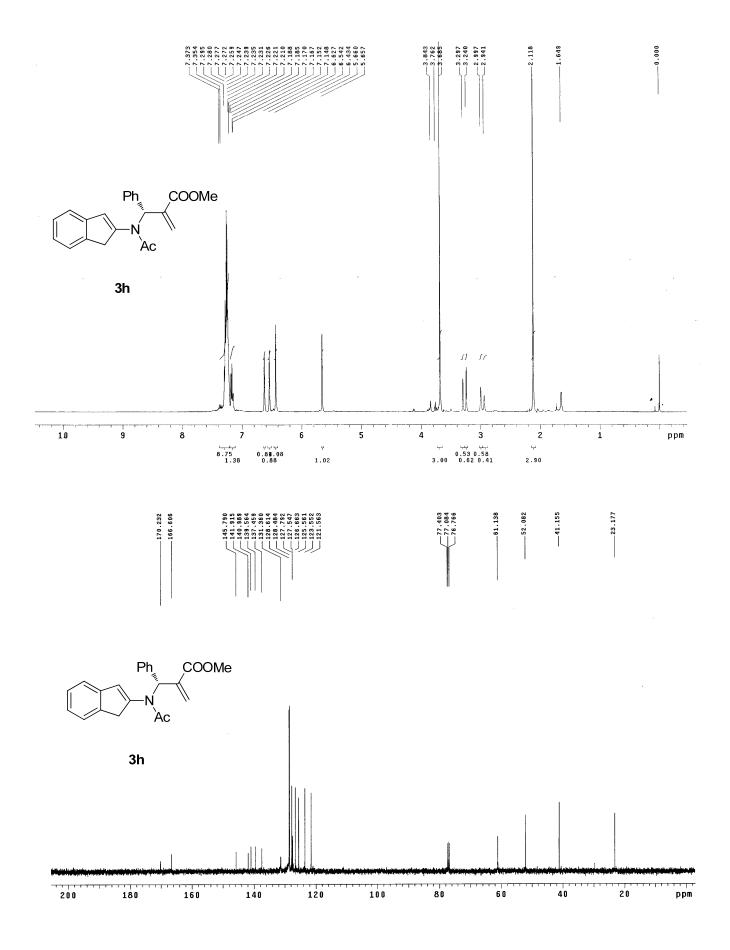


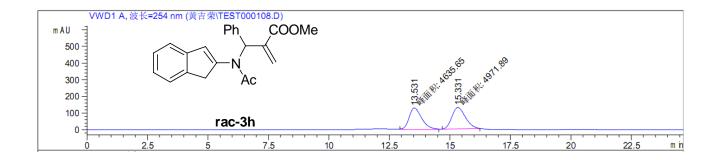

信号 1: VWD1 A, 波长=254 nm

峰	保留时间	类型	峰宽 峰面积		峰	高	峰面积		
#	[min]		[min]	mAU	*s	[mAU]	&	
1	6.326	MM	0.1790	4.299	25e4	4003.2	25488	49.0914	
2	7.072	MM	0.1959	4.458	39e4	3792.6	6479	50.9086	

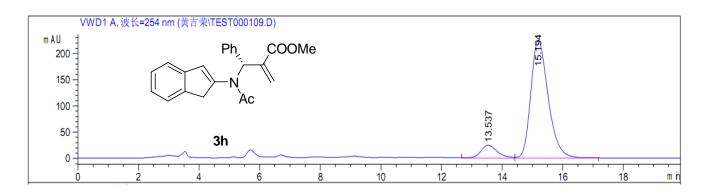


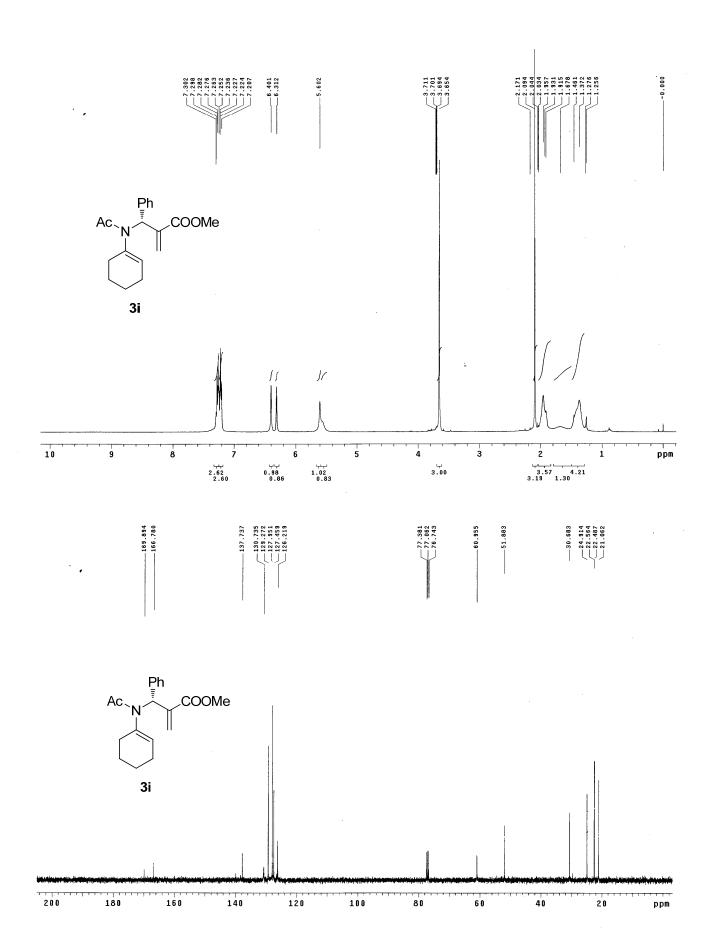
	RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
1	6.691	1142151	6.66	103523	7.02
2	7.478	16014926	93.34	1370909	92.98

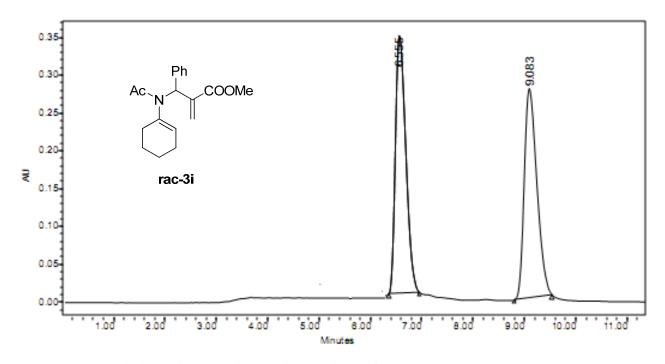


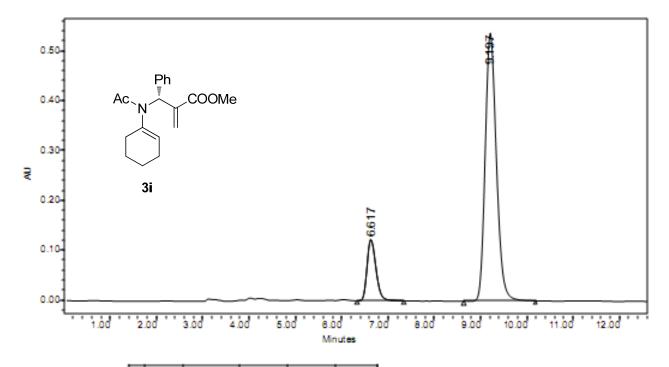


	RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
1	8.501	8633119	49.79	320316	50.30
2	14.656	8704258	50.21	316467	49.70

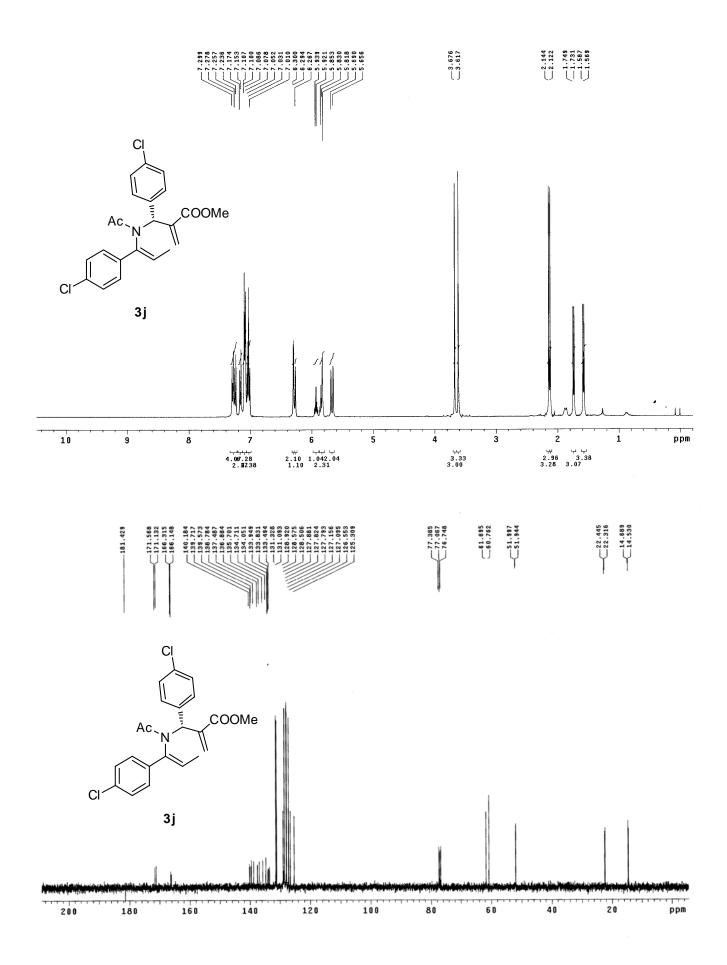

		RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
I	1	8.522	1075953	8.07	42074	8.34
	2	14.599	12249129	91.93	462649	91.66

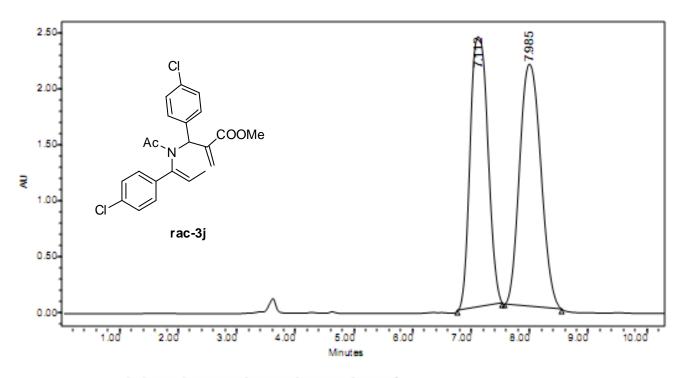

信号 1: VWD1 A, 波长=254 nm


峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	mAU *s	[mAU]	용
	-					
1	13.531	MM	0.6010	4635.65332	128.55125	48.2501
2	2 15.331	MM	0.6472	4971.89307	128.04141	51.7499

