Supporting Information

Hexagonal single crystal growth of WO₃ nanorods along a [110] axis with enhanced adsorption capacity

Jian Zhu,^a Songling Wang,^a Songhai Xie,^b Hexing Li*,^a

^aThe Education Ministry Key Lab of Resourse Chemistry, Shanghai Normal University, Shanghai 200234, China. ^bDepartment of Chemistry, Fudan University, Shanghai 200234, China.

1. Sample preparation

The WO₃-110-1 was synthesized according to the following procedure. 1.2 g $(NH_4)_{10}W_{12}O_{41}$ ·5H₂O was dissolved in 40 mL aqueous solution. The acid of solution was adjust to pH = 1 by dropwise addition of 0.60 M H₂SO₄ with constant magnetic stirring at room temperature. Then, the solution was transferred into a Teflon-lined 50 mL autoclave for hydrothermal treating at 100°C for 24 h. After being cooled down to room temperature, the prepared WO₃ powders were filtrated and washed thoroughly with water, followed by drying at 100°C for 12 h. TheWO₃-110-2 was synthesized in the same way by using 1.2 M HCl instead of 0.60 M H₂SO₄. Calcination of the WO₃-110-1 at 350°C for 5 h resulted in the WO₃-110-3.

The WO₃-001-1 was prepared in the similar way to that used for synthesizing WO₃-110-1 by using 1.6 g Na₂WO₄·2H₂O instead of 1.2 g (NH₄)₁₀W₁₂O₄₁·5H₂O in 0.60 M H₂SO₄ aqueous solution. The WO₃-001-2 was obtained by using 1.2 M HCl instead of 0.60 M H₂SO₄.

For comparison, the WO₃-R1 was also synthesized according to the procedure reported elsewhere. Briefly, 10 g $H_2W_2O_7$ ·1.5 H_2O was dispersed in 66 mL n-octylamine and 330 mL heptane at room temperature. After being stirred for 72 h, the as-received white solid was washed thoroughly with ethanol, followed by drying at 100°C for 12 h. Then, the solid product (10 g) was dispersed in500 mL aqueous solution containing 24 wt% HNO₃. A yellow suspension was obtained after reaction

for more than 2 days, which were collected and washed with H_2O and ethanol, followed by drying at 100°C and calcining at 450°C for 2 h at a heating rate of 2°C/min, leading to the final product WO₃-R1.

2. Adsorption test

In each run of tests, 0.070 g WO₃ was added into 50 mL aqueous solution containing different amount (40, 80, 100, 120, 320, and 560 mg/L) of rhodamine B (RhB) or methylene blue (MB). The solution was oscillated for 12 h at 25°C in a water bath (SHA-C) to reach adsorption equilibrium. The RhB or MB left in the solution was determined by UV-visible spectrophotometer from which the adsorption capacity could be calculated.

Fig. S1 TEM and HRTEM images of (a, b) WO_3 -110-3, (c, d) WO_3 -110-2, (e, f) WO_3 -001-1, (g, h) WO_3 -001-2. The insets are the FFT images (b, d) and the SAED patterns.

Fig. S2 N 1s XPS spectra of (a) the WO₃-110-1, (b) the WO₃-110-1 after being immerged in 0.50 M HCl aqueous solution for 12 h, (c) the WO₃-110-4 obtained by immerging WO₃-110-3 NH₄Cl solution for 24 h at 25° C, and (d) WO₃-110-3.

Fig. S3 SEM image of the WO₃-R1.

Fig. S4 Adsorption isotherms of different samples for RhB at 25°C. (a) WO₃-110-2, (b) WO₃-110-1, (c) WO₃-110-3, (d) WO₃-001-2, (e) WO₃-001-1, (f) WO₃-R1.

Fig. S5 Adsorption isotherms of different samples for MB at 25°C. (a) WO₃-110-2, (b) WO₃-110-1, (c) WO₃-110-3, (d) WO₃-001-2, (e) WO₃-001-1, (f) WO₃-R1.

Fig. S6 Fluorescence spectra of RhB solution after adsorbed by different WO_3 samples. Conditions: RhB initial concentration = 320 mg/L, exciting light = 520 nm. The RhB solution was diluted for 2500 times by water before fluorescence measurement.

Fig. S7 Adsorption test for RhB over (a) WO₃-110-2, (b) WO₃-110-1, (c) WO₃-110-3, (d) WO₃-001-2, (e) WO₃-001-1, (f) WO₃-R1 samples. Adsorption conditions: RhB initial concentration = 40 mg/L, temperature = 25° C.

Fig. S8 N 1s XPS spectra of RhB adsorbed on WO₃-001-1(a) and WO₃-110-3(b).

Fig. S9 Theoretical model of (a) (001) and (b) (100) surface structure of the WO_3 hexagonal single crystal. The O and W atoms are present in red and blue balls.

Samples	Capacity (mg/g)	Samples	Capacity (mg/g)
WO ₃ -110-1	52	WO ₃ -001-1	11
WO ₃ -110-2	65	WO ₃ -001-2	12
WO ₃ -110-3	34	WO ₃ -R1	4
WO ₃ -110-4	30		

Table S1 Adsorption capacities calculated from fluorescence spectra for RhB solution^a

^aAdsorption conditions are given in Figure S5.

Scheme S1 Plausible adsorption models of RhB on the WO_3 -110-3