Electronic Supporting Information

Group 4 metal initiators for the controlled stereoselective polymerization lactide monomers

Jean-Charles Buffet and Jun Okuda*^{, a}

Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany)

List of Contents

1.	General Cons	siderations	S3			
2.	2. Synthesis					
	2.1. Comp	lexes 1-2 and 4-5	S4			
	2.2. Complex 3 2.3. Complex 2a					
	2.4. Comp	lex 5a	S 5			
3.	Polymerizatio	on and a second s	S6			
	3.1. Soluti	on Polymerization	S6			
	3.1.1.	Polymerization of <i>meso</i> -lactide using complex 5 at 75°C	S6			
	Table S1 a	and Figure S1 Polymerization of meso-lactide using complex 5	S6			
	3.1.2.	Polymerization of meso-lactide using complex 5, ratio variation	S 7			
	Figure S2	Polymerization of meso-lactide using complex 5, ratio variation	S 7			
	3.1.3.	Polymerization of meso-lactide using complex 4	S 7			
	Table S2	Polymerization of <i>meso</i> -lactide using complex 4	S 7			
	3.1.4.	Polymerization of <i>rac</i> -lactide using 5 at 100 °C	S 8			
	Table S3 a	and Figure S3 Polymerization of <i>rac</i> -lactide using complex 5	S 8			
	3.1.5.	Polymerization of L-lactide using complex 5 at 100 °C	S9			
	Table S4 and Figure S4 Polymerization of <i>L</i> -lactide using complex 5 3.2. Melt Polymerization					
	Table S5 a	and Figure S5 Polymerization of meso-lactide using 5 in melt	S10			
	3.3.Polym	erization using asymmetric complexes	S11			
	3.2.1.	Polymerization of meso-lactide using complex 2a	S11			
	Table S6 a	and Figure S6 Polymerization of <i>meso</i> -lactide using complex 2a	S11			
	3.2.2.	Polymerization of meso-lactide using complex 5a	S12			
	Table S7 a	and Figure S7 Polymerization of meso-lactide using complex 5a	S12			
4.	Microstructu	re Analysis	S13			
	Figure S8	-S30 ${}^{1}H{}^{1}H{}$ and ${}^{13}C{}^{1}H{}$ NMR spectra of polylactides	S13			
5	X-Ray crysta	allography	S25			
6	References		S26			

1. General Considerations

All operations were performed under an inert atmosphere of argon using standard Schlenk-line or glovebox techniques. Toluene (Fisher Scientific), *n*-hexane (Fisher Scientific) and THF (Fisher Scientific) were distilled under argon from sodium/benzophenone ketyl prior to use. *n*-Pentane was purified by distillation from sodium/triglyme benzophenone ketyl. Dichloromethane (Fisher Scientific) was distilled from calcium hydride. Benzene-*d*₆ (Sigma-Aldrich), chloroform-*d* (Sigma-Aldrich) were carefully dried and stored in a glovebox. *meso*-Lactide (Uhde Inventa-Fischer) was recrystallized from 2-propanol at -30 °C, washed with diethyl ether, and dried under vacuum. *Rac*-lactide and *L*-lactide were purchased from Sigma-Aldrich and purified identically as *meso*-lactide. Zr(O'Bu)₄ (ABCR) and Ti(OiPr)₃Cl (Sigma-Aldrich) were used without any purification. 1,4-Dithiabutanediyl-2,2'-bis{4,6-di(2-phenyl-2-propyl)phenol} and 1,4-Dithiapentanediyl-2,2'-bis{4,6-di-*tert*-butyl)phenol} were synthesized according to the literature.^[S1-S2] Glassware and vials used in the polymerization were dried in an oven at 120 °C overnight and exposed to vacuum-argon cycle three times.