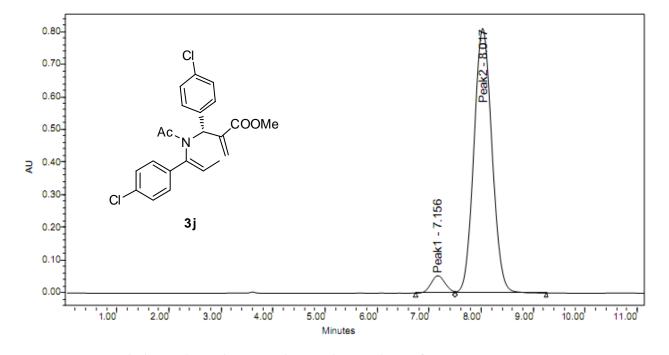

信号 1: VWD1 A, 波长=254 nm

	峰	保留时间	类型	峰宽	峰[面积	峰	高	峰面积	
	#	[min]		[min]	mAU	*s	[mAU]	&	
-		-								
	1	13.537	VV	0.5669	900.	.13379	24.2	25486	9.1715	
	2	15.194	VB	0.6117	8914.	.34375	224.5	51759	90.8285	

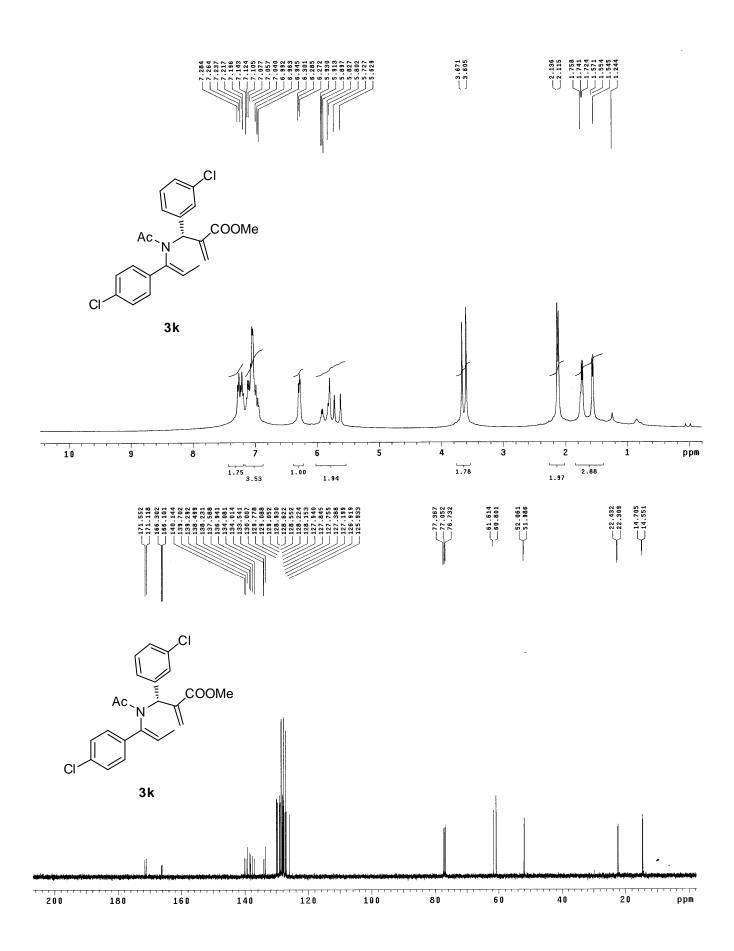


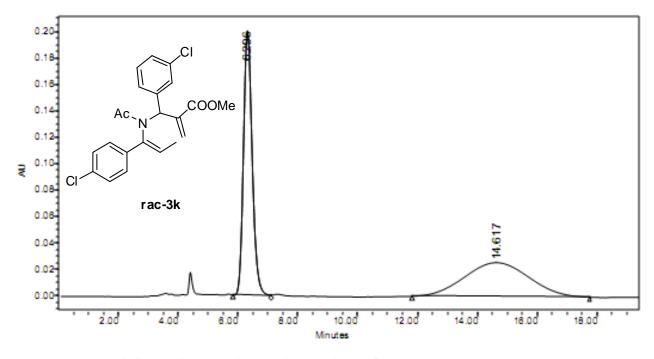


	RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
1	6.555	4802605	50.39	341544	55.22
2	9.083	4727620	49.61	276922	44.78

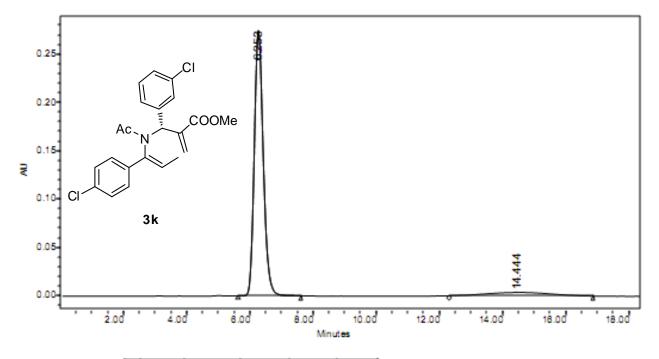


	RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
1	6.617	1655113	15.48	122617	18.57
2	9.197	9034446	84.52	537663	81.43

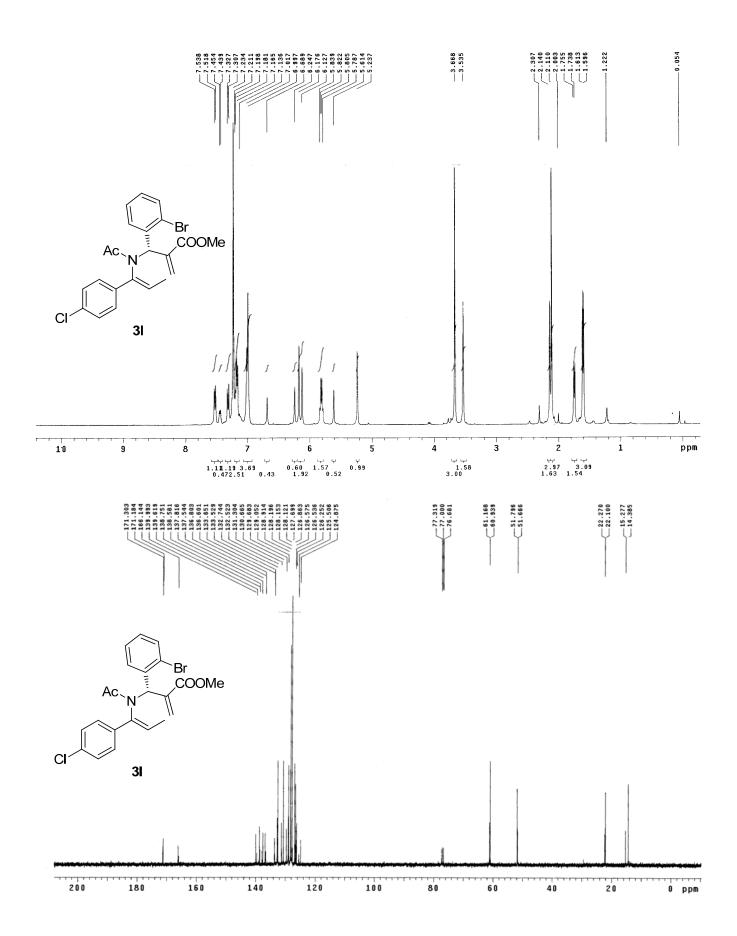


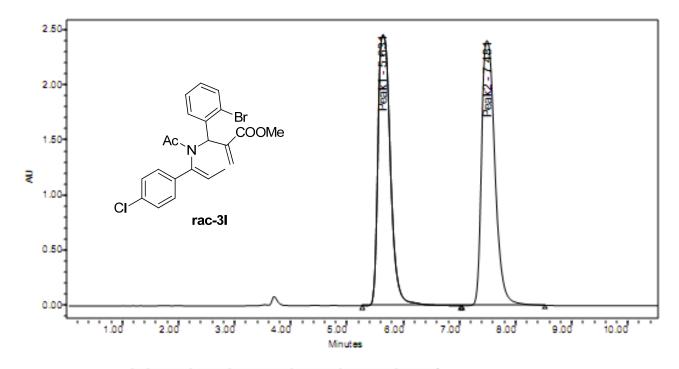


	RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
1	7.112	51050880	48.37	2414677	52.77
2	7.985	54500552	51.63	2160927	47.23

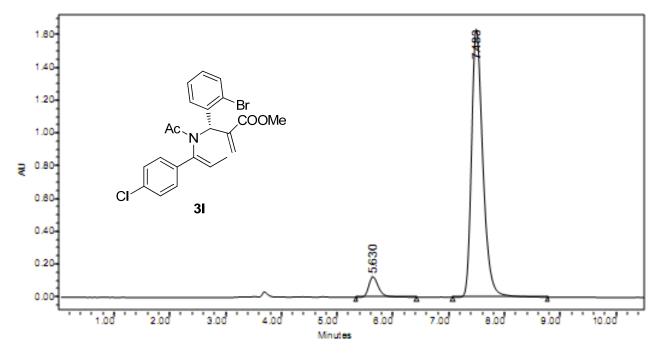


	Peak Name	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	Peak1	7.156	1023754	4.97	53230	6.15
2	Peak2	8.017	19582068	95.03	811648	93.85

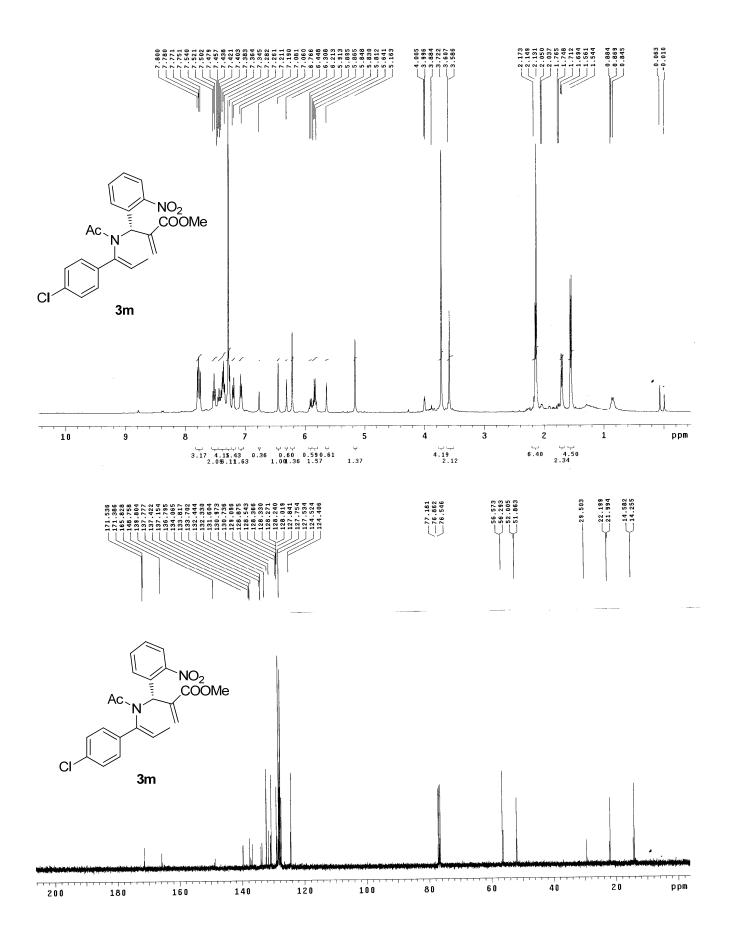


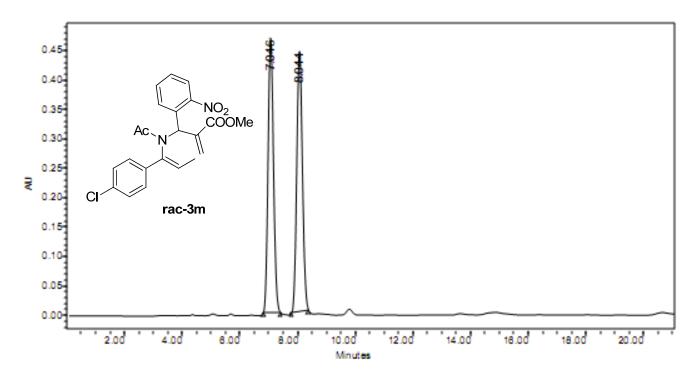


	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	6.296	4070711	51.11	200240	88.58
2	14.617	3893221	48.89	25815	11.42

