Electronic Supplementary Information

Single atom modification leads to enhanced nucleotide self-assembly: the role of cation bridging

Irene C. M. Kwan,¹ Richard J. Delley,² David R. W. Hodgson,² and Gang Wu^{1*} ¹Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada K7L 3N6 ²Department of Chemistry, University Science Laboratories, South Road, Durham, UK DH1 3LE.

E-mail: gang.wu@chem.queensu.ca

Experimental details

Solid-state NMR experiments were performed on Bruker Avance-500 and Avance-600 NMR spectrometers. Chemical shifts for ¹³C, ²³Na, ³¹P were referenced to the signals of TMS, Na⁺(aq), and 85% H₃PO₄(aq), respectively. All FT-IR spectra were obtained from a Scimitar 1000 FT-IR (Varian) as KBr pellets with a resolution of 4 cm⁻¹ from wavenumber 500 to 3000 cm⁻¹. A total of 10 scans were accumulated for each spectra with a sensitivity of 1 cm⁻¹. All XRD spectra were obtained on a Philips X'Pert Pro Multi Purpose Diffractometer (2002) using Ni-filtered Cu K_{α} 1,2 radiation ($\lambda_1 = 1.5406$ Å, $\lambda_2 = 1.5444$ Å), a fixed divergence slit width of 0.5°, 0.02 Radian soller slit, 15 mm mask, 2 s revolution and 40 s count time. Samples were prepared on flat borosilicate glass discs and the diffraction data were collected from 10° to 70° using an X'pert X'celerator high speed detector for a total scan time per sample of approximately 20 min. Data were processed on a Pentium PC using PanAlytical X'pert HighScore for Windows XP.

Quantum chemical calculations were performed using Gaussian 03 suite of programs on a SunFire 6800 symmetric multiprocessor system. Each of the four nodes is equipped with 24×1.05 GHz (8 MB E-Cache) UltraSPARC-III processor and 96 GB of RAM. Shielding calculations were performed using the GIAO method as implemented in Gaussian 03. Basis sets of cc-pVTZ and 6-31G(d) were used for Na and other atoms, respectively. The computed absolute shielding constant (σ) was converted to the chemical shift scale (δ) using $\delta = \sigma_{ref} - \sigma$, where σ_{ref} is the absolute shielding constant for the reference sample. In this study, we used $\sigma_{ref}(^{23}Na) = 574.6$ ppm and $\sigma_{ref}(^{31}P) = 317.0$ ppm.

Fig. S1. ³¹P NMR titration experiment for Na₂(5'-GSMP). The value of pK_{a2} was determined to be 5.1 ± 0.2.

5 mg Na₂(5'-GSMP) titration in 0.6 mL D2O at 298K using HCI(aq)

Fig. S2. FTIR spectra of solid samples.

	Bond distances (Å)		Bond angles (°)
		Na-P1-S1	132
Na-O1	3.20	P1-S1-CH3	101
Na-O2	4.22	O1-P1-O2	119
Na-O3	4.08	O1-P1-O3	114
Na-Ow ₁₋₄	2.48	O2-P1-O3	100
		O1-P1-S1	113
P1-01	1.48	P1-Na-Ow ₁₋₄	84-97
P1-O2	1.61		
P1-O3	1.63		
P1-S1	2.10		
S1-C	1.84		
Ow ₁ -Ow ₂	3.45		
Ow ₁ -Ow ₃	4.96		
Ow ₁ -Ow ₄	3.51		

 $\begin{array}{c} {\sf CH_3}\text{-}{\sf S}\text{-}{\sf PO_3}^{2^-}\left[1\right] \text{ and } {\sf CH_3}\text{-}{\sf S}\text{-}{\sf PO_3}^{2^-}\left[2\right] \text{ are related by an inversion centre.} \\ \text{The plane of symmetry contains Na}^+ \text{ and the four waters (square planar).} \\ \text{The two } {\sf CH_3}\text{-}{\sf S}\text{-}{\sf PO_3}^{2^-} \text{ molecules and Na}^+ \text{ are related by the following} \\ \text{parameters:} \\ \text{Bond distances (Å) Na}\text{-}{\sf P2} \\ \text{Na}\text{-}{\sf O4} \\ \text{same as Na}\text{-}{\sf O1} \end{array}$

Bond angles (°)	P1-Na-P2	180
	P1-Na-S2	164
Dihedral angle (°)	P1-01-04-P2	180

Fig. S3. Powder XRD patterns for Na₂(5'-GMP), Na₂(5'-GSMP) and NaCl.

Powder x-ray diffraction using Cu radiation (alpha1=1.5406A, alpha2=1.5444A)

Fig. S4. ¹³C CP/MAS spectra of Na₂(5'-GMP) and Na₂(5'-GSMP). All spinning sidebands are marked by "*".

