Supporting Information

Ca²⁺-induced Folding of a Chiral Ditopic Receptor Based on a Pybox Ligand and Enhancement of Anion Recognition

Masaki Yamamura,^{a,b} Junya Miyake^a Yuki Imamura^a and Tatsuya Nabeshima*^{a,b}

^{*a*} Graduate School of Pure and Applied Sciences, University of Tsukuba, ^{*b*} Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba E-mail: nabesima@chem.tsukuba.ac.jp

Table of contents

- (1) General procedure
- (2) Synthesis of Pybox ligand 1
- (3) NMR spectra
- (4) X-ray crystallographic analysis
- (5) Optimized geometries and energies of cisoid- and transoid-isomers of pybox by PBE1PBE/6-31G(d,p)
- (6) UV-vis spectroscopic titration of 1 with $Ca(ClO_4)_2$
- (7) CD spectroscopic titration of 1 with Ca(ClO₄)₂
- (8) ESI-MS of 1·Ca(ClO₄)₂
- (9) NOESY spectra of $1 \cdot Ca(ClO_4)_2$
- (10) Optimized geometries and energies of *P* and *M*-isomers of $1 \cdot Ca^{2+}$ by PBE1PBE/6-31G(d,p)
- (11) UV-vis spectroscopic titration of 1 with ${}^{n}Bu_{4}N^{+}X^{-}$ (X = Cl, Br) in 4:1 CHCl₃/CH₃CN
- (12) CD spectroscopic titration of 1 with $^{n}Bu_{4}N^{+}Cl^{-}$ in 4:1 CHCl₃/CH₃CN
- (13) UV-vis spectroscopic titration of 1 with $^{n}Bu_{4}N^{+}X^{-}$ (X = Cl, Br, I) in 1:99 H₂O/CH₃CN
- (14) Job's plot for $1 \cdot Ca^{2+}$ with "Bu₄N⁺Cl⁻
- (15) UV-vis spectroscopic titration of $1 \cdot Ca^{2+}$ with $^{n}Bu_4N^+X^-$ (X = Cl, Br) in 4:1 CHCl₃/CH₃CN
- (16) ¹H NMR spectroscopic titration of $1 \cdot Ca^{2+}$ with "Bu₄N⁺Cl⁻ in 4:1 CDCl₃/CD₃CN
- (17) CD spectroscopic titration of $1 \cdot Ca^{2+}$ with "Bu₄N⁺Cl⁻ in 4:1 CHCl₃/CH₃CN
- (18) UV-vis spectroscopic titration of $1 \cdot Ca^{2+}$ with "Bu₄N⁺X⁻ (X = Cl, Br, I) in 1:99 H₂O/CH₃CN
- (19) ¹H NMR spectroscopic titration of 1 with $^{n}Bu_{4}N^{+}ClO_{4}^{-}$
- (20) ¹H NMR spectroscopic titration of $1 \cdot Ca^{2+}$ with "Bu₄N⁺ClO₄⁻
- (21) ¹H NMR spectroscopic titration of $1 \cdot Ca^{2+}$ with "Bu₄N⁺Cl⁻

(1) General procedure

All reactions were performed under a dry nitrogen atmosphere. Organic solvents were purchased as pre-dried solvents and used without any further purification. H_2O was deionised and microfiltered using a Millipore machine, Milli-Q[®] Integral 3. ¹H and ¹³C spectra were recorded by Bruker AVANCE400 using TMS as an internal reference. ESI Mass spectrum was recorded on an Applied Biosystems QStar Pulsar *i* spectrometer. UV-vis spectra were recorded by JASCO Ubest V-660. CD spectra were recorded by JASCO J-720W.

(2) Synthesis of Pybox Ligand 1

Pybox ligand 1 was synthesized by procedure shown in Scheme S1. Compound 3 was prepared by literature method.^{1,2}

Scheme S1. Synthetic procedure

Synthesis of 4

To a mixture of **2** (9.65 g, 36.4 mmol) and sodium borohydride (4.20 g, 111 mmol) in THF (180 mL) was added a THF solution (30 mL) of iodine (10.2 g, 40.0 mmol) at 0 °C for 30 minutes, then the reaction mixture was refluxed for 18 hours. After quenching with methanol and evaporation, a crude mixture was dissolved into 20% potassium hydroxide solution, then stirred at room temperature for 4 hours. Extraction with chloroform and evaporation gave a crude oil. The crude mixture was separated by silica-gel column chromatography using 10:1 methanol/chloroform as an eluent to give a white powder of **4** (4.21 g, 46%).

