Electronic Supplementary Information

A 4-[(3*R*,4*R*)-dihydroxypyrrolidino]pyrimidin-2-one nucleobase for a CG base pair in triplex DNA

Yoshiyuki Hari,* Masaaki Akabane, Yuri Hatanaka, Motoi Nakahara and Satoshi Obika*

Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.

Contents

1.	HPLC and MALDI-TOF-Mass spectra for TFOs 2a-p	Page	S2 – S17
2.	Synthesis of TFO 20 from a monomer bearing the modified nucleobase	Page	S18 - S21
3.	¹ H, ¹³ C and ³¹ P spectra for new compounds	Page	S22 – S26

TFO-2a

HPLC

Column : Waters XBridge[®] MS C_{18} 2.5 μ m, 4.6 \times 50 mm.

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer.

Flow rate : 1.0 mL/min.

Column temp. : 50°C.

MALDI-TOF-Mass

TFO-2b

HPLC

Column : Waters XBridge[®] MS C_{18} 2.5 µm, 4.6 × 50 mm.

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer.

Flow rate : 1.0 mL/min.

TFO-2c

HPLC

Column : Waters XBridge[®] MS C_{18} 2.5 μ m, 4.6 \times 50 mm.

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer.

Flow rate : 1.0 mL/min.

TFO-2d

HPLC

Column : Waters XBridge[®] MS C_{18} 2.5 μ m, 4.6 \times 50 mm.

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer.

Flow rate : 1.0 mL/min.

TFO-2e

HPLC

Column : Waters XBridge[®] MS C_{18} 2.5 μ m, 4.6 \times 50 mm.

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer.

Flow rate : 1.0 mL/min.

Column temp. : 50°C.

MALDI-TOF-Mass

TFO-2f

HPLC

Column : Waters XBridge $^{\mathbb{R}}$ MS C_{18} 2.5 $\mu m,$ 4.6 \times 50 mm.

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer.

Flow rate : 1.0 mL/min.

TFO-2g

HPLC

Column : Waters XBridge[®] MS C_{18} 2.5 μ m, 4.6 \times 50 mm.

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer.

Flow rate : 1.0 mL/min.

TFO-2h

HPLC

Column : Waters XBridge[®] MS C_{18} 2.5 µm, 4.6 × 50 mm.

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer.

Flow rate : 1.0 mL/min.

TFO-2i

HPLC

Column : Waters XBridge[®] MS C_{18} 2.5 μ m, 4.6 \times 50 mm.

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer.

Flow rate : 1.0 mL/min.

TFO-2j

HPLC

Column : Waters XBridge[®] MS C_{18} 2.5 μ m, 4.6 \times 50 mm.

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer.

Flow rate : 1.0 mL/min.

TFO-2k

HPLC

Column : Waters XBridge[®] MS C_{18} 2.5 µm, 4.6 × 50 mm.

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer.

Flow rate : 1.0 mL/min.

Column temp. : 50°C.

m/z

TFO-21

HPLC

Column : Waters XBridge[®] MS C_{18} 2.5 µm, 4.6 × 50 mm.

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer.

Flow rate : 1.0 mL/min.

TFO-2m

HPLC

Column : Waters XBridge[®] MS C_{18} 2.5 μ m, 4.6 \times 50 mm.

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer.

Flow rate : 1.0 mL/min.

TFO-2n

HPLC

Column : Waters XBridge[®] MS C_{18} 2.5 μ m, 4.6 \times 50 mm.

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer.

Flow rate : 1.0 mL/min.

TFO-20

HPLC

Column : Waters XBridge[®] MS C_{18} 2.5 µm, 4.6 × 50 mm.

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer.

Flow rate : 1.0 mL/min.

TFO-2p

HPLC

Column : Waters XBridge[®] MS C_{18} 2.5 µm, 4.6 × 50 mm.

Gradient : 7-13% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer.