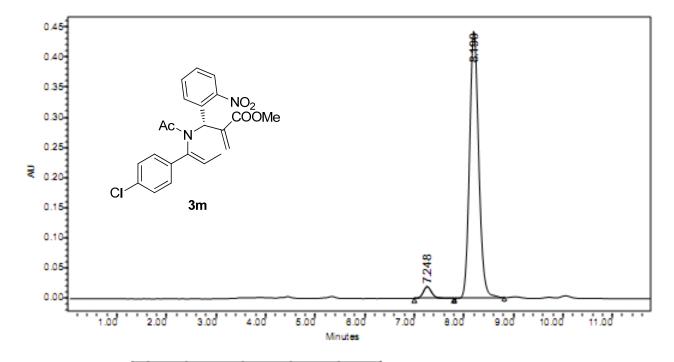


	RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
1	6.253	5438191	90.77	274673	98.63
2	14.444	552836	9.23	3824	1.37

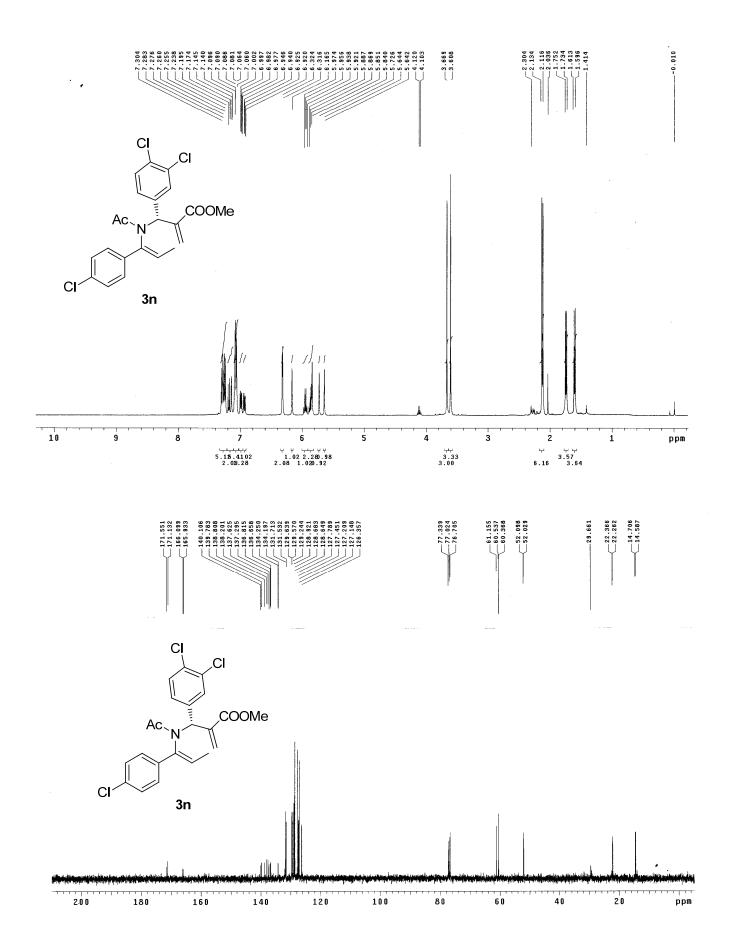


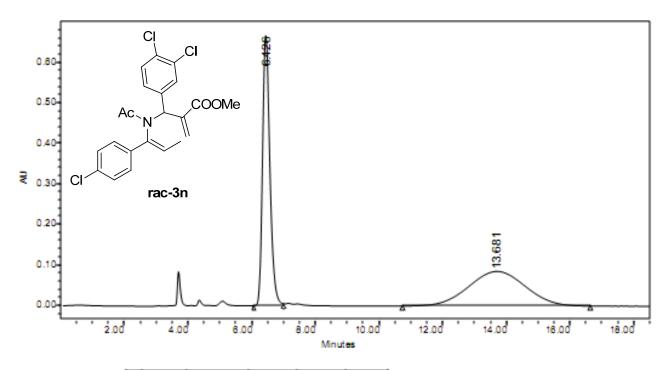


	Peak Name		Area (V *sec)	% Area	Height (V)	% Height
1	Peak1	5.631	37975384	48.95	2460022	50.57
2	Peak2	7.481	39604065	51.05	2404676	49.43

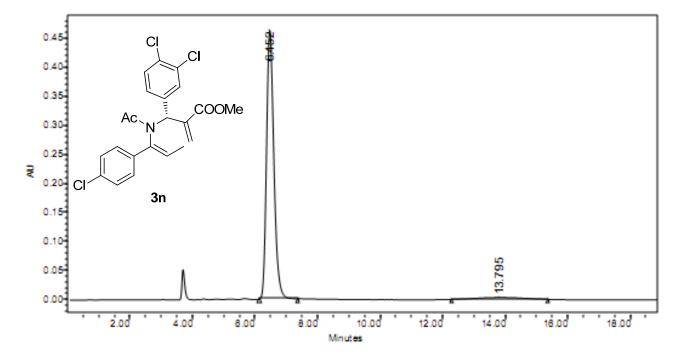


		RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
1	1	5.630	1548188	6.27	124479	7.07
1	2	7.483	23154237	93.73	1634944	92.93

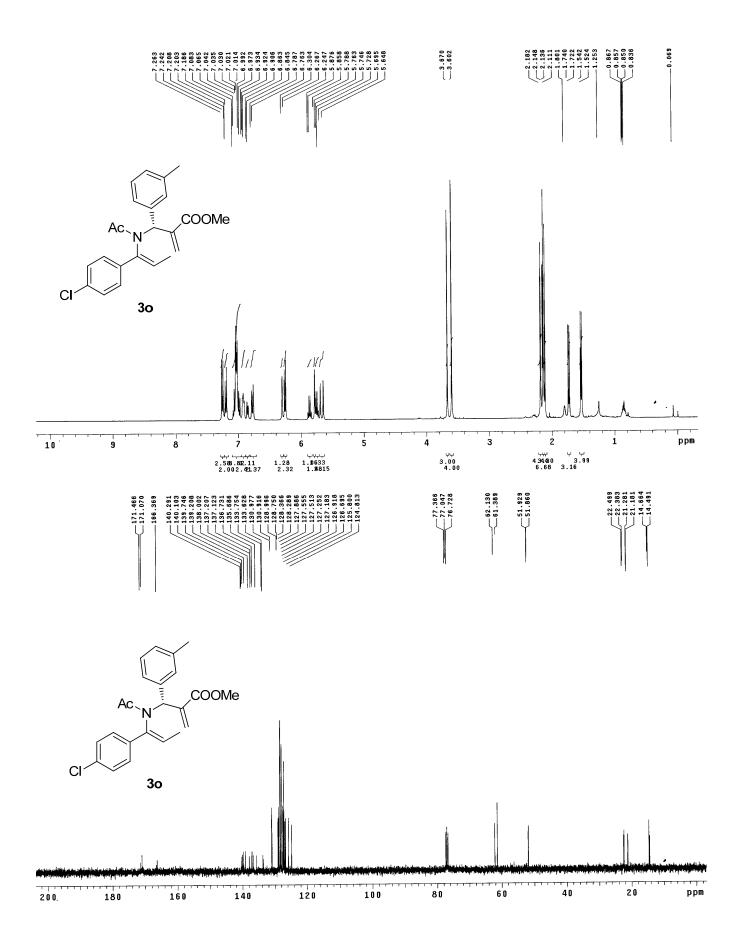


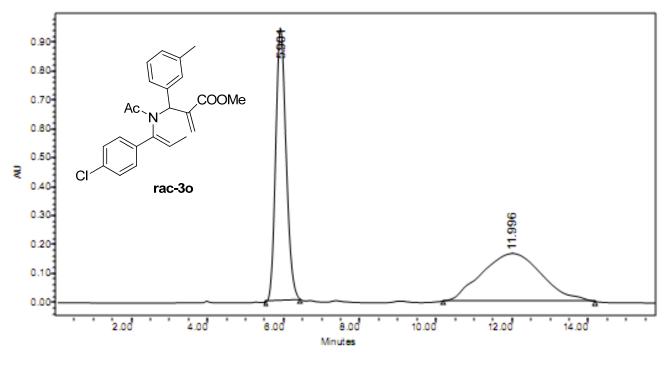


		RT (mir)	Area (V*sec)	% Area	Height (V)	% Height
I	1	7.046	6081811	50.23	467639	51.33
1	2	8.044	6026445	49.77	443369	48.67

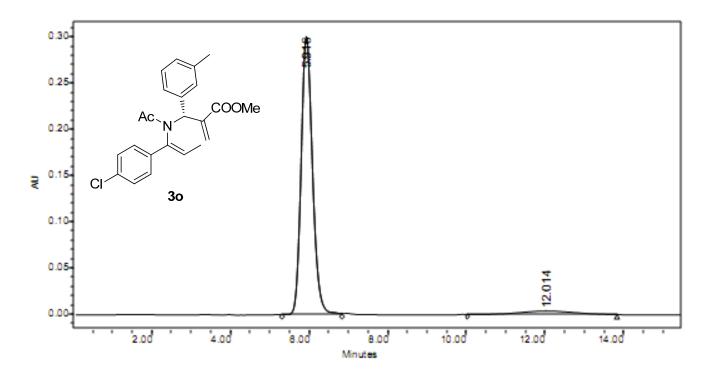


		RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
I	1	7.248	236824	3.97	19567	4.22
I	2	8.190	5735814	96.03	443935	95.78