4: white solid, ¹H NMR (300 MHz, CDCl₃) δ 1.27-1.31 (m, 1H), 1.44-1.63 (m, 3H), 2.84-2.86 (m, 1H), 3.17-3.24 (q, *J* = 6.9 Hz, 2H), 3.24-3.32 (m, 1H), 3.56-3.61 (dd, *J* = 4.2 Hz, 6.6 Hz, 1H), 5.03 (s, 1H), 5.09 (s, 2H), 7.30-7.36 (m, 5H).

Synthesis of 5

To an SOCl₂ solution (5.0 mL) of pyridine-2,6-dicarboxylic acid (210.0 mg, 1.26 mmol) was added a three drops of dimethylformamid, then the reaction mixture was refluxed for 2 hours. After removal of an excess of SOCl₂ by distillation, dry chloroform (3.0 mL) was added. To this, a chloroform solution (25.0 mL) of **4** (700 mg, 2.77 mmol) and triethylamine (1.3 mL) was added at 0 °C, and the reaction mixture was stirred at 0 °C for 30 minutes, then at room temperature for 16 hours. SOCl₂ (4.0 mL) was added to the reaction mixture and this was stirred at 50 °C for 2 hours. After the reaction mixture was slowly poured to ice, extraction with chloroform, washing with brine, and evaporation gave a crude brown solid. The crude mixture was separated by silica-gel column chromatography to give a white powder of **5** (502 mg, 59%).

5:white solid, ¹H NMR (400 MHz, CDCl₃) δ 1.63 (quint, J = 6.6 Hz, 4H), 1.77 (q, J = 6.6 Hz, 4H), 3.20-3.31 (m, 4H), 3.72 (dd, J = 10.5 Hz, J = 3.0 Hz, 2H), 3.77 (dd, J = 10.5 Hz, J = 4.0 Hz, 2H), 4.43-4.47 (m, 2H), 4.91 (brs, 2H), 5.08 (d, J = 12.5 Hz, 2H), 5.10 (d, J = 12.5 Hz, 2H), 7.26-7.35 (m, 10H), 8.05 (t, J = 7.5 Hz, 1H), 8.15 (brd, J = 7.0 Hz, 2H), 8.35 (d, J = 7.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 26.63 (CH₂), 28.86 (CH₂), 40.63 (CH₂), 48.26 (CH), 49.47 (CH₂), 66.76 (CH₂), 125.33 (CH), 128.09 (CH), 128.17 (CH), 128.55 (CH), 136.48 (C), 139.20 (C), 148.51 (C), 156.67 (C), 163.17 (C); ESI-TOF-MS observed m/z 694.5 [**5** + Na]⁺.

Synthesis of 1

To a dichloromethane (3.5 mL) and acetonitrile (5.0 mL) solution of **5** (250 mg, 0.372 mmol) and sodium iodide (335 mg, 2.23 mmol) was added trimethylsilyl chloride (0.190 mL, 1.49 mmol), and the reaction mixture was stirred at 0 °C for 2 hours. After quenching with methanol, evaporation and reprecipitation from acetonitrile/toluene gave a white powder. To a 6:1 dichloromethane/dimethylformamide (5.0 mL) and triethylamine (0.22 mL) solution of the white powder was added 4-nitrophenyl isocyanate (159 mg, 0.969 mmol) in 6:1 dichloromethane/dimethylformamide (1.0 mL), then reaction mixture was stirred at room temperature for 24 hours. After evaporation, silica-gel column chromatography followed by reprecipitation from chloroform/acetonitrile/hexane gave a yellow precipitate (364 mg). The precipitate was used for a following reaction without further purification. To a THF suspension (10 mL) of sodium hydrate (60% oil dispersion, 45.3 mg, 1.13 mmol) was added the mixture in THF (10 mL) at 0 °C, then the reaction mixture was stirred at 0 °C for one hour and at room temperature for 11 hours. After evaporation gave a crude brown solid. The crude mixture was separated by column chromatography (NH₂-substituted silica-gel, eluent: chloroform/methanol = 20/1) followed by reprecipitation from dichloromethane, washing water and brine, and evaporation gave a crude brown solid. The crude mixture was separated by column chromatography (NH₂-substituted silica-gel, eluent: chloroform/methanol = 20/1) followed by reprecipitation from chloroform/hexane to give a yellow powder of **1** (41.7 mg, 17%).

