Selective incorporation of functional dicarboxylates into zinc metal-organic frameworks

Andrew D. Burrows, Laura Fisher, Christopher Richardson and Sean P. Rigby

Supplementary information

Synthesis of 2-iodo-1,4-benzenedicarboxylic acid

2-Iodo-1,4-benzenedicarboxylic acid (H_{2} bdc-I) was prepared from 2-amino-1,4benzenedicarboxylic acid via the diazonium salt. ${ }^{\text {S1 }}$

Synthesis of $\left[\mathbf{Z n}_{4} \mathbf{O}(b d c-I)_{3}\right]$

2-Iodo-1,4-benzenedicarboxylic acid ($0.100 \mathrm{~g}, 0.34 \mathrm{mmol}$) and $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.300 \mathrm{~g}, 1.0$ mmol) were dissolved in DEF ($20 \mathrm{~cm}^{3}$) in an Ace pressure tube (Aldrich Chemical Co.) and heated at $95^{\circ} \mathrm{C}$ for 72 hours. The resulting pale yellow cubic crystals ($\left.0.200 \mathrm{~g}, 59 \%\right)$ were separated by filtration and washed with fresh DEF. Found: C, 36.5; H, 4.44; N, 4.89 \%. Calc. for $\mathrm{C}_{54} \mathrm{H}_{75} \mathrm{I}_{3} \mathrm{~N}_{6} \mathrm{O}_{19} \mathrm{Zn}_{4}\left(\left[\mathrm{Zn}_{4} \mathrm{O}(\text { bdc-I })_{3}\right] \cdot 6 \mathrm{DEF}\right): \mathrm{C}, 37.0 ; \mathrm{H}, 4.31 ; \mathrm{N}, 4.79 \%$.

Powder diffraction patterns showed samples of $\left[\mathrm{Zn}_{4} \mathrm{O}(\mathrm{bdc}-\mathrm{I})_{3}\right]$ to have limited crystallinity, with the observed peaks matching those simulated from the X-ray crystal structure of $\left[\mathrm{Zn}_{4} \mathrm{O}(\text { bdc- }-\mathrm{Br})_{3}\right]$ (IRMOF-2). Single crystals did not diffract well enough for a complete structural determination to be carried out. However, determination of the unit cell confirmed the crystals were isostructural with $\left[\mathrm{Zn}_{4} \mathrm{O}(\mathrm{bdc}-\mathrm{Br})_{3}\right]$ (IRMOF-2).

The TGA trace for $\left[\mathrm{Zn}_{4} \mathrm{O}(\mathrm{bdc-I})_{3}\right]$ is shown in Figure S 1 , alongside the trace for $\left[\mathrm{Zn}_{4} \mathrm{O}(b d c-\right.$ $\mathrm{Br})_{3}$]. The mass loss of approximately 30% between room temperature and $350{ }^{\circ} \mathrm{C}$ is consistent with the loss of 5DEF molecules (calc. 30.6%).

Fig. S1. Thermogravimetric analyses for $\left[\mathrm{Zn}_{4} \mathrm{O}(\mathrm{bdc}-\mathrm{I})_{3}\right]$ and $\left[\mathrm{Zn}_{4} \mathrm{O}(\mathrm{bdc}-\mathrm{Br})_{3}\right]$.

The nitrogen adsorption/desorption isotherm for an activated samples of $\left[\mathrm{Zn}_{4} \mathrm{O}(\mathrm{bdc}-\mathrm{I})_{3}\right]$ is shown in Figure S 2 . The BET surface area for $\left[\mathrm{Zn}_{4} \mathrm{O}(\text { bdc-I })_{3}\right]$, calculated using the standard BET range ($0.05<P / P_{0}<0.3$) is $1096 \mathrm{~m}^{2} \mathrm{~g}^{-1}$.

Fig. S2. Nitrogen adsorption/desorption isotherm for $\left[\mathrm{Zn}_{4} \mathrm{O}(\text { bdc-I })_{3}\right]$.