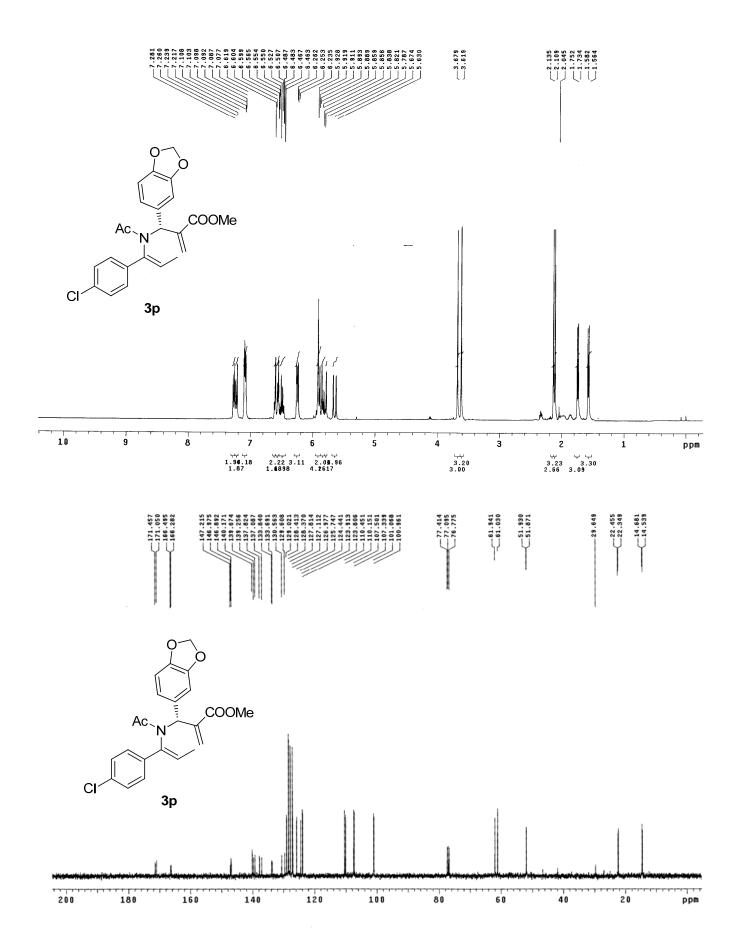


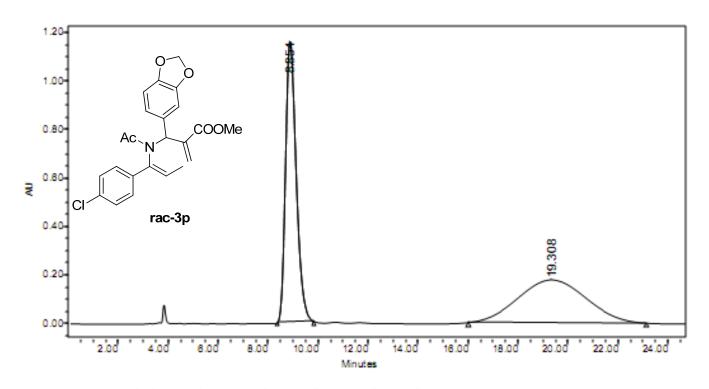


		RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
	1	6.426	10687467	49.91	668039	88.64
I	2	13.681	10724424	50.09	85601	11.36

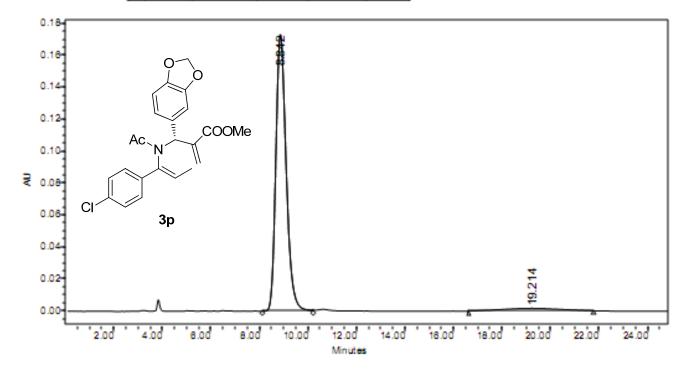


	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	6.452	7514491	95.69	483600	99.30
2	13.795	338760	4.31	3265	0.70

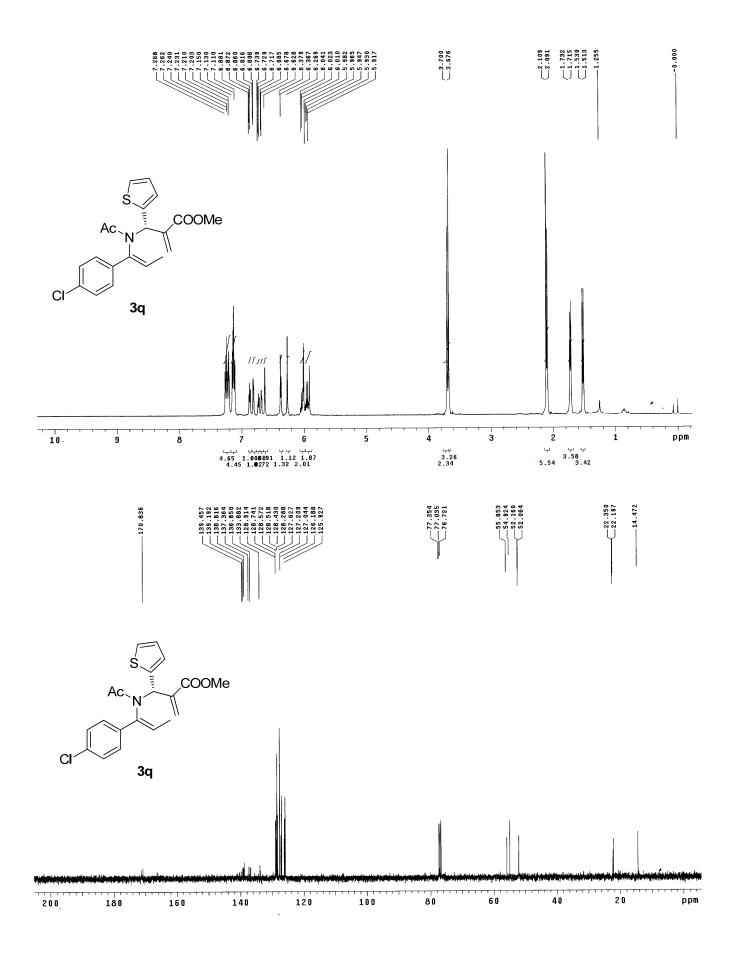


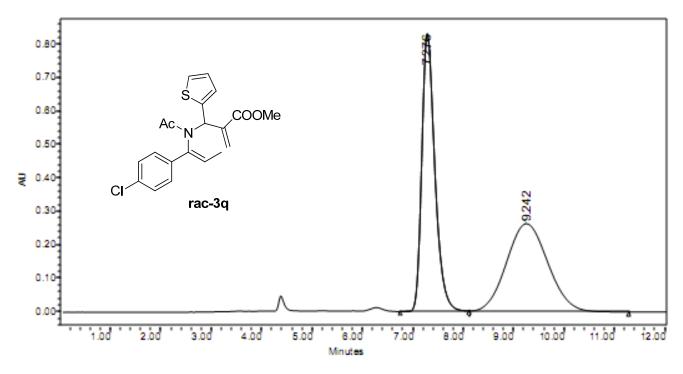


	RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
1	5.901	17930111	49.59	943638	85.11
2	11.996	18224114	50.41	165124	14.89

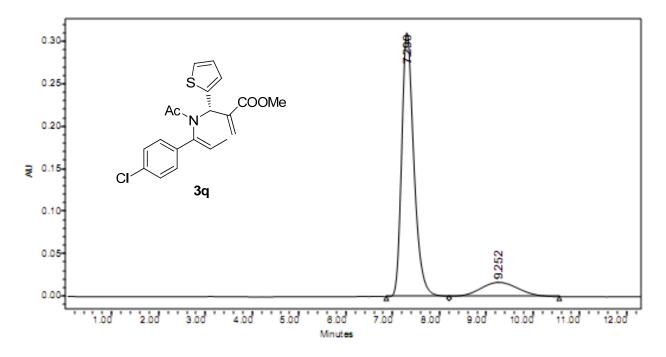


	RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
1	5.916	6042501	93.46	300658	98.67
2	12.014	422939	6.54	4042	1.33

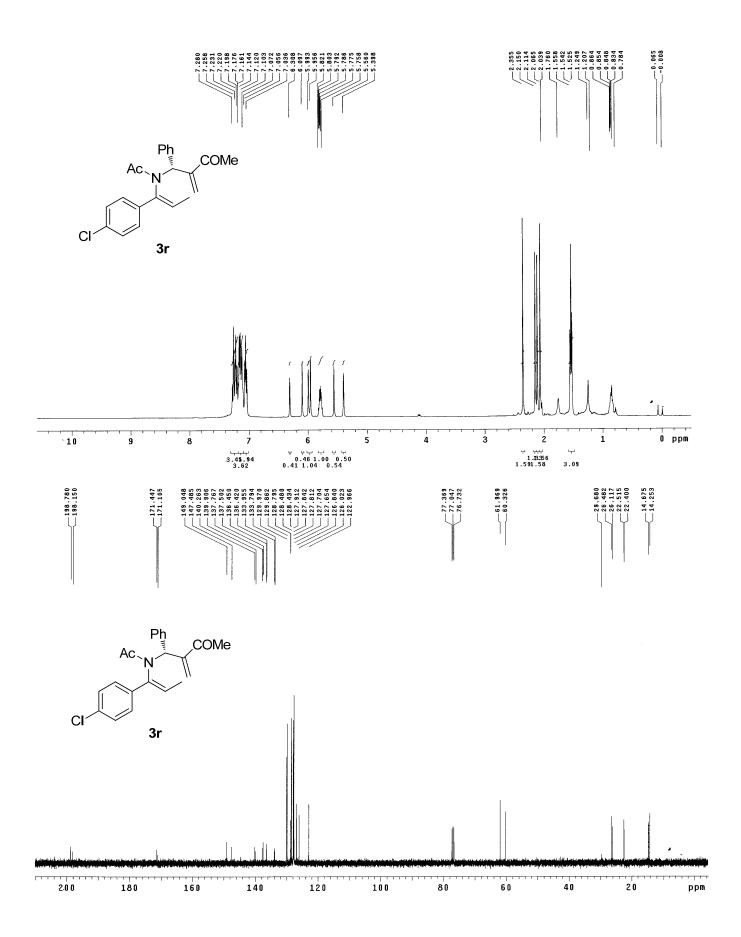


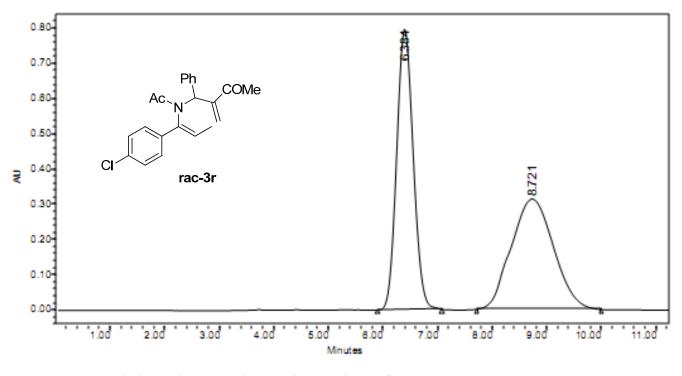


	RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
1	8.854	34211022	50.37	1157552	86.72
2	19.308	33710088	49.63	177269	13.28

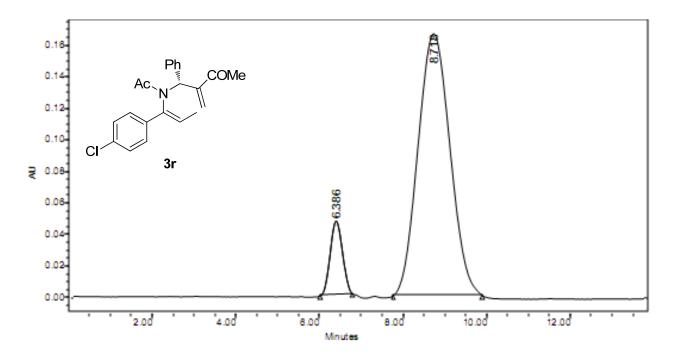


		RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
1	1	8.842	5120365	94.78	173115	99.02
2	2	19.214	282267	5.22	1719	0.98