NMR spectra were recorded on Varian 200 and 500 spectrometers at 25 °C (¹H: 200, 500 MHz; ${}^{13}C{}^{1}H{}: 50, 125$ MHz). Chemical shifts for ¹H and ${}^{13}C{}^{1}H{}:$ NMR spectra were referenced internally using the residual solvent resonances and reported relative to tetramethylsilane. Molecular weights and polydispersities were determined by size exclusion chromatography (SEC) in THF at 35 °C, at a flow rate of 1 mL/min utilizing an Agilent 1100 Series HPLC, G1310A isocratic pump, an Agilent 1100 Series refractive index detector and 8 × 600 mm, 8 × 300 mm, 8 × 50 mm PSS SDV linear M columns. Calibration standards were commercially available narrowly distributed linear polystyrene samples that cover a broad range of molar masses ($103 < M_n < 2 \times 10^6$ g/mol).

Polymerization example: A solution of a certain ampount of the initiator **5** in 0.5 mL of toluene (according to table entry) was added to a solution of 150 mg of *meso*-lactide which was dissolved in 1.5 mL of toluene. After the desired time the polymerization mixture was quenched with drops of moist hexanes and was added slowly to a cooled, quickly stirred hexanes solution. The polymer was filtered over a Büchner funnel, washed with diethyl ether, and dried *in vacuo*. The polymer was dissolved in minimum quantity of CH_2Cl_2 and ran through a flash silica gel column (in a Pasteur pipette) to afford a colorless solution, which was added slowly to a cooled, quickly stirred hexanes solution. The colorless polymer was filtered and dried *in vacuo*.

2. Synthesis

2.1 Complexes 1-2 and 4-5

Complexes 1-2 and 4-5 were synthesized according to the literature.^[S1-S2]

2.2 Di(tert-butoxy){1,4-dithiabutanediyl-2,2'-bis[(2-phenyl-propyl)phenoxy]}zirconium

(3)

To a solution of 1 equivalent of $Zr(O'Bu)_4$ in pentane (100 mg, 0.261 mmole, 2 mL) was added 1 equivalent of a solution of 1,4-dithiabutanediyl-2,2'-bis{4,6-di(2-phenyl-2-propyl)phenol} in pentane (195.6 mg, 0.261 mmole, 2 mL) and the mixture stirred for 18 h at 25 °C. The yellow color of the solution changed to orange. The solvent was removed *in vacuo* to give a yellow powder that was dissolved in 5 mL of *n*-pentane, filtered, and stored at -30 °C for 1 d. The orange powder in was dried *in vacuo* to give **3** in quantitative yield.

¹H NMR (400 MHz, C₆D₆): δ 1.18 (s, 18 H, OC(CH₃)₃), 1.56 (s, 12 H, C(CH₃)₂), 1.73 (s, 6 H, C(CH₃)₂), 1.82 (s, 6 H, C(CH₃)₂), 1.90 (d, 2 H, ²J_{HH} = 9.8 Hz, SCH₂), 2.26 (d, 2 H, ²J_{HH} = 10.7 Hz, SCH₂), 7.01-7.13 (m, 8 H, Ph), 7.17-7.27 (m, 10 H, Ph), 7.31-7.36 (m, 4 H, Ph) and 7.44 (d, 2 H, ³J_{HH} = 7.1 Hz, Ph)

¹³C{¹H} NMR (400 MHz, C₆D₆): δ 28.65 (C(CH₃)₂), 29.86 (C(CH₃)₂), 30.94 (C(CH₃)₂), 32.64 (OC(CH₃)₃), 36.97 (SCH₂), 42.79 (C(CH₃)₂), 42.81 (C(CH₃)₂), 76.95 (OC(CH₃)₃), 117.57 (C-2), 125.28, 125.98, 126.27, 127.01, 127.94 , 128.18, 128.60, 129.72, 138.04 (*o*-, *m*-, *p*-C of Ph), 139.03 (C-6), 140.28 (C-4), 151,17 (*ipso*-C, C(CH₃)₂Ph), 151.40 (*ipso*-C, C(CH₃)₂Ph), 165.72 (C-1).