Synthesis of $\left[\mathbf{Z n}_{4} \mathbf{O}(\mathbf{b d c})_{3-x}(\mathbf{b d c}-I)_{x}\right]$

2-Iodo-1,4-benzenedicarboxylic acid and 1,4-benzenedicarboxylic acid were combined in different ratios (total 0.112 mmol) with $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.100 \mathrm{~g}, 0.34 \mathrm{mmol})$, dissolved in DEF $\left(5 \mathrm{~cm}^{3}\right)$ in an Ace pressure tube (Aldrich Chemical Co.) and heated at $95{ }^{\circ} \mathrm{C}$ for 170 hours. The resulting pale yellow cubic crystals were separated by filtration and washed with fresh DEF. Yield 49-61 \%.
The MOFs were digested by sonication in $1.5 \mathrm{~cm}^{3}$ of a solution of DMSO- d_{6} and $0.2 \mathrm{~cm}^{3}$ of a DCl solution prepared by dissolving $0.023 \mathrm{~cm}^{3}$ of $35 \% \mathrm{DCl} / \mathrm{D}_{2} \mathrm{O}$ solution in $1 \mathrm{~cm}^{3}$ DMSO. This solution was used directly for ${ }^{1} \mathrm{H}$ NMR, and was diluted by a factor of 10 in ethanol for mass spectrometry. In the ${ }^{1} \mathrm{H}$ NMR spectra, the ratio of the dicarboxylic acids was determined through a comparison of the integrals for the doublet observed at $\delta 7.75 \mathrm{ppm}(1 \mathrm{H}$, $\left.\mathrm{H}_{2} \mathrm{bdc}-\mathrm{I}\right)$ and the singlet observed at $\delta 8.05 \mathrm{ppm}\left(4 \mathrm{H}, \mathrm{H}_{2} \mathrm{bdc}\right)$.

ESI-MS (negative mode): $m / z 165.0183$ (calc. 165.0188 for [Hbdc] ${ }^{-}$), 290.9151 (calc. 290.9154 for [Hbdc-I] ${ }^{-}$).

Representative X-ray powder diffraction patterns from this series of MC-MOFs are shown in Figure S3.

Fig. S3. Powder X-ray diffraction patterns for (a) $\left[\mathrm{Zn}_{4} \mathrm{O}(\mathrm{bdc})_{1.19}(\text { bdc-I })_{1.81}\right]$, (b) $\left[\mathrm{Zn}_{4} \mathrm{O}(\mathrm{bdc})_{1.78}(\mathrm{bdc}-\mathrm{I})_{1.22}\right]$, (c) $\left[\mathrm{Zn}_{4} \mathrm{O}(\mathrm{bdc})_{0.72}(\mathrm{bdc}-\mathrm{I})_{2.28}\right]$, (d) $\left[\mathrm{Zn}_{4} \mathrm{O}(\mathrm{bdc})_{1.57}(\mathrm{bdc}-\mathrm{I})_{1.43}\right]$ and (e) $\left[\mathrm{Zn}_{4} \mathrm{O}(\mathrm{bdc})_{2.53}(\mathrm{bdc}-\mathrm{I})_{0.47}\right]$.

Synthesis of $\left[\mathbf{Z n}_{4} \mathbf{O}(\mathbf{b d c})_{3-x}(\mathbf{b d c}-\mathbf{B r})_{x}\right]$

2-Bromo-1,4-benzenedicarboxylic acid and 1,4-benzenedicarboxylic acid were combined in different ratios (total 0.112 mmol) with $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.100 \mathrm{~g}, 0.34 \mathrm{mmol})$, dissolved in DEF $\left(5 \mathrm{~cm}^{3}\right)$ in an Ace pressure tube (Aldrich Chemical Co.) and heated at $95{ }^{\circ} \mathrm{C}$ for 170 hours. The resulting colourless cubic crystals were separated by filtration and washed with fresh DEF. Yield 42-59 \%.
The MOFs were digested by sonication in $1.5 \mathrm{~cm}^{3}$ of a solution of DMSO- d_{6} and $0.2 \mathrm{~cm}^{3}$ of a DCl solution prepared by dissolving $0.023 \mathrm{~cm}^{3}$ of $35 \% \mathrm{DCl} / \mathrm{D}_{2} \mathrm{O}$ solution in $1 \mathrm{~cm}^{3}$ DMSO. This solution was used directly for ${ }^{1} \mathrm{H}$ NMR, and was diluted by a factor of 10 in ethanol for mass spectrometry. In the ${ }^{1} \mathrm{H}$ NMR spectra, the ratio of the dicarboxylic acids was determined through a comparison of the integrals for the doublet observed at $\delta 7.83 \mathrm{ppm}(1 \mathrm{H}$, $\left.\mathrm{H}_{2} \mathrm{bdc}-\mathrm{Br}\right)$ and the singlet observed at $\delta 8.05 \mathrm{ppm}\left(4 \mathrm{H}, \mathrm{H}_{2} \mathrm{bdc}\right)$.

ESI-MS (negative mode): $m / z 165.0191$ (calc. 165.0188 for [Hbdc] ${ }^{-}$), 242.9293 (calc. 242.9275 for [$\mathrm{Hbdc}-\mathrm{Br}]^{-}$).