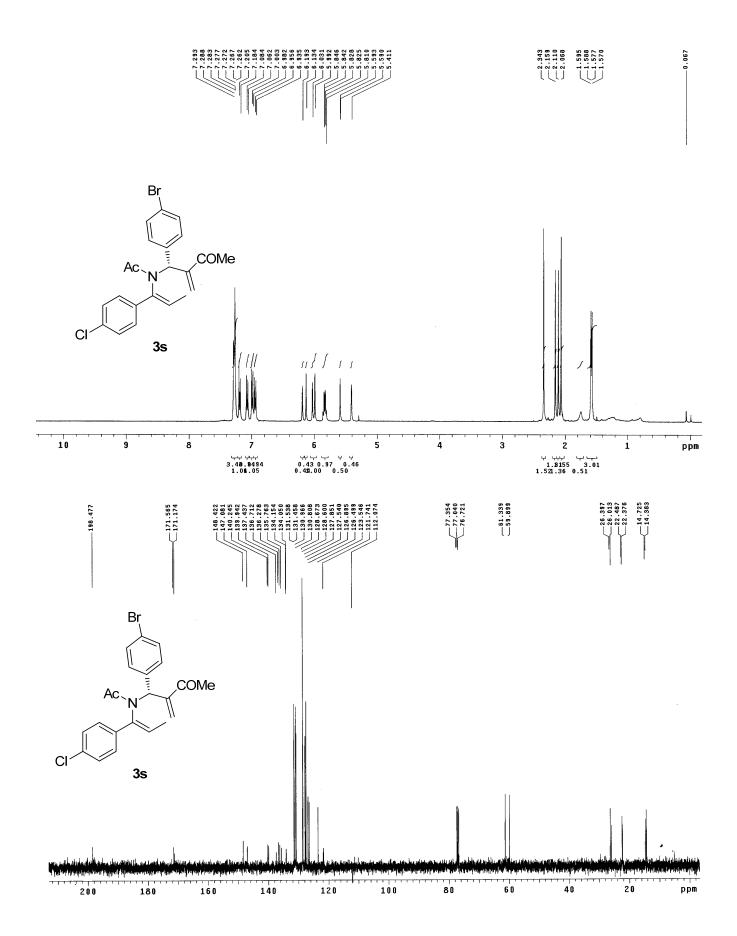


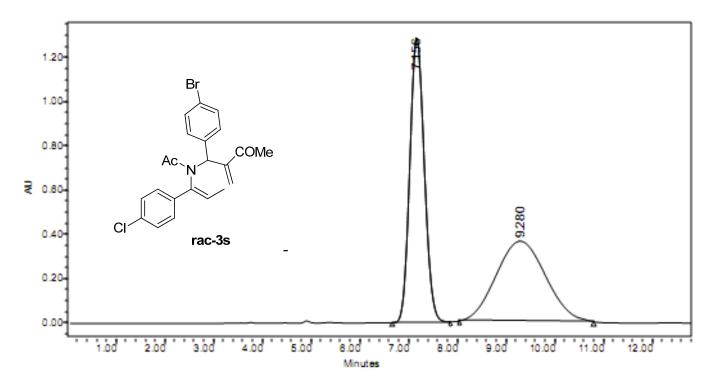


	RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
1	7.276	15094153	49.94	832711	75.94
2	9.242	15128701	50.06	263774	24.06

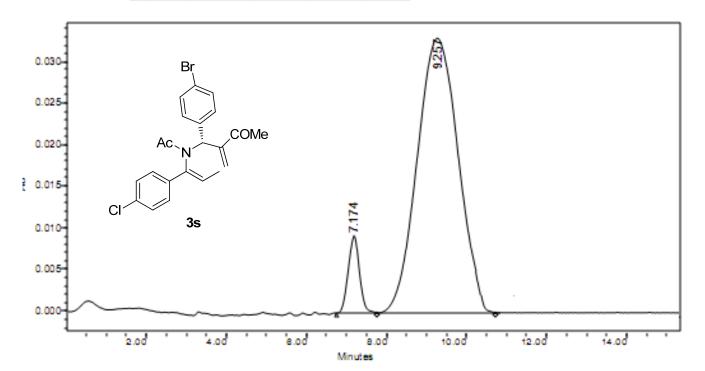


	RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
1	7.290	5638198	85.38	31 1088	94.85
2	9.252	965720	14.62	16887	5.15

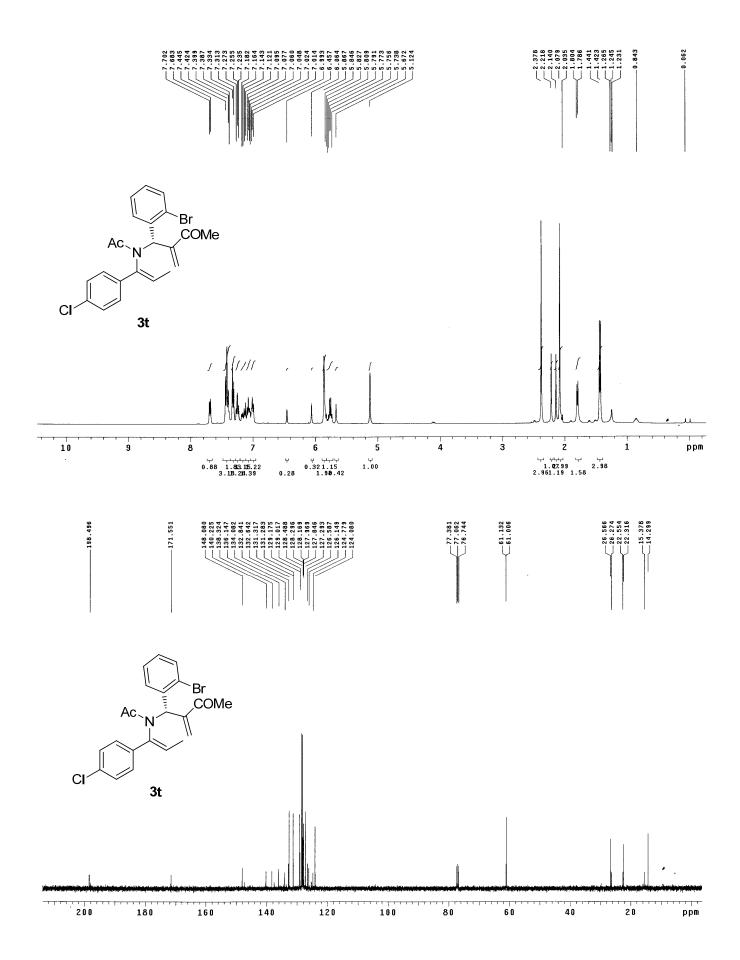


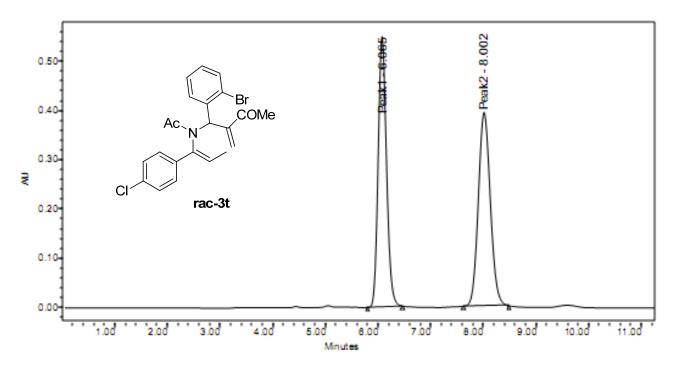


	RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
1	6.384	1681 3683	49.85	796031	71.77
2	8.721	16913321	50.15	313170	28.23

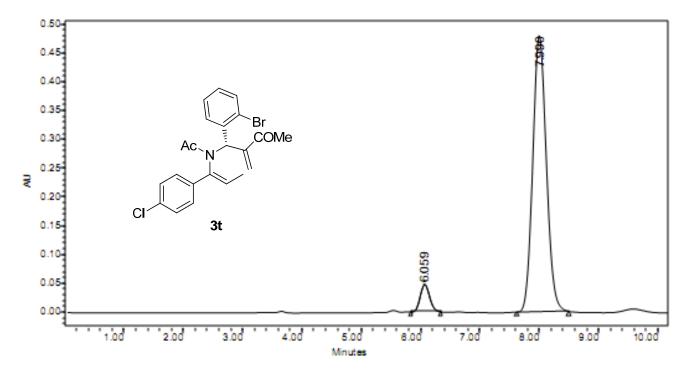


		RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
I	1	6.386	954416	9.77	46745	21.98
I	2	8.718	8809722	90.23	165962	78.02

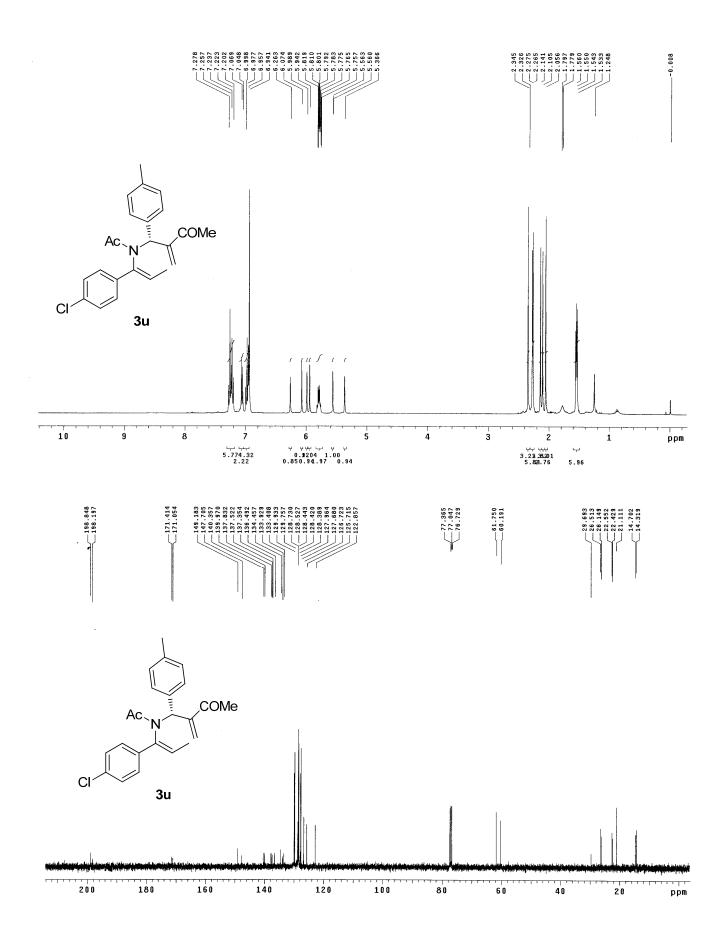


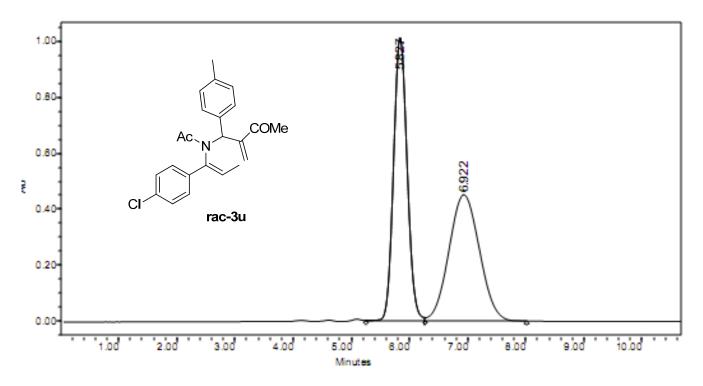


	RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
1	7.156	26758879	51.09	1289703	78.07
2	9.280	25614069	48.91	362363	21.93