Elemental Analysis: Calculated for C₅₈H₇₀O₄S₂Zr; C: 70.61, H: 7.15; Found C: 70.78, H: 7.82.

2.3 Chloro(isopropoxy){1,4-dithiabutanediyl-2,2'-bis[(4,6-di(2-phenylpropyl)phenoxy]} titanium (2a)

To a solution of 1 equivalent of $Ti(O^{i}Pr)_{3}Cl$ in pentane (100 mg, 0.38 mmole, 2 mL) was added 1 equivalent of a solution of 1,4-dithiabutanediyl-2,2'-bis{4,6-di(2-phenylpropyl)phenol} in pentane (294 mg, 0.38 mmole, 2 mL) and the mixture stirred for 18 h at 25 °C. The yellow color of the solution changed to orange. The solvent was removed *in vacuo* to give an orange powder that was dissolved in 2 mL of *n*-pentane/thf (9/1), filtered, and stored at -30 °C for 2 d. The orange powder was dried *in vacuo* to give **2a** in 91 % yield (312 mg).

¹H NMR (400 MHz, C₆D₆): δ 0.95 (d, ²J_{HH} = 6.1 Hz, 3 H, OCH(CH₃)₂), 0.99 (d, ²J_{HH} = 6.1 Hz, 3 H, OCH(CH₃)₂), 1.50 (s, 3 H, C(CH₃)₂Ph), 1.50 (s, 3 H, C(CH₃)₂Ph), 1.51 (s, 3 H, C(CH₃)₂Ph), 1.53 (s, 3 H, C(CH₃)₂Ph), 1.54 (s, 3 H, C(CH₃)₂Ph), 1.71-1.85 (m, 2 H, SCH₂), 1.77 (s, 3 H, C(CH₃)₂Ph), 1.78 (s, 3 H, C(CH₃)₂Ph), 1.88 (s, 3 H, C(CH₃)₂Ph), 2.09-2.22 (m, 2 H, SCH₂), 4.40 (septet, 1 H, OCH(CH₃)₂), 6.87-7.15 (m, 12 H, Ph), 7.16-7.47 (m, 12 H, Ph).

¹³C{¹H} NMR (400 MHz, C₆D₆): δ 24.76 (OCH(CH₃)₂), 24.79 (OCH(CH₃)₂), 26.75 (C(CH₃)₂Ph), 28.45 (C(CH₃)₂Ph), 28.49 (C(CH₃)₂Ph), 30.92 (C(CH₃)₂Ph), 90.94 (C(CH₃)₂Ph), 90.97 (C(CH₃)₂Ph), 31.37 (C(CH₃)₂Ph), 38.03 (SCH₂), 38.46, (SCH₂), 42.31 (C(CH₃)₂Ph), 42.63 (C(CH₃)₂Ph), 42.73 (C(CH₃)₂Ph), 42.78 (C(CH₃)₂Ph), 84.79 (OCH(CH₃)₂), 117.14 (C-2), 119.58 (C-2), 125.17, 125.41, 128.94, 125.98, 126.03, 126.66, 126.76, 126.84, 127.95, 128.25, 128.30, 129.20 (*o*, *m*, *p*-C of Ph), 136.31 (C-6), 137.74 (C-6), 142.23 (C-4), 142.96 (C-4), 149.69 (*ipso*-C, C(CH₃)₂Ph), 150.58 (*ipso*-C, C(CH₃)₂Ph), 150.82 (*ipso*-C, C(CH₃)₂Ph), 151.10 (*ipso*-C, C(CH₃)₂Ph), 166.41 (C-1), 167.31 (C-1). Elemental Analysis: Calculated for C₅₃H₅₉ClO₃S₂Ti; C: 71.41, H: 6.67; Found C: 69.90, H: 6,18.