1: pale yellow solid, mp 132-134 °C; ¹H NMR (400 MHz, CD₃CN/CDCl₃ = 1/4) δ 1.54-1.72 (m, 8H), 3.22 (ddd, J = 7.5 Hz, J = 7.2 Hz, J = 5.6 Hz, 4H), 4.08 (t, J = 7.5 Hz, 2H), 4.31 (quint, J = 8.0 Hz, 2H), 4.56 (dd, J = 8.0 Hz, J = 7.5 Hz, 2H), 5.79 (t, J = 5.6 Hz, 2H), 7.57 (d, J = 9.2 Hz, 4H), 7.96 (t, J = 7.0 Hz, 1H), 8.04 (brs, 2H), 8.05 (d, J = 7.0 Hz, 2H), 8.09 (d, J = 9.2 Hz, 4H); ¹³C NMR (100 MHz, CD₃CN/CDCl₃ = 1/4) δ 26.71 (CH₂), 33.25 (CH₂), 39.99 (CH₂), 66.96 (CH), 73.85 (CH₂), 117.59 (CH), 125.37 (CH), 126.17 (CH), 138.64 (CH), 141.86 (C), 147.15 (C), 147.27 (C), 155.20 (C), 162.76 (C); ESI-TOF-MS observed *m*/*z* 660.3 [**1** + H]⁺; Anal. Calcd for C₃₁H₃₃N₉O₈·H₂O: C, 54.94; H, 5.21; N, 18.60. Found: C, 54.54; H, 5.31; N, 18.18.

(3) NMR spectra

Figure S1. ¹H NMR spectrum of 1, 400 MHz, $CDCl_3 : CD_3CN = 4 : 1$, [1] = 1.0×10^{-3} M.

Figure S2. ¹³C NMR spectrum of 1, 100 MHz, $CDCl_3 : CD_3CN = 4 : 1, [1] = 2.0 \times 10^{-3} M.$

Figure S3. COSY spectrum of 1, 400 MHz, $CDCl_3 : CD_3CN = 4 : 1, [1] = 2.0 \times 10^{-3} M.$

Figure S4. HSQC spectrum of **1**, 400 MHz, $CDCl_3 : CD_3CN = 4 : 1$, $[\mathbf{1}] = 2.0 \times 10^{-3}$ M. Black cross peaks represent positive signals that mean carbons for CH or CH₃, and red ones represent negative signals that mean carbons for CH₂.

(4) X-ray crystallographic analysis

The single crystal of the complex $2_2Ca(ClO_4)_2$ was obtained by recrystallization of 2 in the presence of 20 equiv of Ca(ClO₄)₂ from chloroform/methanol. The complex 2_2 Ca(ClO₄)₂ was characterized by ¹H NMR and an elemental analysis: mp 175 °C (dec); ¹H NMR (400 MHz, CD₃CN) δ 0.57 (d, J = 7.5 Hz, 6H), 0.77 (d, J = 7.5 Hz, 6H), 1.32-1.46 (m, 2H), 4.22 (ddd, J = 10.0 Hz, J = 7.2 Hz, J = 3.0 Hz, 2H), 4.53-4.62 (m, 4H), 8.14 (d, J = 10.0 Hz, J = 10.08.0 Hz, 2H), 8.32 (t, J = 8.0 Hz, 1H); Found: C, 48.26; H, 5.47; N, 9.83 and calcd for $C_{34}H_{46}N_6O_{12}Cl_2Ca$: C, 48.51; H, 5.51; N, 9.98. CCD area-detector diffractometer data were measured with monochromatic MoK α radiation ($\lambda = 0.71073$ Å), and yielded reflections was merged after multi-scan absorption correction (Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.) The structure was solved by dual methods using SHELX-97 and expanded using Fourier techniques.³ The non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined isotropically with reflection weights using SHELX-97.³ Crystal data for **2**₂Ca(ClO₄)₂: C₃₄H₄₆N₆O₁₂Cl₂Ca, monoclinic, P2₁, a = 17.061(6), b = 11.823(4), c = 21.703(7) Å, $\beta = 11.823(4)$, c = 21.703(7) Å, $\beta = 11.823(4)$, c = 21.703(7) Å, $\beta = 11.823(4)$, $\beta = 11.823(4)$, 109.419(4), V = 4129(2) Å³, MW = 841.75, Z = 4, $D_{calc} = 1.354$ g/cm³, 22542 measured, 15952 independent, GOF = 1.026, $R1[I > 2\sigma(I)] = 0.0622\%$, wR2(all data) = 0.1550. CCDC 805519 contains the supplementary crystallographic data for this paper, which can be obtained free charge of via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033; or deposit@ccdc.cam.ac.uk).