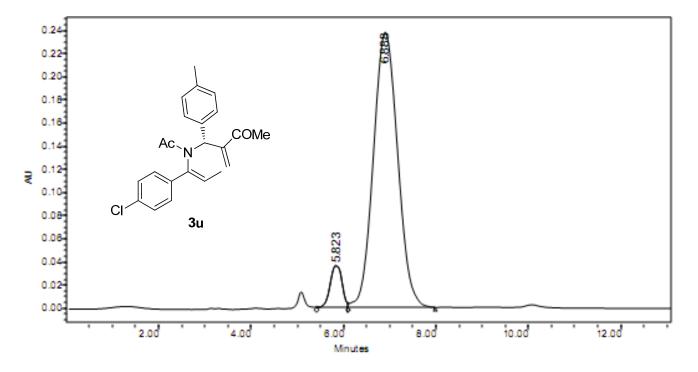


	RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
1	7.174	181974	7.03	9309	21.94
2	9.257	2405836	92.97	33123	78.06

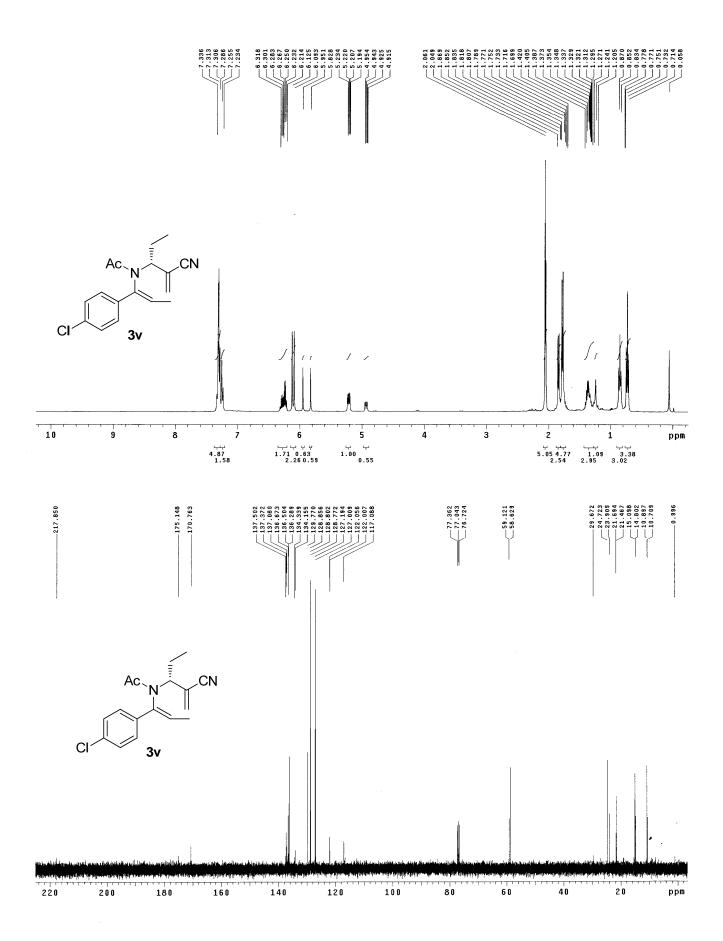


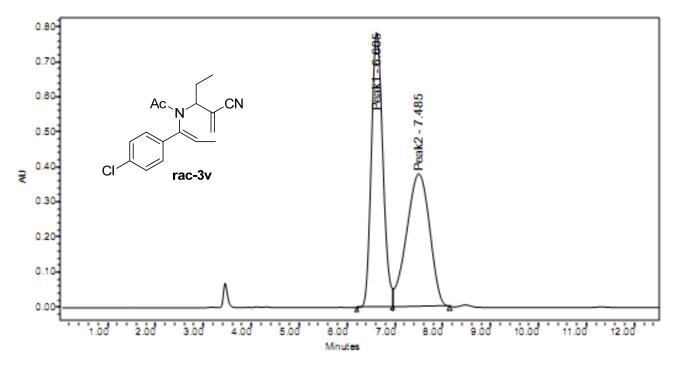


		Peak Name	RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
	1	Peak1	6.065	6037236	49.16	548634	58.22
1	2	Peak2	8.002	6244644	50.84	393696	41.78

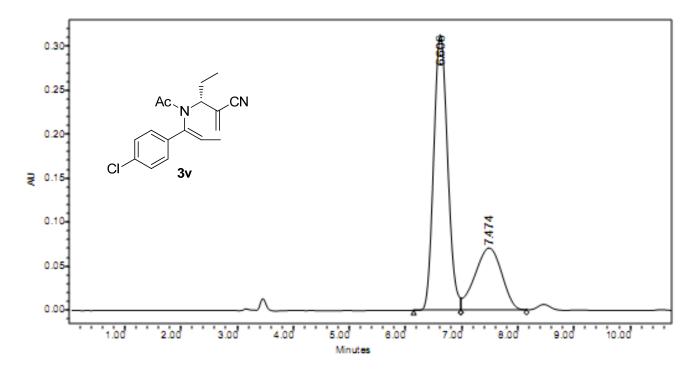


	RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
1	6.059	527155	6.45	47848	9.06
2	7.990	7646613	93.55	480174	90.94

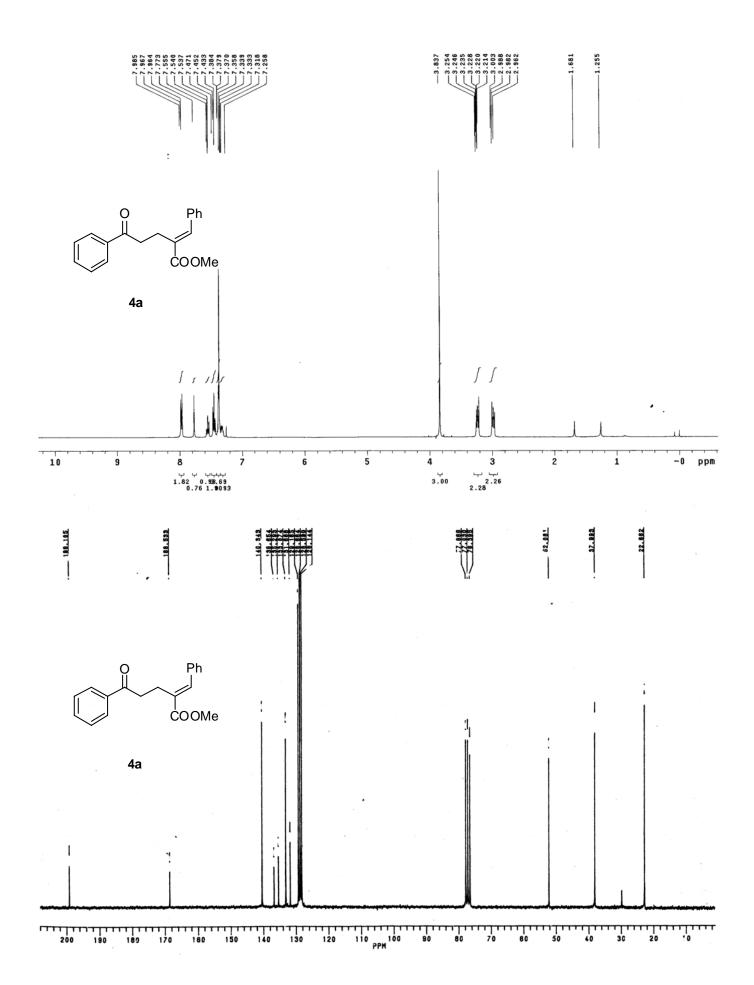


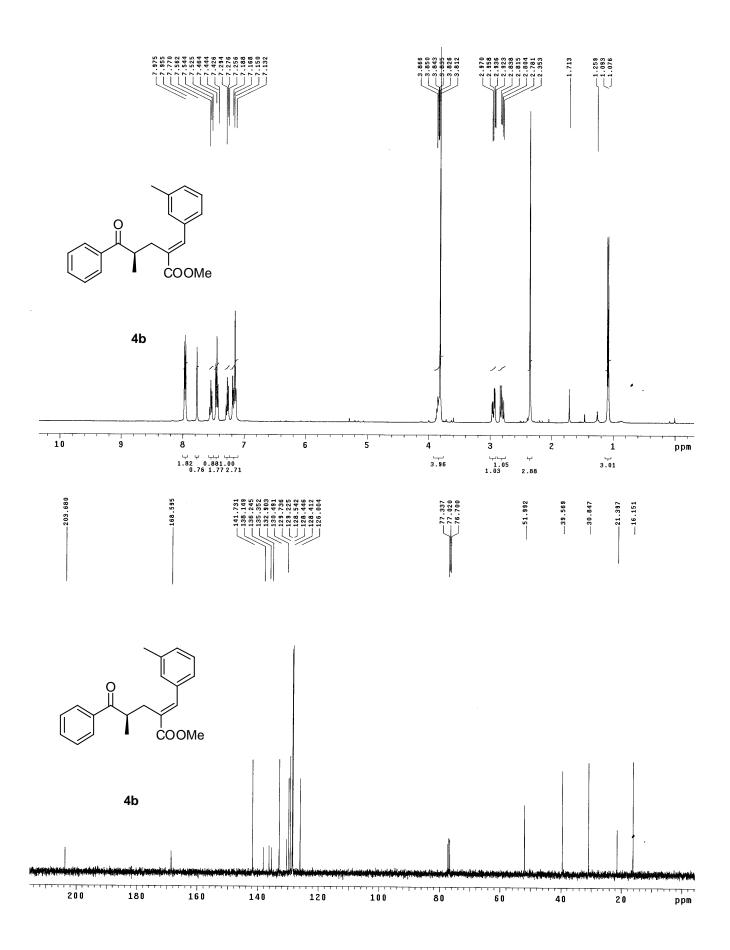


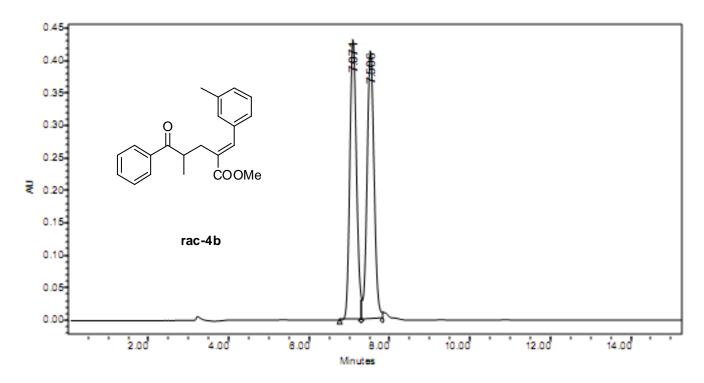
		RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
	1	5.827	16544143	49.94	1013745	69.15
1	2	6.922	16586335	50.06	452288	30.85