Representative X-ray powder diffraction patterns from this series of MC-MOFs are shown in Figure S4.

Fig. S4. Powder X-ray diffraction patterns for (a) $\left[\mathrm{Zn}_{4} \mathrm{O}(\mathrm{bdc})_{1.45}(\mathrm{bdc}-\mathrm{Br})_{1.55}\right]$, (b) $\left[\mathrm{Zn}_{4} \mathrm{O}(\mathrm{bdc})_{2.15}(\mathrm{bdc}-\mathrm{Br})_{0.85}\right]$, (c) $\left[\mathrm{Zn}_{4} \mathrm{O}(\mathrm{bdc})_{1.13}(\mathrm{bdc}-\mathrm{Br})_{1.87}\right]$, (d) $\left[\mathrm{Zn}_{4} \mathrm{O}(\mathrm{bdc})_{1.87}(\mathrm{bdc}-\mathrm{Br})_{1.13}\right]$ and (e) $\left[\mathrm{Zn}_{4} \mathrm{O}(\mathrm{bdc})_{2.78}(\mathrm{bdc}-\mathrm{Br})_{0.22}\right]$.

Synthesis of $\left[\mathrm{Zn}_{4} \mathbf{O}(\mathbf{b d c}-\mathbf{B r})_{3-x}(\mathbf{b d c}-\mathrm{I})_{x}\right]$

2-Bromo-1,4-benzenedicarboxylic acid and 2-iodo-1,4-benzenedicarboxylic acid were combined in different ratios (total 0.112 mmol) with $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.100 \mathrm{~g}, 0.34 \mathrm{mmol})$, dissolved in DEF ($5 \mathrm{~cm}^{3}$) in an Ace pressure tube (Aldrich Chemical Co.) and heated at 95 ${ }^{\circ} \mathrm{C}$ for 170 hours. The resulting pale yellow cubic crystals were separated by filtration and washed with fresh DEF. Yield 41-51 \%.

The MOFs were digested by sonication in $1.5 \mathrm{~cm}^{3}$ of a solution of DMSO- d_{6} and $0.2 \mathrm{~cm}^{3}$ of a DCl solution prepared by dissolving $0.023 \mathrm{~cm}^{3}$ of $35 \% \mathrm{DCl} / \mathrm{D}_{2} \mathrm{O}$ solution in $1 \mathrm{~cm}^{3}$ DMSO. This solution was used directly for ${ }^{1} \mathrm{H}$ NMR, and was diluted by a factor of 10 in ethanol for mass spectrometry. In the ${ }^{1} \mathrm{H}$ NMR spectra, the ratio of the dicarboxylic acids was determined through a comparison of the integrals for the doublet observed at $\delta 7.83 \mathrm{ppm}(1 \mathrm{H}$, $\left.\mathrm{H}_{2} \mathrm{bdc}-\mathrm{Br}\right)$ and the doublet observed at $\delta 7.78 \mathrm{ppm}\left(1 \mathrm{H}, \mathrm{H}_{2}\right.$ bdc-I).
 290.9145 for [Hbdc-I] ${ }^{-}$).

Representative X-ray powder diffraction patterns from this series of MC-MOFs are shown in Figure S5.

Fig. S5. Powder X-ray diffraction patterns for (a) $\left[\mathrm{Zn}_{4} \mathrm{O}(b d c-\mathrm{Br})_{2.58}(\mathrm{bdc}-\mathrm{I})_{0.42}\right]$, (b) $\left[\mathrm{Zn}_{4} \mathrm{O}(\mathrm{bdc}-\mathrm{Br})_{2.13}(\mathrm{bdc}-\mathrm{I})_{0.87}\right]$, (c) $\left[\mathrm{Zn}_{4} \mathrm{O}(\mathrm{bdc}-\mathrm{Br})_{1.47}(\mathrm{bdc}-\mathrm{I})_{1.53}\right]$, (d) $\left[\mathrm{Zn}_{4} \mathrm{O}(\mathrm{bdc}-\mathrm{Br})_{0.93}\right.$ (bdc$\left.\mathrm{I})_{2.07}\right]$ and $(\mathrm{e})\left[\mathrm{Zn}_{4} \mathrm{O}(\mathrm{bdc}-\mathrm{Br})_{0.45}(\mathrm{bdc}-\mathrm{I})_{2.55}\right]$.

Reference

S1. A. Kommreddy, M. S. Bowsher, M. R. Gunna, K. Botha and T. K. Vinod, Tetrahedron Lett., 2008, 49, 4378.