(5) Optimized geometries and energies of *cisoid*- and *transoid*-isomers of pybox by PBE1PBE/6-31G(d,p)^{4,5}

Figure S5. Ball and stick representation of the optimized geometry and energy diagram of *cisoid*- and *transoid*-(*S*,*S*)-dimethylPybox, grey: C, small white: H, red: O, blue: N. ΔE represents the energy difference of two conformers, whose total energy is calculated by the sum of electron energy and zero-point vibration energy.

(6) UV-vis spectroscopic titration of 1 with Ca(ClO₄)₂

Figure S6. UV-vis spectral changes in 1 on the addition of Ca(ClO₄)₂. Inset shows the change of the absorption at 362 nm with a calculated curve. (CHCl₃ : CH₃CN = 4 : 1, [1] = 1.0×10^{-5} M)

(7) CD spectroscopic titration of 1 with Ca(ClO₄)₂

Figure S7. CD spectral changes in 1 on the addition of Ca(ClO₄)₂. (CHCl₃ : CH₃CN = 4 : 1, [1] = 3.0×10^{-5} M)

(8) ESI-MS of 1·Ca(ClO₄)₂

Figure S8. ESI mass spectrum of a mixture of 1 and $Ca(ClO_4)_2$. A black line and red bars represents an experimental data and a isotope simulation for $[1 \cdot Ca]^{2+}$, respectively.

(9) NOESY spectra of 1·Ca(ClO₄)₂

Figure S9. NOESY spectra of $1 \cdot Ca^{2+}$ (CDCl₃ : CD₃CN = 4 : 1, $[1 \cdot Ca(ClO_4)_2] = 8.0 \times 10^{-3}$ M)

(10) Optimized geometries and energies of *P*- and *M*-isomers of 1·Ca²⁺ by PBE1PBE/6-31G(d,p)^{4,5}

M-1·Ca²⁺

Figure S10. Schematic structure and ball and stick representation of the optimized geometry of M-1·Ca²⁺, grey: C, small white: H, red: O, blue: N, yellow: Ca.

Figure S11. Schematic structure and ball and stick representation of the optimized geometry of P-1·Ca²⁺, grey: C, small white: H, red: O, blue: N, yellow: Ca.

Figure S12. Energy diagram of M-1·Ca²⁺ and P-1·Ca²⁺. ΔE represents the energy difference of two conformers, whose total energy is calculated by the sum of electron energy and zero-point vibration energy.

Figure S13. UV-vis spectral changes in 1 on the addition of ${}^{n}Bu_{4}N^{+}Cl^{-}$. Inset shows the change of the absorption at 362 nm with a calculated curve. (CHCl₃ : CH₃CN = 4 : 1, [1] = 1.0×10^{-5} M)

Figure S14. UV-vis spectral changes in 1 on the addition of ${}^{n}Bu_{4}N^{+}Br^{-}$. Inset shows the change of the absorption at 362 nm with a calculated curve. (CHCl₃ : CH₃CN = 4 : 1, [1] = 1.0×10^{-5} M)

(12) CD spectroscopic titration of 1 with "Bu₄N⁺Cl⁻ in 4:1 CHCl₃/CH₃CN

Figure S15. CD spectral changes in 1 on the addition of $^{n}Bu_{4}N^{+}Cl^{-}$. (CHCl₃ : CH₃CN = 4 : 1, [1] = 3.0×10^{-5} M)

(13) UV-vis spectroscopic titration of 1 with $^{n}Bu_{4}N^{+}X^{-}$ (X = Cl, Br, I) in 1:99 H₂O/CH₃CN

Figure S16. UV-vis spectral changes in 1 on the addition of ${}^{n}Bu_{4}N^{+}Cl^{-}$. Inset shows the change of the absorption at 362 nm with a calculated curve. (CH₃CN containing 1%water, [1] = 1.0×10^{-5} M)

Figure S17. UV-vis spectral changes in 1 on the addition of $^{n}Bu_{4}N^{+}Br^{-}$. (CH₃CN containing 1%water, [1] = 1.0 × 10⁻⁵ M)

Figure S18. UV-vis spectral changes in 1 on the addition of ${}^{n}Bu_{4}N^{+}I^{-}$. (CH₃CN containing 1%water, [1] = 1.0 × 10⁻⁵ M)