2.4 Chloro(isopropoxy){1,5-dithiapentanediyl-2,2'-bis[4,6-di-*tert*-butylphenoxy]}titanium (5a)

To a solution of 1 equivalent of $Ti(O^{i}Pr)_{3}Cl$ in pentane (200 mg, 0.77 mmole, 2 mL) was added 1 equivalent of a solution of 1,4-dithiapentanediyl-2,2'-bis{4,6-di-*tert*-butyl)phenol} in pentane (397 mg, 0.77 mmole, 2 mL) and the mixture stirred for 18 h at 25 °C. From an instant yellow color, the solution became orange. The solvent was removed *in vacuo* to give a orange powder that was dissolved in 3 mL of *n*-pentane/thf (9/1), filtered, and stored at -30 °C for 1 d. The orange powder was dried *in vacuo* to give **5a** in 72 % yield (372 mg).

¹H NMR (400 MHz, C₆D₆): δ 1.24 (s, 18 H, C(CH₃)₃), 1.37-1.46 (m, 2 H, (CH₂)), 1.45 (d, ³J_{HH} = 6.3 Hz, 6 H, OCH(CH₃)₂), 1.50-1.69 (br m, 18 H, C(CH₃)₃), 2.72 (higher order d, 2 H, ²J_{HH} = 9.2 H, SCH₂), 3.16 (higher order t, 2 H, ²J_{HH} = 8.7 Hz, SCH₂), 5.16 (septet, ³J_{HH} = 6.5 Hz, 1 H, OCH(CH₃)₃), 7.00 (d, 2 H, ⁴J_{HH} = 6.3 Hz, 3-CH_{Ar}), and 7.40 (d, 2 H, ⁴J_{HH} = 7.4 Hz, 5-CH_{Ar})

¹³C{¹H} NMR (400 MHz, C₆D₆): δ 21.90 (CH₂), 25.52 (OCH(CH₃)₂), 29.81 (C(CH₃)₂), 31.72 (C(CH₃)₃), 34.48 (SCH₂), 34.65 (SCH₂), 35.67 (C(CH₃)₃), 84.63 (OCH(CH₃)₂), 124.54 (C-3 and C-5), 136.83 (C-2), 143.79 (C-4 and C-6) and 164.12 (C-1).

3. Polymerization

3.1 Solution polymerization

3.1.1 Polymerization of *meso*-lactide using complex 5 at 75°C

Frature	Time	%	$M_{\rm n,exp}$	$M_{ m n,theo}$	$M_{ m w}\!/M_{ m n}^{ m b}$
Entry	(h)	Conv. ^a	(g/mol) ^b	(g/mol) ^c	
1	8	12	700	858	1.17
2	16	21	2000	1478	1.07
3	24	40	2750	2897	1.13
4	63	92	5000	6580	1.12
5	72	97	5250	6998	1.07

Table S1 Polymerization of meso-lactide using complex 5 at 75°C

^a conversion of monomer (([mon]₀ – [mon]_t)/[mon]₀); ^b measured by GPC; ^c $M_{n,theo}$ calculated via $M_{n,theo} = [Mon]_0/2[Init.]_0 \times M_{Mon} \times Conv.$

Figure S1 Polymerization of *meso*-lactide by 5 in toluene, [monomer]/[initiator] = 100, T = 75 °C.

3.1.2 Polymerization of meso-lactide using complex 5 with variation of initial ratio

Figure S2 Polymerization of *meso*-lactide by 5 in toluene, Initial ratio variation, T =100 °C.

