Supporting Information

Measurements. Electronic absorption spectra were recorded on a JASCO model V-660 spectrometer. ¹H and ¹³C NMR spectra were recorded on a Bruker Avance DPX 250 and DPX 400 spectrometer, respectively, at 25°C in CDCl₃,DMSO-d₆, or THF-d₈. MALDI-TOF-MS was performed on an Applied Biosystems 4700 proteomics analyzer with α -cyano-4-hydroxycinnamic acid as the matrix.

Synthesis.3: To a mixturesolution of 4-formyl-benzoate(2.25 g, 13.68 mmol) and dipyrromethane(2.0 g, 13.68 mmol) in CH₂Cl₂ (830 mL) and MeOH(170 mL), BF₃•Et₂O(2 mL, 15.92 mmol) was added and stirred for 12 h at 25°C. Then, *p*-chloranil(8.49 g, 34.2 mmol) was added and the reaction mixture was further stirred for 4 h. The reaction mixture was concentrated to a volume of 200 mL and then chromatographed in silica gel with 5% MeOH/CH₂Cl₂. Without further purification, the product was dissolved in 10% MeOH/CH₂Cl₂ containing Zn(OAc)₂ (6.0 g, 27.36 mmol) and then stirred for 12 h at 25°C. Thereaction mixture was purified by column chromatography with 3% MeOH/CH₂Cl₂, where the first fraction was collected and evaporated to dryness. The residue was recrystallized from CH₂Cl₂(1:99)): ¹H

NMR(250 MHz, CDCl₃, 25°C) δ = 10.23(s, 2H), 9.36-9.38(d, *J* = 5 Hz, 4H), 8.98-9.00(d, *J* = 5 Hz 4H), 8.40-8.43(d, *J* = 7.5 Hz, 4H), 8.29-8.33(d, *J* = 10 Hz, 4H), 4.09ppm (s, 6H); MALDI-TOF-MS:*m/z*: calcd. for C₃₆H₂₄N₄O₄Zn: 641.99 [M⁺]; found: 640.15.

4: *N*-bromosuccinimide (NBS; 0.58 g, 3.26 mmol) was added to a solution of **3** (1.0 g, 1.56 mmol) in CH₂Cl₂ (200 mL) and MeOH (20 mL), and then stirred for 30 min at 25°C. The reaction mixture was quenched with acetone (20mL) and evaporated. MeOH was added to the crude mixture, and precipitate was filtered. The residue was again washed with MeOH to give **4**, a purple powder (1.12 g, 90%) (Rf = 0.33 in Hex/CH₂Cl₂(1:9)): ¹H NMR (250 MHz, [D₆]DMSO, 25°C) δ 9.62-9.64 (d, *J* = 5 Hz, 4 H), 8.79-8.77(d, *J* = 5 Hz, 4 H), 8.28-8.31 (d, *J* = 7.5 Hz, 4 H), 8.13-8.16 (d, *J* = 7.5 Hz, 4 H), 4.06 ppm (s, 6H); MALDI-TOF-MS:*m/z*: calcd. for C₃₆H₂₂Br₂N₄0₄Zn: 799.78 [M⁺]; found 800.0.

5: **4** (1.0 g, 1.26 mmol), CuI (20 mg, 0.06 mmol), and Pd(PPh₃)₂Cl₂ (44 mg, 0.06 mmol) were placed in a Schlenk flask. The flask was degassed under high vacuum and back-filled with N₂;this process was repeated three times. Dried THF (70 mL), Et₃N (3 mL),andtrimethylsilyl- acetylene (0.7 mL, 5.04 mmol) were added. The reaction mixture was stirred for 16 h at 25°C and then filtered through Celite. The filtrate was concentrated and then purified by column chromatography with CH₂Cl₂ to give **5** (0.81g, 78%)(Rf = 0.27 in Hex/EtOAc(8:2)): ¹H NMR (400 MHz, CDCl₃, 25°C) δ = 9.70-9.69 (d, *J*=4 Hz, 4 H), 8.84-8.83 (d, *J*=4 Hz, 4 H), 8.41-8.39 (d, *J*=8 Hz, 4 H), 8.25-8.23 (d, *J*=8 Hz, 4 H), 4.08 (s, 6 H), 0.59ppm (s, 18 H); ¹³C NMR (100 MHz,CDCl₃, 25°C) δ = 176.29, 152.36, 149.68, 134.38, 132.43, 131.74, 129.55, 127.89,121.38, 107.01, 102.49, 101.91, 77.22, 53.42, 52.42, 0.31 ppm;MALDI-TOF-MS:*m/z*: calcd. for C₄₆H₄₀N₄0₄Si₂Zn: 834.4 [M⁺]; found: 832.29.