Figure S19. Job plot for the mixture of $1 \cdot Ca^{2+}$ and Cl^- (CHCl₃:CH₃CN = 4:1, $[1 \cdot Ca^{2+}] + [Cl^-] = 1.0 \times 10^{-5}$ M)

Figure S20. UV-vis spectral changes in $1 \cdot Ca^{2+}$ on the addition of ${}^{n}Bu_4N^+Cl^-$. Inset shows the change of the absorption at 362 nm with a calculated curve. (CHCl₃ : CH₃CN = 4 : 1, $[1 \cdot Ca(ClO_4)_2] = 1.0 \times 10^{-5}$ M)

Figure S21. UV-vis spectral changes in $1 \cdot Ca^{2+}$ on the addition of ${}^{n}Bu_4N^+Br^-$. Inset shows the change of the absorption at 362 nm with a calculated curve. (CHCl₃ : CH₃CN = 4 : 1, $[1 \cdot Ca(ClO_4)_2] = 1.0 \times 10^{-5}$ M)

(17) CD spectroscopic titration of 1·Ca²⁺ with "Bu₄N⁺Cl⁻ in 4:1 CHCl₃/CH₃CN

Figure S22. CD spectral changes in $1 \cdot Ca^{2+}$ on the addition of ${}^{n}Bu_4N^+Cl^-$. (CHCl₃ : CH₃CN = 4 : 1, $[1 \cdot Ca(ClO_4)_2] = 3.0 \times 10^{-5}$ M)

(18) UV-vis spectroscopic titration of $1 \cdot Ca^{2+}$ with ${}^{n}Bu_{4}N^{+}X^{-}$ (X = Cl, Br, I) in 1:99 H₂O/CH₃CN

Figure S23. UV-vis spectral changes in $1 \cdot Ca^{2+}$ on the addition of "Bu₄N⁺Cl⁻. Inset shows the change of the absorption at 362 nm with a calculated curve. (CH₃CN containing 1%water, $[1 \cdot Ca(ClO_4)_2] = 1.0 \times 10^{-5}$ M)

Figure S24. UV-vis spectral changes in $1 \cdot Ca^{2+}$ on the addition of ${}^{n}Bu_4N^+Br^-$. Inset shows the change of the absorption at 362 nm with a calculated curve. (CH₃CN containing 1% water, $[1 \cdot Ca(ClO_4)_2] = 1.0 \times 10^{-5}$ M)

Figure S25. UV-vis spectral changes in $1 \cdot Ca^{2+}$ on the addition of ${}^{n}Bu_4N^{+}\Gamma$. Inset shows the change of the absorption at 362 nm with a calculated curve. (CH₃CN containing 1%water, $[1 \cdot Ca(ClO_4)_2] = 1.0 \times 10^{-5}$ M)

(19) ¹H NMR spectroscopic titration of 1 with ^{*n*}Bu₄N⁺ClO₄⁻

Figure S26. ¹H NMR spectral changes in **1** on the addition of ${}^{n}Bu_{4}N^{+}ClO_{4}^{-}$. (CD₃CN, [**1**] = 5.0 × 10⁻⁴ M, 400 MHz)

Figure S27. ¹H NMR spectral changes in $1 \cdot Ca^{2+}$ on the addition of "Bu₄N⁺ClO₄⁻. (CD₃CN, $[1 \cdot Ca(ClO_4)_2] = 5.0 \times 10^{-4}$ M, 400 MHz)

Figure S28. ¹H NMR spectral changes in $1 \cdot Ca^{2+}$ on the addition of ^{*n*}Bu₄N⁺Cl⁻. (CD₃CN, $[1 \cdot Ca(ClO_4)_2] = 5.0 \times 10^{-4}$ M, 400 MHz)

(21) ¹H NMR spectroscopic titration of 1·Ca²⁺ with "Bu₄N⁺Cl⁻

References

- 1. Pattenden, G.; Thompson, T. Chem. Commun. 2001, 717-718.
- 2. Martin, O. R.; Zhou, W.; Wu, X.; Front-Deschamps, S.; Moutel, S.; Schindl, K.; Jeandet, P.; Zbaeren, C.; Bauer, J. A. J. Med. Chem. 2006, 49, 6000–6014.
- 3. Sheldrick, G. M. SHELX-97: Program for the Solution and Refinement of Crystal Structures; Universität Göttingen: Göttingen, Germany, 1997.
- 4. Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158-6170.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. *Gaussian 03*, revision C.02; Gaussian, Inc.: Pittsburgh, PA, 2003.