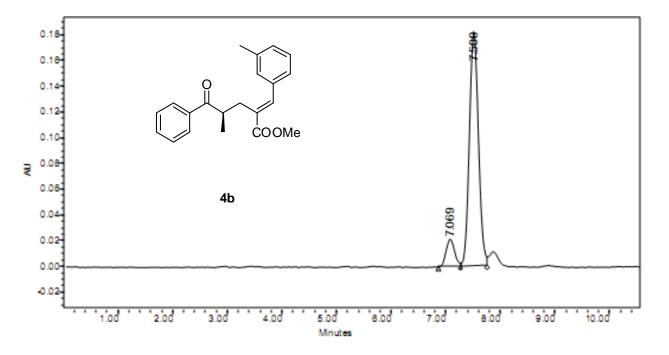


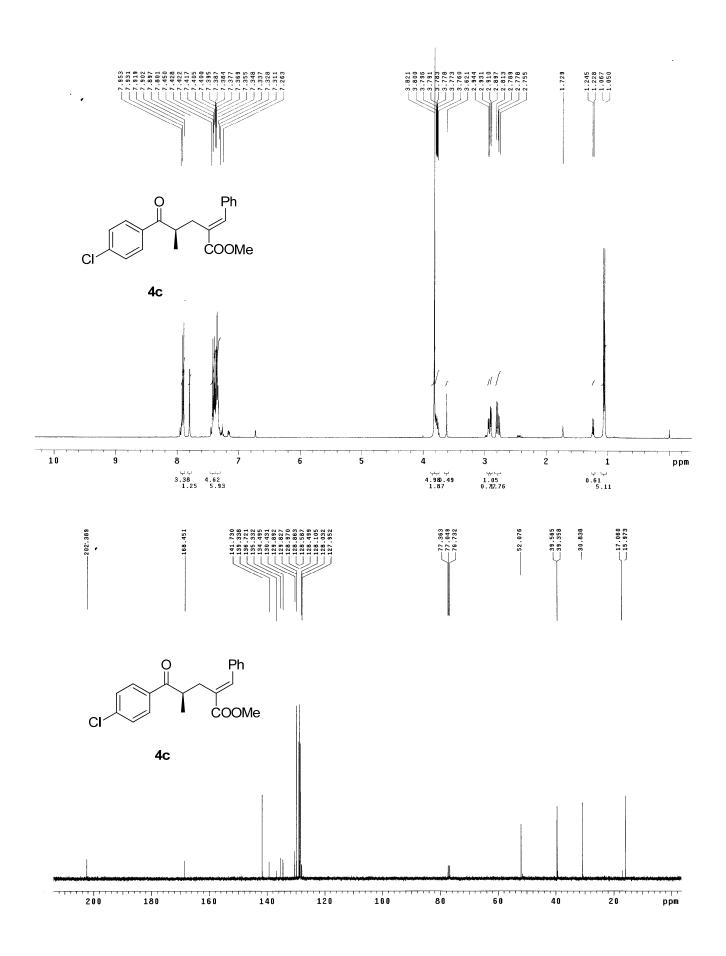
	RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
1	5.823	678519	7.21	36720	13.36
2	6.888	8734055	92.79	238164	86.64

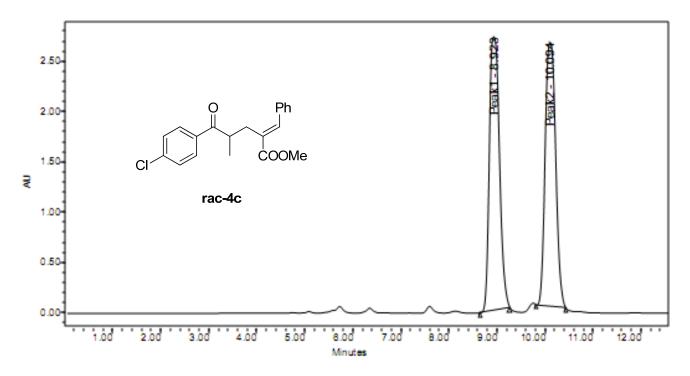




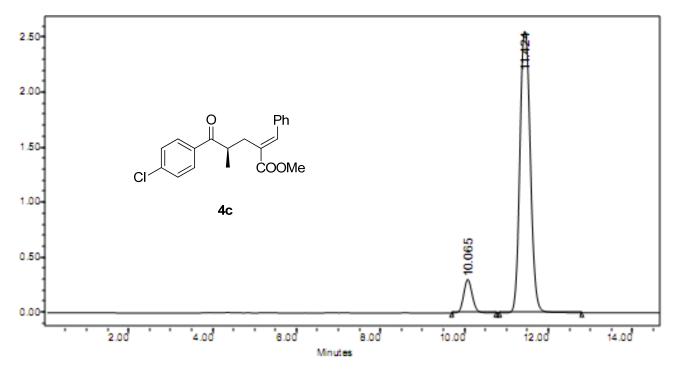

	Peak Name	RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
1	Peak1	6.605	13062983	50.60	784433	67.41
2	Peak2	7.485	12753668	49.40	379273	32.59


	RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
1	6.606	5409835	69.42	314090	81.53
2	7.474	2383337	30.58	71137	18.47

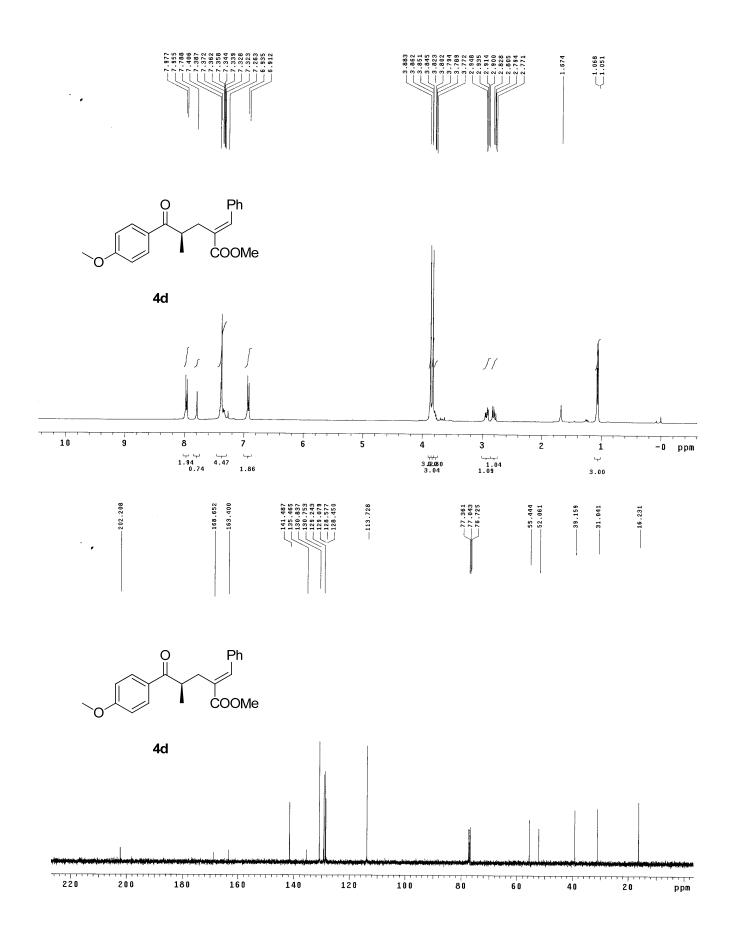


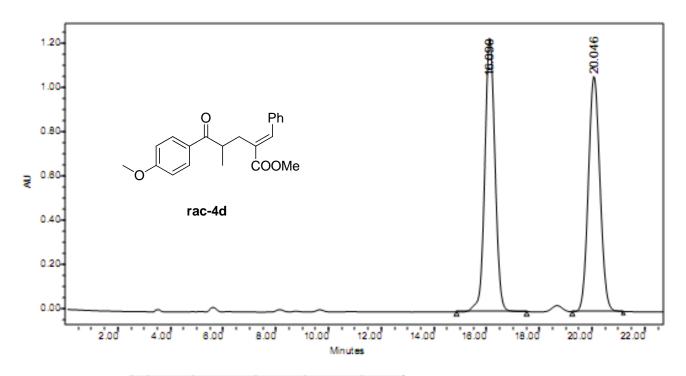


		RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
	1	7.071	4992765	49.94	432366	51.08
1	2	7.506	5004028	50.06	414088	48.92

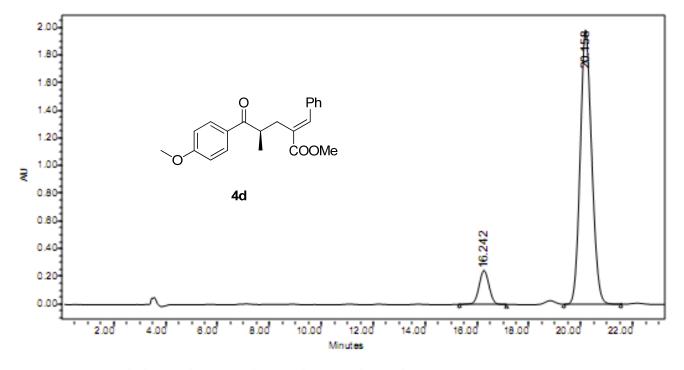


	RT (mir)	Area (V*sec)	% Area	Height (V)	% Height
1	7.069	234095	9.99	21400	10.51
2	7.500	2109706	90.01	182253	89.49

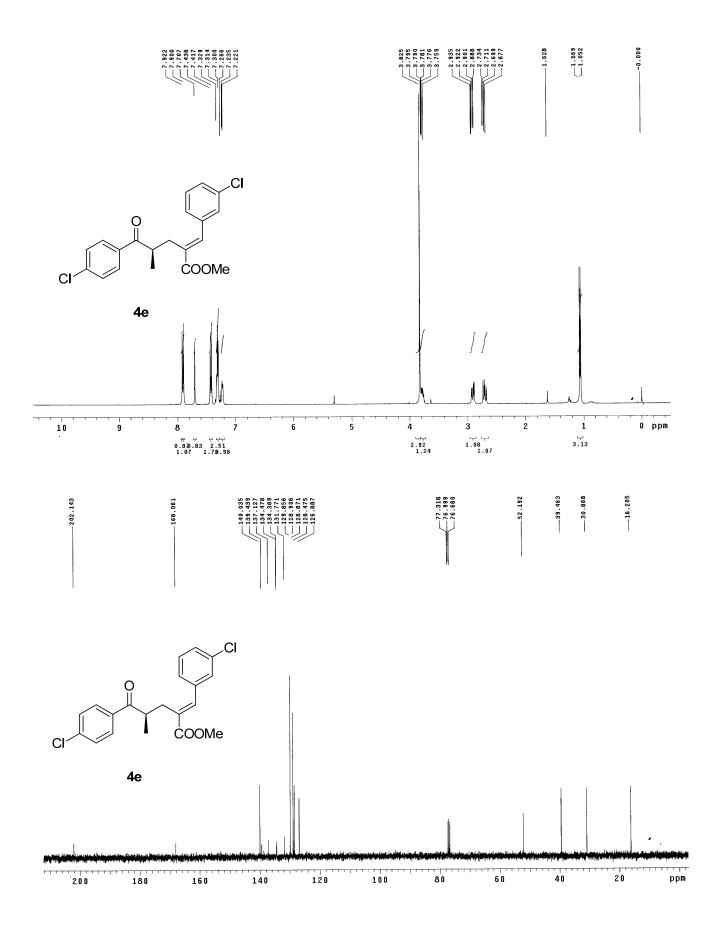


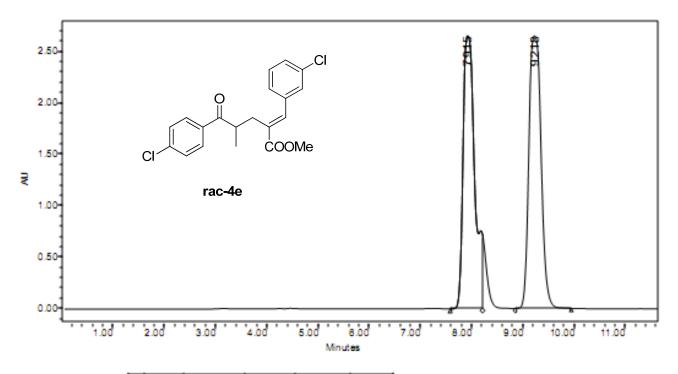


	Peak Name	RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
1	Peak1	8.923	39877019	50.07	2728467	50.93
2	Peak2	10.094	39770637	49.93	2628932	49.07