Flow rate : 1.0 mL/min.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

S1. Synthesis of TFO 20. <u>C</u> = 2'-deoxy-5-methylcytidine. Scheme Reagent and conditions: (i) (TIPS-Cl), 2,4,6-triisopropylphenylsulfonyl chloride Et₃N, DMAP, CH_2Cl_2 , 2 rt, h, 93%; (ii) (3S,4S)-dihydroxypyrrolidine, Et₃N, CH₂Cl₂-MeOH, rt, 6 h, 85%; (iii) Ac₂O, DMAP, pyridine, rt, 2 h, quant.; (iv) TBAF, AcOH, THF, rt, 24 h, quant.; (v) i-Pr₂NP(Cl)OCH₂CH₂CN, i-Pr₂NEt, CH₂Cl₂, 0°C, 3 h, 90%; (vi) oligonucleotide synthesis.

TFO **20** was synthesized as shown in Scheme S1. The oligonucleotide synthesis was achieved by using the common phosphoramidite protocol. The synthesis of **S6** from $S1^1$ was carried out as below.

General: Melting points are uncorrected. All moisture-sensitive reactions were carried out in well-dried glassware under a N₂ atmosphere. ¹H NMR (400.00 MHz), ¹³C NMR (100.53 MHz) and ³¹P NMR (161.84 MHz) were recorded on JEOL JNM-ECS-400 spectrometers. Chemical shifts are reported in parts per million downfield from internal tetramethylsilane (0.00 ppm) for ¹H NMR, CDCl₃ (77.00 ppm) for ¹³C NMR, or external H₃PO₄ (0.00 ppm) for ³¹P NMR. IR spectra were recorded on a JASCO FT/IR-4200 spectrometers. Optical rotations were recorded on a JASCO P-2200 instrument. For column chromatography, Fuji Silysia PSQ-100B, FL-60D and FL-100D was used as silica gel.

3'-O-tert-Butyldimethylsilyl-2'-deoxy-5'-O-dimethoxytrityl-4-O-(2,4,6-triisopropylphenyl)sulf onyluridine (S2): Under a N₂ atmosphere, 2,4,6-triisopropylbenzenesulfonyl chloride (423 mg, 1.40 mmol) was added to a solution of compound **S1**¹ (750 mg, 1.16 mmol), DMAP (14 mg, 0.11 mmol) and Et₃N (0.81 mL, 5.82 mmol) in anhydrous CH₂Cl₂ (7.0 mL) and the resulting mixture was stirred at room temperaure for 2 h. After addition of saturated aqueous NaHCO₃ solution, the reaction mixture was diluted with AcOEt, washed with water and brine, dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by column chromatography (*n*-hexane/AcOEt = 5/1) to give compound **S2** (991 mg, 93%) as a white amorphous powder. Mp 73 – 74°C. $[\alpha]_D^{30}$ +91.3 (c 1.00, CHCl₃). IR ν_{max} (KBr): 2957, 1684, 1542, 1509, 1362, 1281, 1253, 1181, 1108, 1036 cm⁻¹. ¹H NMR (CDCl₃): δ –0.07 (3H, s), –0.01 (3H, s), 0.79 (9H, s), 1.26 (12H, d, *J* = 6.9 Hz), 1.31 (6H, d, *J* = 6.9 Hz), 2.23 (1H, ddd, *J* = 4.1, 6.4 and 13.6 Hz), 2.50 (1H, ddd, *J* = 6.4, 6.4 and 13.6 Hz), 2.91 (1H, sept, *J* = 6.9 Hz), 3.32 (1H, dd, *J* = 2.8 and 11.0 Hz), 3.55 (1H, dd, *J* = 2.8 and 11.0 Hz), 3.81 (6H, s), 3.92 (1H, ddd, *J* = 2.8, 2.8 and 6.4 Hz), 4.25 (2H, sept, *J* = 6.9 Hz), 4.40 (1H, q, *J* = 6.4 Hz), 5.69 (1H, d, *J* = 7.3 Hz), 6.08 (1H, dd, *J* = 4.1 and 6.4 Hz), 6.82-6.85 (4H, m), 7.20-7.35 (11H, m), 8.50 (1H, d, *J* = 7.3 Hz). ¹³C NMR (CDCl₃): δ –5.08, –4.64, 17.82, 23.43, 23.44, 24.35, 24.62, 25.59, 29.62, 34.22, 41.90, 55.21, 61.23, 69.70, 86.58, 86.86, 87.29, 94.53, 113.20, 113.23, 124.01, 127.19, 127.94, 128.14, 130.06, 130.08, 130.62, 134.95, 135.05, 143.99, 146.06, 151.17, 153.80, 154.42, 158.71, 166.92. ¹³C NMR (CDCl₃): δ –5.1, –4.6, 17.8, 23.4, 23.4, 24.4, 24.6, 25.6, 29.6, 34.2, 41.9, 55.2, 61.2, 69.7, 86.6, 86.9, 87.3, 94.5, 113.2, 113.2, 124.0, 127.2, 127.9, 128.1, 130.1, 130.1, 130.6, 135.0, 135.0, 143.99, 146.1, 151.2, 153.8, 154.42, 158.71, 166.9. MS (FAB): *m/z* 933 (M+Na⁺). HRMS (FAB): Calcd for C₅₁H₆₆N₂NaO₉SSi (M+Na⁺): 933.4156. Found: 933.4153.

