Selective incorporation of functional dicarboxylates into zinc metal-organic frameworks

Andrew D. Burrows, Laura Fisher, Christopher Richardson and Sean P. Rigby

Supplementary information

Synthesis of 2-iodo-1,4-benzenedicarboxylic acid

2-Iodo-1,4-benzenedicarboxylic acid (H₂bdc-I) was prepared from 2-amino-1,4-benzenedicarboxylic acid *via* the diazonium salt.^{S1}

Synthesis of [Zn₄O(bdc-I)₃]

2-Iodo-1,4-benzenedicarboxylic acid (0.100 g, 0.34 mmol) and $Zn(NO_3)_2 \cdot 6H_2O$ (0.300 g, 1.0 mmol) were dissolved in DEF (20 cm³) in an Ace pressure tube (Aldrich Chemical Co.) and heated at 95 °C for 72 hours. The resulting pale yellow cubic crystals (0.200 g, 59 %) were separated by filtration and washed with fresh DEF. Found: C, 36.5; H, 4.44; N, 4.89 %. Calc. for $C_{54}H_{75}I_3N_6O_{19}Zn_4$ ([Zn₄O(bdc-I)₃]·6DEF): C, 37.0; H, 4.31; N, 4.79 %.

Powder diffraction patterns showed samples of $[Zn_4O(bdc-I)_3]$ to have limited crystallinity, with the observed peaks matching those simulated from the X-ray crystal structure of $[Zn_4O(bdc-Br)_3]$ (IRMOF-2). Single crystals did not diffract well enough for a complete structural determination to be carried out. However, determination of the unit cell confirmed the crystals were isostructural with $[Zn_4O(bdc-Br)_3]$ (IRMOF-2).

The TGA trace for $[Zn_4O(bdc-I)_3]$ is shown in Figure S1, alongside the trace for $[Zn_4O(bdc-Br)_3]$. The mass loss of approximately 30 % between room temperature and 350 °C is consistent with the loss of 5DEF molecules (calc. 30.6 %).

Fig. S1. Thermogravimetric analyses for [Zn₄O(bdc-I)₃] and [Zn₄O(bdc-Br)₃].

The nitrogen adsorption/desorption isotherm for an activated samples of $[Zn_4O(bdc-I)_3]$ is shown in Figure S2. The BET surface area for $[Zn_4O(bdc-I)_3]$, calculated using the standard BET range $(0.05 < P/P_0 < 0.3)$ is 1096 m² g⁻¹.

Fig. S2. Nitrogen adsorption/desorption isotherm for [Zn₄O(bdc-I)₃].

Synthesis of [Zn₄O(bdc)_{3-x}(bdc-I)_x]

2-Iodo-1,4-benzenedicarboxylic acid and 1,4-benzenedicarboxylic acid were combined in different ratios (total 0.112 mmol) with $Zn(NO_3)_2 \cdot 6H_2O$ (0.100 g, 0.34 mmol), dissolved in DEF (5 cm³) in an Ace pressure tube (Aldrich Chemical Co.) and heated at 95 °C for 170 hours. The resulting pale yellow cubic crystals were separated by filtration and washed with fresh DEF. Yield 49-61 %.

The MOFs were digested by sonication in 1.5 cm³ of a solution of DMSO- d_6 and 0.2 cm³ of a DCl solution prepared by dissolving 0.023 cm³ of 35 % DCl/D₂O solution in 1 cm³ DMSO. This solution was used directly for ¹H NMR, and was diluted by a factor of 10 in ethanol for mass spectrometry. In the ¹H NMR spectra, the ratio of the dicarboxylic acids was determined through a comparison of the integrals for the doublet observed at δ 7.75 ppm (1H, H₂bdc-I) and the singlet observed at δ 8.05 ppm (4H, H₂bdc).

ESI-MS (negative mode): m/z 165.0183 (calc. 165.0188 for [Hbdc]⁻), 290.9151 (calc. 290.9154 for [Hbdc-I]⁻).

Representative X-ray powder diffraction patterns from this series of MC-MOFs are shown in Figure S3.

