Supporting Information for

Selective detection of zwitterionic arginine with a new Zn (II)-terpyridine complex: potential application in protein labeling and determination

Xin Zhou, Xuejun Jin, Donghao Li, Xue Wu*

Key Laboratory of Nature Resource and Functional Molecular of the Changbai

Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, China, 133002

E-mail: wuxue@ybu.edu.cn

Experimental

General Methods

Commercially available chemicals were used without further purification unless stated otherwise. ¹H and ¹³C NMR spectra were recorded on a Bruker AV-300 (300 MHz) and 75 (75 MHz) spectrometer in CDCl₃ with TMS as the reference. UV-vis spectra were recorded on Perkin Elmer Lambda 35 UV-vis spectra and PL spectra were conducted on Fluorescence Spectrophotometer (RF-540). MALDI-TOF mass spectra were recorded on a Shimadzu MALDI AXIMA-CFR+ Spectrometer.

Scheme. S1 Synthesis routes of receptors; conditions: (a) NH₃·H₂O; KOH; EtOH; rt; (b) Zn (ClO₄)₂; ACN; rf

4'-B15C5-2, 2':6', 2"-terpyridine (Ligand L). 2-Acetylpyridine (240 mg, 2 m mol) was added into a solution of 4-formylbenzo-15-crown-5 (200 mg, 0.7 m mol) in EtOH (30 mL). KOH pellets (300 mg, 4 m mol) and NH₃-H₂O (10 mL, 29.3%) was added to the solution. The solution was stirred at 34 °C for 3 days. The mixture was cold to 20 °C, and then the off-white precipitate was collected by filtration and washed with ice-cold EtOH (10 mL). Recrystallization from EtOH obtained white needle solid, yield: 41%. ¹H NMR (300 MHz, CDCl₃), δ (ppm): 8.74 (d, J = 4.8 Hz, 2H), 8.67 (s, 2H), 8.66 (d, J = 7.8Hz, 2H), 7.88 (t, J = 7.8Hz, 4H), 7.49 (d, J = 8.1Hz, 1H), 7.42 (s, 1H), 7.36 (dd, J = 5.4, 1.8Hz, 2H), 6.98 (d, J = 8.1 Hz, 1H), 4.29 (t, 2H), 4.22 (t, 2H), 3.96 (t, 4H), 3.79 (s, 8H). ¹³C NMR (75 MHz,CDCl₃) δ: 156.21, 155.75, 150.24, 149.84, 149.32, 149.02, 136.84, 136.80, 131.47, 123.80, 123.76, 121.33, 120.71, 118.33, 113.67, 113.38, 113.12, 77.62, 77.19, 76.77, 71.07, 70.48, 70.38, 69.57, 69.45, 68.79. IR (cm⁻¹): 2927, 2868, 1604, 1583, 1516, 1469, 1392, 1267, 1247, 1143, 1076, 1053, 987, 792. MALDI-TOF-MS: found m/z: 500.10 (100%), 501.11 (14%), 502.11 (4%). 4'-tolyl-2,2':6',2"-terpyridine (Ligand L1), yield 47%. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.73 (s, 4H), 8.68 (d, J = 8.1Hz, 2H), 7.8 (t, J =8.4Hz, 2H), 7.84 (t, J = 8.4Hz, 2H), 7.37-7.31 (m, 4H), 2.43 (s, 3H).

General procedure for the receptor 1. An equivalent ligand L and Zn (II) perchlorate salts was refluxed in EtOH solution for 3 h. After the reaction solution was cooled to room temperature, precipitation and subsequent recrystallization from acetonitrile/ethanol mixture afforded the desired receptor 1 in 70% yields. The receptor 2 was prepared for comparison study in the same procedure.

Fig. S1 Fluorescence spectra of receptor **1** (10 μ M) (red) and complex **1-Arg** (10 μ M) (blue) at barious pH values in buffered solution with 10 mM of HEPES (pH 7.4) at 25°C.

Fig. S2 Emission spectrum ($\lambda ex = 320$ nm, with slit width = 5nm) of receptor 1 (10 μ M) upon addition of different L-amino acids (1 mM) in buffered solution with 10 mM of HEPES (pH 7.4) at 25°C.