1-[3-O-tert-Butyldimethylsilyl-2-deoxy-5-O-dimethoxytrityl-β-D-ribosyl]-4-[(3R,4R)-dihydroxy pyrrolidino]pyrimidin-2-one **(S3):** Under N_2 а atmosphere, solution a of (3R,4R)-dihydroxypyrrolidine² (339 mg, 3.29 mmol) in MeOH (1.0 mL) was added to a solution of compound S2 (3.00 g, 3.29 mmol) and Et₃N (2.3 mL, 16.5 mmol) in CH₂Cl₂ (50 mL) and the resulting mixture was stirred at room temperature for 6 h. After addition of water, the reaction mixture was diluted with AcOEt, washed with water and brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography ($CH_2Cl_2/MeOH =$ 20/1) to give compound S3 (2.0 g, 85%) as a white amorphous powder.

Mp 114–115°C. $[\alpha]_D^{24}$ –12.2 (c 1.0, CHCl₃). IR ν_{max} (KBr): 3339, 2931, 2857, 1638, 1506, 1462, 1293, 1253, 1177, 1106, 1036 cm⁻¹. ¹H NMR (CDCl₃): δ –0.06 (3H, s), 0.00 (3H, s), 0.80 (9H, s), 2.16-2.19 (1H, m), 2.40 (1H, ddd, J = 6.0, 6.0 and 13.1 Hz), 3.27-3.33 (2H, m), 3.54-3.56 (1H, m), 3.66-3.67 (1H, m), 3.77 (6H, s), 3.77-3.82 (1H, m), 3.89-3.90 (1H, m), 3.99-4.01 (1H, m), 4.40-4.50 (3H, m), 5.33-5.38 (2H, m), 5.59 (1H, brs), 6.23 (1H, t, J = 6.0 Hz), 6.83-6.86 (4H, m), 7.22–7.32 (7H, m), 7.41 (2H, d, J = 7.3 Hz), 8.07 (1H, d, J = 7.3 Hz). ¹³C NMR (CDCl₃): δ –5.1, –4.7, 17.7, 25.5, 41.8, 52.4, 52.6, 55.1, 61.5, 69.8, 74.3, 74.8, 85.6, 85.7, 86.6, 93.2, 113.0, 113.1, 126.9, 127.8, 128.1, 130.1, 135.1, 135.2, 140.0, 144.3, 156.0, 158.5, 161.6. MS (FAB) *m/z* 730 (M+H⁺). HRMS (FAB): Calcd for C₄₀H₅₂N₃O₈Si (M+H⁺): 730.3518. Found: 730.3548.