3.1.3 Polymerization of meso-lactide using complex 4

Table S2 Polymerization of meso-lactide using complex 4

Fatas	Time	%
Entry	(h)	Conv. ^a
1	16	4
2	23	8
3	48	11
4	63	13
5	72	15
6	96	20

^a Conversion of monomer $(([mon]_0 - [mon]_t)/[mon]_0)$

3.1.4 Polymerization of *rac*-lactide using complex 5 at 100°C

Fraters	Time	%	M _{n,exp}	M _{n,theo}	M /M b
Entry	(h)	Conv. ^a	(g/mol) ^b	(g/mol) ^c	<i>W</i> _w / <i>W</i> _n
1	8	17	2250	2393	1.17
2	24	46	6750	6601	1.11
3	48	92	9250	13202	1.25
4	72	96	14000	13793	1.16

Table S3 Polymerization of rac-lactide using complex 5 at 100°C

^a conversion of monomer (([mon]₀ – [mon]_t)/[mon]₀); ^b measured by GPC; ^c $M_{n,theo}$ calculated via $M_{n,theo} = [Mon]_0/[Init.]_0 \times M_{Mon} \times Conv.$

Figure S3 Polymerization of *rac*-lactide by 5 in toluene, [monomer]/[initiator] = 100, T = 100 °C.

3.1.5 Polymerization of *L*-lactide using complex 5 at 100°C

	Time	%	M _{n,exp}	$M_{ m n,theo}$	h (h c b
Entry	(h)	Conv. ^a	(g/mol) ^b	(g/mol) ^c	<i>W</i> _w / <i>W</i> _n
1	8	38	6 500	5 520	1.19
2	16	78	8 500	11 228	1.18
3	24	94	11 500	13 548	1.29
4	48	92	11 000	13 318	1.50
5	72	93	11 500	13 361	1.27

Table S4 Polymerization of L-lactide using complex 5 at 100°C

^a conversion of monomer (([mon]₀ – [mon]_t)/[mon]₀); ^b measured by GPC; ^c M_{n,theo} calculated via $M_{n,theo} = [Mon]_0/[Init.]_0 \times M_{Mon} \times Conv.$

Figure S4 Polymerization of *L*-lactide by 5 in toluene, [monomer]/[initiator] = 100, T = 100 °C.

3.2 Melt polymerization

Entry	Time	%	M _{n,exp}	$M_{ m n,theo}$	$M_{\rm w}/M_{\rm r}$ b
	(h)	Conv. ^a	(g/mol) ^b	(g/mol) ^c	
1	1	7	800	1052	1.01
2	2	21	2000	2998	1.20
3	4	43	5250	6126	1.07
4	8	74	10000	10608	1.06

Table S5 Polymerization of meso-lactide using complex 5 at 100°C in melt

^a conversion of monomer (([mon]₀ – [mon]_t)/[mon]₀); ^b measured by GPC; ^c M_{n,theo} calculated via $M_{n,theo} = [Mon]_0/2[Init.]_0 \times M_{Mon} \times Conv.$

Figure S5 Polymerization of *meso*-lactide by 5 in melt, [monomer]/[initiator] = 100, T = 100 °C.

3.3 Polymerization of meso-lactide using asymetric complexes

3.3.1 Polymerization of meso-lactide using complex 2a

Table S6: Polymerization of meso-lactide using complex 2a at 100°C in C₆D₆

Entry	Time	%
Епиу	(h)	Conv. ^a
1	4	12
2	7	23
3	10	34
4	14	42
5	16	46
6	20.5	60
7	24	71

^a conversion of monomer $(([mon]_0 - [mon]_t)/[mon]_0)$

Figure S6: Polymerization of *meso*-lactide by 2a in C_6D_6 , [monomer]/[initiator] = 50, T = 100 °C.

3.3.2 Polymerization of *meso*-lactide using complex 5a

Entry	Time	%
Entry	(h)	Conv. ^a
1	2	4
2	4	11
3	6	23
4	7	30
5	10	49
6	14	67
7	16	74
8	20.5	84
9	24	89

Table S7: Polymerization of *meso*-lactide using complex **5a** at 100°C in C₆D₆

Figure S7: Polymerization of *meso*-lactide by 5a in C₆D₆, [monomer]/[initiator] = 100, T = 100 °C.