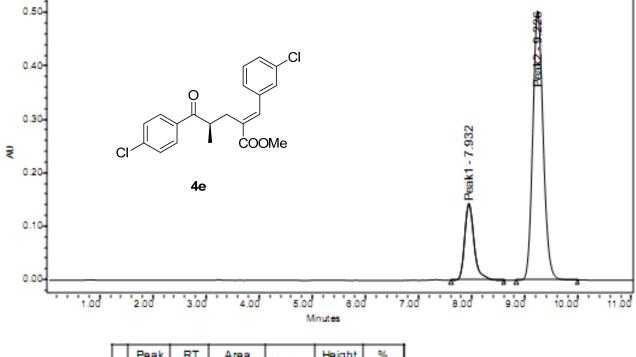


		RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
Ι	1	10.065	4290031	8.84	302310	10.56
	2	11.424	44237992	91.16	2559382	89.44

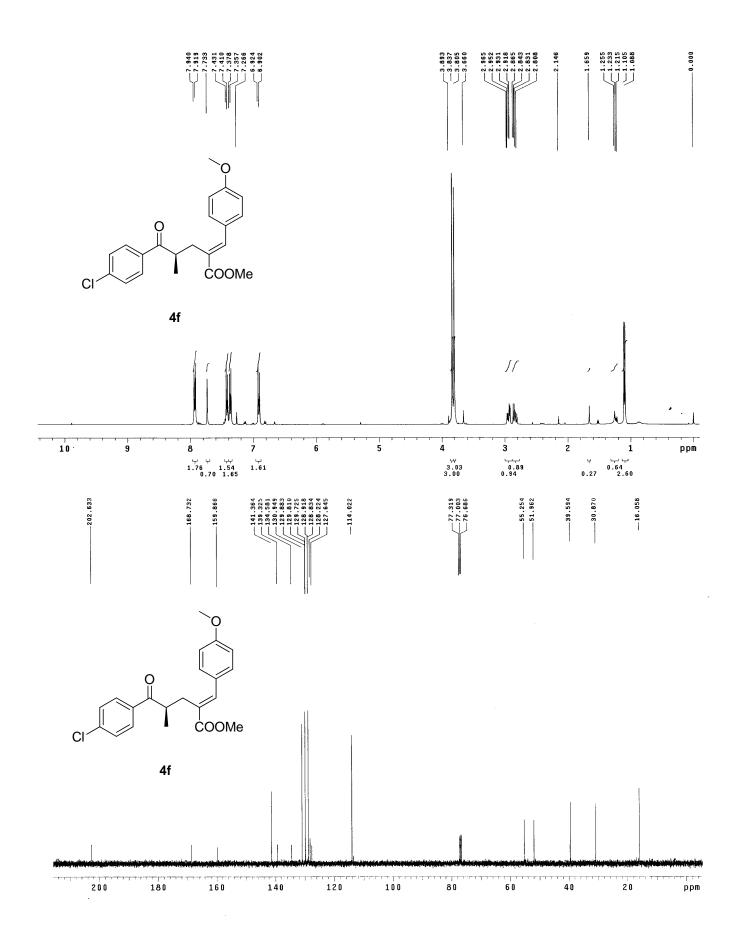


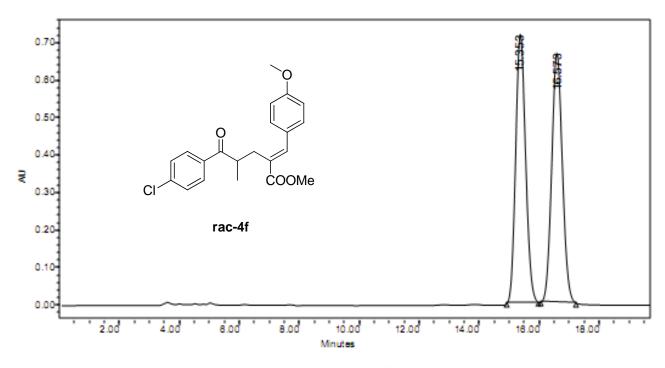


	RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
1	16.090	33391538	50.59	1235977	53.80
2	20.046	32606759	49.41	1061423	46.20

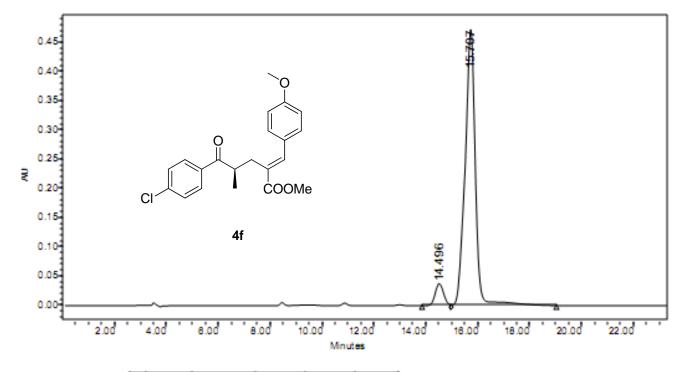


	RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
1	16.242	6640225	9.78	244365	10.96
2	20.158	61226339	90.22	1985217	89.04

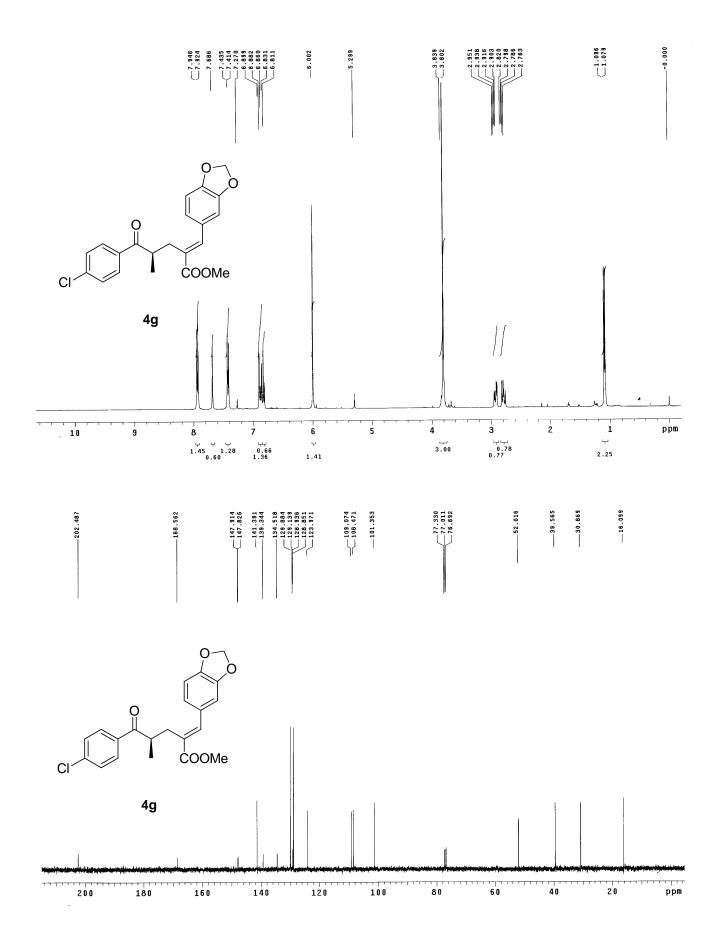


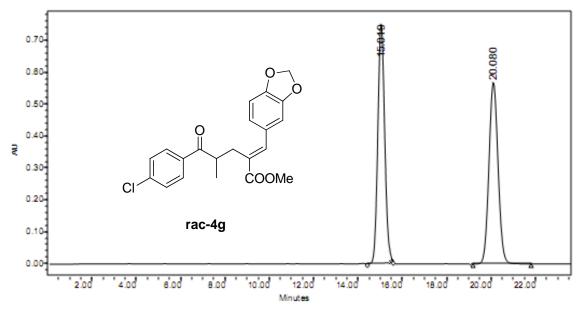


	RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
1	7.915	42367098	49.10	2654056	50.03
2	9.218	43919333	50.90	2651250	49.97

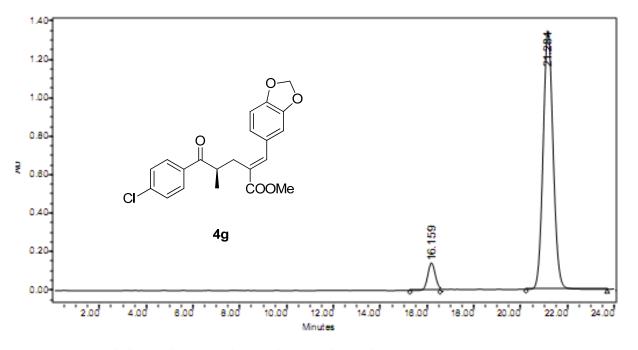


	Peak Name	RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
1	Peak1	7.932	1783050	20.67	143721	22.15
2	Peak2	9.226	6843331	79.33	505151	77.85

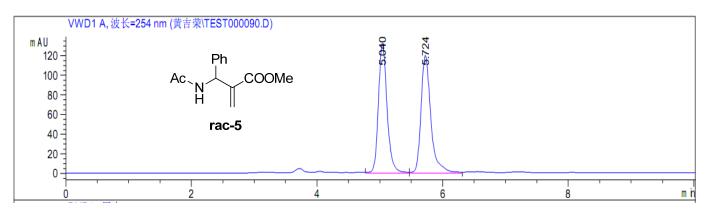




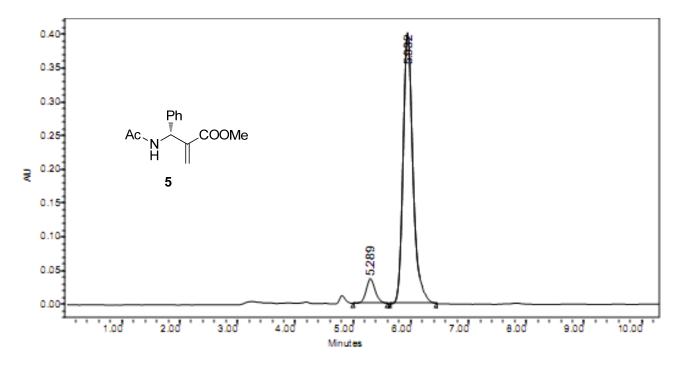
	RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
1	15.353	16446007	50.04	716665	51.88
2	16.573	16421483	49.96	664619	48.12



		RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
1	1	14.496	855334	6.16	37219	7.30
	2	15.707	13031976	93.84	472561	92.70



	RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
1	15.019	16130745	49.87	751785	56.93
2	20.080	16214630	50.13	568743	43.07


	RT (mir)	Area (V *sec)	% Area	Height (V)	% Height
1	16.159	3316567	7.66	143369	9.64
2	21.284	39982744	92.34	1344606	90.36

信号 1: VWD1 A, 波长=254 nm

峰	保留时间	类型	峰宽	峰[面积	峰。	高	峰面积
#	[min]		[min]	mAU	*s	[mAU]	용
	-							
1	1 5.040	VV	0.1470	1272.	.63318	132.4	16182	49.2461
2	2 5.724	VV	0.1656	1311.	.59741	119.8	31437	50.7539

	RT (min)	Area (V *sec)	% Area	Height (V)	% Height
1	5.289	402668	7.59	38321	8.30
2	5.932	4904401	92.41	401160	91.70