1-[3-*O*-*tert*-**Butyldimethylsilyl-2-deoxy-5**-*O*-**dimethoxytrityl-β-D**-**ribosyl]-4-[(3***R***,4***R***)-diacetoxy pyrrolidino]pyrimidin-2-one (S4):** Under a N₂ atmosphere, Ac₂O (77 μ L, 0.82 mmol) was added to a solution of compound **S3** (200 mg, 0.27 mmol), DMAP (3.3 mg, 0.027 mmol) in pyridine (20 mL) and the resulting mixture was stirred at room temperature for 2 h. After addition of water, the reaction mixture was diluted with Et₂O, washed with water and brine, dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by column chromatography (*n*-hexane/AcOEt = 1/3 to 1/5) to give compound **S4** (232 mg, quant.) as a white amorphous powder.

Mp 88–91°C. $[\alpha]_D^{24}$ +16.2 (c 1.0, CHCl₃). IR v_{max} (KBr): 2931, 2857, 1745, 1656, 1506, 1462, 1369, 1283, 1248, 1178, 1107, 1068, 1035. ¹H NMR (CDCl₃): δ –0.07 (3H, s), –0.01 (3H, s), 0.80 (9H, s), 2.05 (3H, s), 2.11 (3H, s), 2.22 (1H, ddd, J = 3.7, 6.9 and 13.7 Hz), 2.47 (1H, ddd, J = 6.9, 6.9 and 13.7 Hz), 3.33 (1H, dd, J = 2.8 and 10.6 Hz), 3.38 (1H, d, J = 11.9 Hz), 3.57 (1H, dd, J = 2.8 and 10.6 Hz), 3.80 (6H, s), 3.87-4.03 (3H, m), 4.48 (1H, q, J = 6.9 Hz), 5.21-5.25 (3H, m), 6.29 (1H, dd, J = 3.7 and 6.9 Hz), 6.83-6.86 (4H, m), 7.25-7.32 (7H, m), 7.40 (2H, d, J = 6.9 Hz), 8.18 (1H, d, J = 7.3 Hz). ¹³C NMR (CDCl₃): δ –5.1, –4.7, 17.8, 20.7, 20.8, 25.6, 42.0, 50.6, 50.7, 55.1, 61.5, 69.8, 73.6, 74.6, 85.8, 86.6, 91.7, 113.1, 113.1, 127.0, 127.8, 128.2, 130.1, 130.2, 135.2, 135.3, 141.3, 144.2, 155.3, 158.5, 161.8, 169.3, 169.6. MS (FAB) *m*/*z* 814 (M+H⁺). HRMS (FAB): Calcd for C₄₄H₅₆N₃O₁₀Si (M+H⁺): 814.3729. Found: 814.3763.

$1-[2-Deoxy-5-O-dimethoxytrityl-\beta-D-ribosyl]-4-[(3R,4R)-diacetoxypyrrolidino] pyrimidin-2-on$

e (S5): Under a N₂ atmosphere, TBAF (1.0 M in THF, 0.81 mL, 0.81 mmol) and AcOH (8.1 uL) were added to a solution of compound S4 (550 mg, 0.68 mmol) in THF (30 mL) at 0°C and the resulting mixture was stirred at room temperature for 24 h. After addition of saturated aqueous NaHCO₃ solution, the reaction mixture was diluted with AcOEt, washed with water and brine, dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by column chromatography (AcOEt/MeOH = 20/1) to give compound S5 (476 mg, quant.) as a white amorphous powder.