4. Microstructure Analysis

4.1 Solution Polymerization of *meso*-lactide using complex 5

Figure S8: ${}^{1}H{}^{1}H{}$ NMR spectrum of *meso*-polylactide synthesized using complex **5**, [monomer]/[initiator] = 100, T = 100 °C, Toluene (in CDCl₃, 400 Mhz).

Figure S9: ¹³C{¹H} NMR spectrum of *meso*-polylactide synthesized using complex **5**, [monomer]/[initiator] = 100, T = 100 °C, Toluene (in CDCl₃, 400 Mhz).

Figure S10: ${}^{1}H{}^{1}H{}$ NMR spectrum of *meso*-polylactide synthesized using complex 1, [monomer]/[initiator] = 100, T = 100 °C, Melt (in CDCl₃, 400 Mhz).

Figure S11: ${}^{13}C{}^{1}H$ NMR spectrum of *meso*-polylactide synthesized using complex 1, [monomer]/[initiator] = 100, T = 100°C, Melt (in CDCl₃, 400 Mhz).

Figure S12: ${}^{1}H{}^{1}H{}$ NMR spectrum of *meso*-polylactide synthesized using complex **2**, [monomer]/[initiator] = 100, T = 100 °C, Melt (in CDCl₃, 400 Mhz).

Figure S13: ¹³C{¹H} NMR spectrum of *meso*-polylactide synthesized using complex **2**, [monomer]/[initiator] = 100, T = 100 °C, Melt (in CDCl₃, 400 Mhz).

4.4 Melt Polymerization of meso-lactide using complex 4

Figure S14: ${}^{1}H{}^{1}H{}$ NMR spectrum of *meso*-polylactide synthesized using complex **4**, [monomer]/[initiator] = 100, T = 100 °C, Melt (in CDCl₃, 400 Mhz).

Figure S15: ${}^{13}C{}^{1}H$ NMR spectrum of *meso*-polylactide synthesized using complex **4**, [monomer]/[initiator] = 100, T = 100 °C, Melt (in CDCl₃, 400 Mhz).

4.5 Melt Polymerization of meso-lactide using complex 5

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Figure S16: ${}^{1}H{}^{1}H{}$ NMR spectrum of *meso*-polylactide synthesized using complex **5**, [monomer]/[initiator] = 100, T = 100 °C, Melt (in CDCl₃, 400 Mhz).

Figure S17: ¹³C{¹H} NMR spectrum of *meso*-polylactide synthesized using complex **5**, [monomer]/[initiator] = 100, T = 100 °C, Melt (in CDCl₃, 400 Mhz).

4.6 Melt Polymerization of meso-lactide using complex 5, Time Variation

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Figure S18: ${}^{1}H{}^{1}H{}$ NMR spectrum of *meso*-polylactide synthesized using complex **5**, [monomer]/[initiator] = 100, T = 100 °C, 2h, Melt (in CDCl₃, 400 Mhz).

Figure S19: ${}^{1}H{}^{1}H{}$ NMR spectrum of *meso*-polylactide synthesized using complex **5**, [monomer]/[initiator] = 100, T = 100 °C, 4h, Melt (in CDCl₃, 400 Mhz).

Figure S20: ${}^{1}H{}^{1}H{}$ NMR spectrum of *meso*-polylactide synthesized using complex **5**, [monomer]/[initiator] = 100, T = 100 °C, 8h, Melt (in CDCl₃, 400 Mhz).

Figure S21: ¹³C{¹H} NMR spectrum of *meso*-polylactide synthesized using complex **5**, [monomer]/[initiator] = 100, T = 100 °C, 8h, Melt (in CDCl₃, 400 Mhz).

Figure S22: ${}^{1}H{}^{1}H{}$ NMR spectrum of *rac*-polylactide synthesized using complex **4**, [monomer]/[initiator] = 100, T = 100 °C, Melt (in CDCl₃, 400 Mhz).