6: Tetrabutylammonium fluoride (5 mL, 1 M in THF) was added to solution of **5** (0.6 g, 0.72 mmol) in $CH_2Cl_2(100 \text{ mL})$ and stirred for 30 min at 25°C, then removed the solvent under reduced pressure. The residue was purified by column chromatography with $CH_2Cl_2/MeOH$ (99/1) as an eluent. Recrystallization from $CH_2Cl_2/hexane$ gives **6** (0.42 g, 85%), a purple crystal(Rf = 0.23 in

Hex/EtOAc(7:3)): ¹H NMR (400 MHz, [D₆]DMSO, 25°C) δ = 9.63-9.62 (d, *J* = 4 Hz, 4 H), 8.79-8.78 (d, *J* = 4 Hz, 4 H), 8.43-8.41 (d, *J* = 8 Hz, 4 H), 8.34-8.32 (d, *J* = 8 Hz, 4 H), 5.30 (s, 2 H), 4.07ppm (s, 6H); ¹³C NMR (100MHz, [D₆]DMSO, 25 °C) δ = 166.38, 151.53,148.96, 146.60, 134.38, 132.42, 131.23, 129.26, 127.49, 123.77, 120.82, 104.97, 101.43, 99.66, 85.67, 52.37, 40.33 ppm; MALDI-TOF-MS:*m/z*: calcd. for C₄₀H₂₄N₄O₄Zn: 690.03 [M⁺]; found 688.12.

1:6 (0.1 g, 0.15 mmol), CuI (1 mg, 5.3 µmol), Pd(PPh₃)₂Cl₂ (1 mg, 1.4 µmol), and 7(0.09 g, 0.15 mmol) were placed in a Schlenk flask. The flask was degassed under high vacuum and back-filled with N₂; this process was repeated three times. Dried THF (29 mL), Et₃N (2.9 mL) were added. The reaction mixture was stirred for 48 h at 25°C, and then the solution was evaporated. The residue was purified by column chromatography with ethyl acetate/hexane (3:7) to give **1** (10 mg, 7%)(Rf = 0.25 in Hex/EtOAc(7:3)):¹H NMR(400 MHz, [D₈]THF, 25°C) δ = 10.46 (s, 4 H), 9.42-9.41(d, *J* = 4 Hz, 8 H), 8.43-8.42(d, *J* = 4 Hz, 8 H), 8.30(s, 4 H), 8.26-8.23(m, 8 H), 8.02-7.99 (m, 8 H), 7.88 (s, 4 H), 7.60-7.59(d, *J* = 4 Hz, 4 H), 3.98 (s, 12 H), 1.47 ppm (s, 36 H); ¹³C NMR (100 MHz, [D₈]THF, 25°C) δ = 165.76, 151.42, 148.83, 146.49, 141.84, 138.96, 133.84, 133.33, 131.13, 130.67, 129.31, 127.14, 127.05, 126.03, 125.09, 124.26, 121.26, 120.51, 117.16, 111.75, 105.12, 100.40, 93.75, 91.33, 59.07, 51.09, 34.20, 31.09, 29.26 ppm; MALDI-TOF-MS: *m/z*: calcd. for C₁₃₂H₉₆N₁₂O₈Zn₂:2109.03 [M⁺]; found 2108.5.