Mp 101–103°C. $[\alpha]_D^{25}$ +14.2 (c 1.0, CHCl₃). IR ν_{max} (KBr): 3311, 2999, 2932, 2838, 1744, 1639, 1505, 1460, 1370, 1290, 1245, 1178, 1036 cm⁻¹. ¹H NMR (CDCl₃): δ 2.04 (3H, s), 2.09 (3H, s), 2.19 (1H, ddd, J = 6.0, 6.0 and 12.5 Hz), 2.67 (1H, ddd, J = 6.0, 6.0 and 12.5 Hz), 3.38-3.48 (3H, m), 3.72-3.98 (4H, m), 3.78 (6H, s), 4.11-4.14 (1H, m), 4.57 (1H, brs), 5.24 (2H, brs), 5.31 (1H, d, J = 7.8 Hz), 6.34 (1H, t, J = 6.0 Hz), 6.83 (4H, d, J = 9.2 Hz), 7.20–7.31 (7H, m), 7.40 (2H, d, J = 7.3 Hz), 7.99 (1H, d, J = 7.8 Hz). ¹³C NMR (CDCl₃): δ 20.7, 20.8, 42.1, 50.7, 50.8, 55.1, 62.9, 71.0, 73.6, 74.6, 85.9, 86.2, 86.6, 92.0, 113.1, 126.8, 127.8, 128.1, 130.1, 135.4, 135.6, 141.3, 144.4, 155.5, 158.5, 161.7, 169.4, 169.6. MS (FAB) m/z 700 (M+H⁺). HRMS (FAB): Calcd for C₃₈H₄₂N₃O₁₀ (M+H⁺): 700.2865. Found: 700.2906.

1-[3-O-[2-Cyanoethoxy(diisopropylamino)phosphino]-2-deoxy-5-O-dimethoxytrityl-\beta-D-ribosy I]-4-[(*3R***,***4R***)-diacetoxypyrrolidino]pyrimidin-2-one (S6): Under a N₂ atmosphere,** *i***-Pr₂NP(Cl)OCH₂CH₂CN (0.14 ml, 0.64 mmol) was added to a solution of S5 (300 mg, 0.43 mmol) and** *i***-Pr₂NEt (0.37 mL, 2.2 mmol) in anhydrous CH₂Cl₂ (20 mL) at 0°C and the resulting mixture was stirred at room temperature for 3 h. After addition of saturated aqueous NaHCO₃ solution, the reaction mixture was diluted with AcOEt, washed with water and brine, dried over Na₂SO₄, and concentrated** *in vacuo***. The residue was purified by column chromatography (***n***-hexane/AcOEt = 1/5) to give compound S6 (350 mg, 90%) as a white amorphous powder.**

Mp 109–113°C. ¹H NMR (CDCl₃): δ 1.04 (3H, d, *J* = 6.4 Hz), 1.14-1.17 (9H, m), 2.05-2.12 (6H, m),

2.21-2.31 (1H, m), 2.41 (1H, t, J = 6.4 Hz), 2.57-2.69 (2H, m), 3.34-3.40 (2H, m), 3.49-3.61 (4H, m), 3.69-4.12 (5H, m), 3.80 (3H, s), 3.80 (3H, s), 4.57-4.68 (1H, m), 5.22-5.25 (3H, m), 6.33 (0.5H, d, J = 5.0 and 6.4 Hz), 6.37 (0.5H, t, J = 6.0 Hz), 6.82-6.86 (4H, m), 7.24–7.33 (7H, m), 7.39–7.42 (2H, m), 7.97 (0.5H, d, J = 7.8 Hz), 8.07 (0.5H, d, J = 7.3 Hz). ³¹P NMR (CDCl₃): δ 148.51, 149.09. MS (FAB) m/z 900 (M+H⁺). HRMS (FAB): Calcd for C₄₇H₅₉N₅O₁₁P (M+H⁺): 900.3943. Found: 900.3990.

References

- (1) C. O-yang, H. Y. Wu, E. B. Fraser-Smith and K. A. M. Walker, *Tetrahedron Lett.*, 1992, 33, 37;
 D. M. Noll, A. M. Noronha and P. S. Miller, *J. Am. Chem. Soc.* 2001, 123, 3405.
- (2) H. Huang and C. Wong, J. Org. Chem., 1995, 60, 3100; D. Chang, M. F. Heringa, B. Witholt and Z. Li, J. Org. Chem., 2003, 68, 8599.

Compound S2

Compound S3

S23

Compound S4

Compound S5

Compound S6 (diastereoisomers on the basis of chirality at the phosphorus)