Fig. S5. Powder X-ray diffraction patterns for (a) $[Zn_4O(bdc)_{1.19}(bdc-I)_{1.81}]$, (b) $[Zn_4O(bdc)_{1.78}(bdc-I)_{1.22}]$, (c) $[Zn_4O(bdc)_{0.72}(bdc-I)_{2.28}]$, (d) $[Zn_4O(bdc)_{1.57}(bdc-I)_{1.43}]$ and (e) $[Zn_4O(bdc)_{2.53}(bdc-I)_{0.47}]$.

Synthesis of [Zn₄O(bdc)_{3-x}(bdc-Br)_x]

2-Bromo-1,4-benzenedicarboxylic acid and 1,4-benzenedicarboxylic acid were combined in different ratios (total 0.112 mmol) with $Zn(NO_3)_2 \cdot 6H_2O$ (0.100 g, 0.34 mmol), dissolved in DEF (5 cm³) in an Ace pressure tube (Aldrich Chemical Co.) and heated at 95 °C for 170 hours. The resulting colourless cubic crystals were separated by filtration and washed with fresh DEF. Yield 42-59 %.

The MOFs were digested by sonication in 1.5 cm³ of a solution of DMSO- d_6 and 0.2 cm³ of a DCl solution prepared by dissolving 0.023 cm³ of 35 % DCl/D₂O solution in 1 cm³ DMSO. This solution was used directly for ¹H NMR, and was diluted by a factor of 10 in ethanol for mass spectrometry. In the ¹H NMR spectra, the ratio of the dicarboxylic acids was determined through a comparison of the integrals for the doublet observed at δ 7.83 ppm (1H, H₂bdc-Br) and the singlet observed at δ 8.05 ppm (4H, H₂bdc).

ESI-MS (negative mode): m/z 165.0191 (calc. 165.0188 for [Hbdc]⁻), 242.9293 (calc. 242.9275 for [Hbdc-Br]⁻).

Representative X-ray powder diffraction patterns from this series of MC-MOFs are shown in Figure S4.

 $[Zn_4O(bdc)_{2.15}(bdc-Br)_{0.85}], (c) [Zn_4O(bdc)_{1.13}(bdc-Br)_{1.87}], (d) [Zn_4O(bdc)_{1.87}(bdc-Br)_{1.13}]$ and (e) [Zn_4O(bdc)_{2.78}(bdc-Br)_{0.22}].

Synthesis of [Zn₄O(bdc-Br)_{3-x}(bdc-I)_x]

2-Bromo-1,4-benzenedicarboxylic acid and 2-iodo-1,4-benzenedicarboxylic acid were combined in different ratios (total 0.112 mmol) with $Zn(NO_3)_2 \cdot 6H_2O$ (0.100 g, 0.34 mmol), dissolved in DEF (5 cm³) in an Ace pressure tube (Aldrich Chemical Co.) and heated at 95 °C for 170 hours. The resulting pale yellow cubic crystals were separated by filtration and washed with fresh DEF. Yield 41-51 %.

The MOFs were digested by sonication in 1.5 cm³ of a solution of DMSO- d_6 and 0.2 cm³ of a DCl solution prepared by dissolving 0.023 cm³ of 35 % DCl/D₂O solution in 1 cm³ DMSO. This solution was used directly for ¹H NMR, and was diluted by a factor of 10 in ethanol for mass spectrometry. In the ¹H NMR spectra, the ratio of the dicarboxylic acids was determined through a comparison of the integrals for the doublet observed at δ 7.83 ppm (1H, H₂bdc-Br) and the doublet observed at δ 7.78 ppm (1H, H₂bdc-I).

ESI-MS (negative mode): m/z 242.9279 (calc. 242.9293 for [Hbdc-Br]⁻), 290.9154 (calc. 290.9145 for [Hbdc-I]⁻).

Representative X-ray powder diffraction patterns from this series of MC-MOFs are shown in Figure S5.

I)_{2.07}] and (e) [Zn₄O(bdc-Br)_{0.45}(bdc-I)_{2.55}].

Reference

S1. A. Kommreddy, M. S. Bowsher, M. R. Gunna, K. Botha and T. K. Vinod, *Tetrahedron Lett.*, 2008, **49**, 4378.