Spectroscopic titration of macrocycle 1 with DABCO

 $[1] = 4.3 \times 10^{-6} \text{ M}, [DABCO]/[1] = 0-10.6, 1 \text{ cm thick optical cell; } \Delta \text{Abs was monitored at } 437 \text{ nm.}$

Spectroscopic titration of macrocycle 1 with guests (a)acetate, (b)azide, (c)fluoride in THF at 25 °C

(a) $[1] = 4.4 \times 10^{-6}$ M, [acetate]/[1] = 0.4.1, 1 cm thick optical cell; Δ Abs was monitored at 639 nm.

(b) $[1] = 4.3 \times 10^{-6} \text{ M}$, [azide]/[1] = 0-6.0, 1 cm thick optical cell; ΔAbs was monitored at 434 nm.

(c) $[1] = 2.4 \times 10^{-6} \text{ M}$, [fluoride]/[1] = 0-4.1, 1 cm thick optical cell; ΔAbs was monitored at 640 nm.

Hill plots of macrocycle 1 with guests (a)acetate, (b)azide, (c)fluoride in THF at 25 °C

Cooperative guest-binding process was analyzed according to the Hill equation: log(y/(1-y)) = nlog[guest] + log K, where K, y, and n are the association constant, the extents of complexation and Hill coefficient, respectively. From the slope and the intercept of the linear plots (Hill plot) one can estimate K and n, which are useful as measures of the cooperativity. A higher value of n is related to a higher degree of cooperativity. The maximum is equal to the number of binding sites.

(b) 1 with azide

% formation of macrocycle 1 with guests (a)acetate, (b)azide, (c)fluoride in THF at 25 °C

(a) 1 with acetate

100 80 60 40 0.0 1.0x10⁴ 2.0x10⁴ 3.0x10⁴

(b) 1 with azide

(c) 1 with fluoride

	K ₁ [M ⁻¹]	K ₂ [M ⁻¹]
F-	1.60 x 10 ⁶	5.42 x 10 ⁶
Acetate	1.06 x 10 ⁶	2.60 x 10 ⁷
N ₃ -	7.11 x 10⁴	2.50 x 10 ⁶

Spectroscopic titration of macrocycle 1>DABCO with guests (a)acetate,

(b)azide, (c)fluoride in THF at 25 °C

(a) $[1] = 4.4 \times 10^{-6}$ M, [acetate]/[1] = 0-4.1, 1 cm thick optical cell; Δ Abs was monitored at 639 nm.

(b) $[1] = 4.3 \times 10^{-6}$ M, [azide]/[1] = 0-12.0, 1 cm thick optical cell; Δ Abs was monitored at 455 nm.

(c) $[\mathbf{1}] = 2.4 \times 10^{-6} \text{ M}$, [fluoride]/ $[\mathbf{1}] = 0.4.1$, 1 cm thick optical cell; ΔAbs was monitored at 640 nm.

(c)fluoride in THF at 25 °C

(a) 1⊃DABCO with acetate

(c) 1 \supset DABCO with fluoride

% formation of macrocycle 1>DABCO with guests (a)acetate, (b)azide,

(c)fluoride in THF at 25 °C

(a) 1⊃ DABCO with acetate

(c) $1 \supset DABCO$ with fluoride

	K ₁ [M ⁻¹]	K ₂ [M ⁻¹]
F [.]	1.18 x 10 ⁸	4.09 x 10 ⁶
Acetate	1.50 x 10 ⁷	4.86 x 10 ⁶
N ₃ -	6.44 x 10⁵	9.69 x 10 ⁴

1.0x10⁻⁵ 2.0x10⁻⁵ [Azide]

(b) $1 \supset DABCO$ with azide

100

80

60

40 20

0

0.0

% Concentration

■ [H] ● [HG] ▲ [HG₂]

3.0x10⁻⁵