Figure S23: ¹³C{¹H} NMR spectrum of *rac*-polylactide synthesized using complex **4**, [monomer]/[initiator] = 100, T = 100 °C, Melt (in CDCl₃, 400 Mhz).

4.8 Melt Polymerization of *rac*-lactide using complex 5

Figure S24: ${}^{1}H{}^{1}H{}$ NMR spectrum of *rac*-polylactide synthesized using complex 5, [monomer]/[initiator] = 100, T = 100 °C, Melt (in CDCl₃, 400 Mhz).

Figure S25: ¹³C{¹H} NMR spectrum of *rac*-polylactide synthesized using complex **5**, [monomer]/[initiator] = 100, T = 100 °C, Melt (in CDCl₃, 400 Mhz).

4.9 Melt Polymerization of *L*-lactide using complex 5

Figure S26: ${}^{1}H{}^{1}H{}$ NMR spectrum of *L*-polylactide synthesized using complex **5**, [monomer]/[initiator] = 100, T = 100 °C, Melt (in CDCl₃, 400 Mhz).

Figure S27: ¹³C{¹H} NMR spectrum of *L*-polylactide synthesized using complex **5**, [monomer]/[initiator] = 100, T = 100 °C, Melt (in CDCl₃, 400 Mhz).

4.10 Polymerization of meso-lactide using complex 2a

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Figure S28: ¹H{¹H} NMR spectrum of *meso*-polylactide synthesized using complex **2a**, [monomer]/[initiator] = 50, T = 100 °C, in C₆D₆ (in CDCl₃, 400 Mhz).

4.11 Polymerization of meso-lactide using complex 5a

Figure S29: ${}^{1}H{}^{1}H{}$ NMR spectrum of *meso*-polylactide synthesized using complex **5a**, [monomer]/[initiator] = 50, T = 100 °C, in C₆D₆ (in CDCl₃, 400 Mhz).

4.12 Polymerization of meso-lactide using complex 5a

Figure S30: ${}^{1}H{}^{1}H{}$ NMR spectrum of *meso*-polylactide synthesized using complex **5a**, [monomer]/[initiator] = 100, T = 100 °C, in C₆D₆ (in CDCl₃, 400 Mhz).

Complex 3^{S3}

$C_{63}H_{82}O_4S_2Zr$
1058.63
Orthorhombic, $P2_12_12_1$
100
9.9818 (16), 18.392 (3), 31.754 (5)
5829.8 (16)
4
Μο Κα
0.31
$0.51 \times 0.34 \times 0.12$
<i>APEX</i> Area Detector diffractometer
Multi-scan Bruker SADABS
0.611, 0.894
70189, 11966, 10389
0.169
0.048, 0.117, 0.95
11966
647
0
Riding
0.82, -1.17
Flack H D (1983), Acta Cryst. A39, 876-881
-0.04 (3)

5. References

- [S1] C. Carpacchione, R. Manivannan, M. Barone, K. Beckerle, R. Centore, L. Oliva, A. Proto, A. Tuzi, T. P. Spaniol, and J. Okuda, *Organometallics*, 2005, 24, 2971.
- ^[S2] Carmine Capacchione, Antonio Proto, Henner Ebeling, Rolf Mülhaupt, Klaus Möller, Thomas P. Spaniol, and Jun Okuda, *J. Am. Chem. Soc.*, 2003, **125**, 4964
- ^[S3] (a) A. Bruker, Madison Winsconsin, USA, 2001. (b) A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, *J. Appl. Crystallogr.* 1994, 27, 435. (c) L. Farrugia, *J. Appl. Crystallogr.*, 1999; 32, 837. (d) G. Sheldrick, *Acta Crystallographica Section A*, 2008; 64, 112. (e) L. Farrugia, *J. Appl. Crystallogr.*, 1997; 30, 565.