Fig. S3 Emission spectrum ($\lambda ex = 320$ nm, with slit width = 5nm) of receptor **1** (10 μ M) upon addition of Cit (0-1 mM) in buffered solution with 10 mM of HEPES (pH 7.4) at 25°C.

Fig. S4 Molecular size of receptor **1** and Arg obtained through the quantum chemical DFT calculations.

Fig. S5 Emission spectrum (λ ex = 320 nm, with slit width = 5nm) of receptor **2** (10 μ M) upon addition of Arg (0-1 mM) in buffered solution with 10 mM of HEPES (pH 7.4) at 25°C.

Fig. S6 Emission spectrum ($\lambda ex = 320$ nm, with slit width = 5nm) of ligand L (10 μ M) upon addition of Arg (1 mM) in buffered solution with 10 mM of HEPES (pH 7.4) at 25°C.

Fig. S7 The UV titrations of of receptor **1** (10 μ M) upon addition of Arg (0-1mM) in buffered solution with 10 mM of HEPES (pH 7.4) at 25°C. Inset: titration of the change in the absorbance measured at 282 nm and 348 nm versus the concentration of Arg.

Fig. S8 The fluorescence spectra (λ ex = 320 nm, slit width = 5 nm) of receptor 1 (10 μ M) upon addition with Arg (0-1 mM) in a buffered solution with 10 mM of HEPES (pH 7.4) at 25°C. Inset: the Hildebrand-Benesi plot of $F_0 / (F - F_0)$ versus [Arg]⁻¹ at 525 nm.

Fig. S9 Plots of $I_0 / (I - I_0)$ vs $[G]^{-1}$ and the linear function

The association constant (K) for 1:1 complexation can be expressed by Eq.

$$\frac{1}{I - I_0} = \frac{1}{(I_1 - I_0)Kass[G]} + \frac{1}{I_1 - I_0}$$

where I, I_1 , I_0 , and [G] denote the observed fluorescence intensity, fluorescence intensity of receptor **1** when totally bonded to arginine, initial fluorescence intensity of receptor **1** in the absence of amino acid, and total arginine concentration, respectively.

Fig. S10 MALDI-TOF-MS spectra of receptor 1 (red) and after addition of Arg (blue)

Fig. S11 The spectrum overlaps the between emission spectrum of BSA (red) and the absorption spectrum of the receptor **1** (drak)

Fig. S12 The UV spectra of of BSA (10 μ M) upon addition of receptor 1 in buffered solution with 10 mM of HEPES (pH 7.4) at 25°C.

Fig. S13 Plots of $F_{\theta} / (F_{\theta} - F)$ vs [G]⁻¹ and the linear function

Fig. S14 (a) Emission spectrum of receptor **2** (10 μ M) upon addition of BSA (0-0.1 mM) upon excited with 290 nm in buffered solution with 10 mM of HEPES (pH 7.4) at 25°C. (b) Emission spectrum of BSA (10 μ M) upon addition of receptor **2** (0-0.1 mM) upon excited with 290 nm in buffered solution with 10 mM of HEPES (pH 7.4) at 25°C

Fig. S15 Plots of F- F_{θ} vs [BSA]⁻¹ and the linear function

Table S1 Binding parameters and thermodynamic parameters

Entry	K_q^{b}	K_{sv}^{b}	K_{ass}^{b}	ΔG	R	LOD
	$(M^{-1} \cdot S^{-1})$	(M^{-1})	(M^{-1})	(kcal·M ⁻¹)		(nM)
1. Arg	8.41×10^{11}	8.41×10^{3}	1.87×10^{4}	-24.26	0.9968	205
2. BSA	7.84×10^{12}	7.84×10^{4}	5.91×10^{5}	-34.95	0.9998	15
^{<i>a</i>} All data were acquired in buffered HEPES solution (pH 7.4) at 25 \therefore ^{<i>b</i>} Determined by						

fluorescence titration. ^{*c*} ($\Delta G = -RT \ln Kass$)

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Fig. S16 1 H-NMR of ligand L

Fig. S17 13 C-NMR of ligand L

Fig. S18 MALDI-TOF-MS of ligand L

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Fig. S19¹H NMR of ligand L1

Fig. S20 MALDI-TOF-MS of receptor 1 and isotopic distributions (red) along with

caculated one(drak)

Fig. S21 MALDI-TOF-MS of receptor 2 and 3 with isotopic distributions

(red) and caculated one(drak)