A cascade Heck-Aldol-Heck reaction by a combination of transitionmetal and aminocatalysis

Chang-Shan Guo,^a Yu-Han Du^a and Zhi-Zhen Huang^{*b,c}

 ^{a.} Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
^{b.} Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
^{c.} State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, P. R. China.

E-mail: <u>huangzz@nju.edu.cn</u>

Electronic supplementary information

Contents

Part I.	Optimization of reaction conditions	2-5
Part II.	Cascade reaction by a combination of palladium(0) and	
	aminocatalysis for the synthesis of (E) -trisubstituted alkenes	5-10
Part III.	¹ H NMR, ¹³ C NMR and MS spectra of 5b,5c,5d,5e,5g,5h,5i,5j,5k	x,5 1,
	50, 5q, and NOSY spectra of 5c,k,l	11-49

Part I. Optimization of reaction conditions and synthesis of starting materials

Table 1. Optimization of ratios of substrate

ontry	molar ratio	time (h)	yield (%) ^b
enuy	1a : propenol	time (ii)	4a:5a
1	1:1.1	10	45:13
2	1.5:1	12	38:21
3	2:1	12	0:54
4	1:2	10	56:3
5	1:2.5	10	58:0

^a The reaction of aryl iodide **1a**, propenol and paraformaldehyde (2.25 mmol) in acetonitrile (0.5 mL) was performed under the catalysis of Pd(OAc)₂ (0.0045 mmol, 1 mol%) and Et₂NH (0.045 mmol, 10 mol%) in the presence of *n*-Bu₄NCl (0.90 mmol) and NaHCO₃ (0.95 mmol) at 60°C under nitrogen. ^bIsolated yields.

2-Benzylacrylaldehyde **4a**¹

 ^1H NMR(300 MHz, CDCl_3), δ (ppm): 9.62 (s, 1 H), 7.36-7.17 (m, 5 H), 6.12 (s, 1 H), 6.07 (s,1 H), 3.59 (s, 2 H);

2-(4-Nitrobenzyl)acrylaldehyde

¹H NMR(300 MHz, CDCl₃), δ (ppm): 9.54 (s, 1 H), 8.60 (d, J=8.8Hz, 2 H), 7.31 (d, J=8.6 Hz, 2H), 6.21 (s, 1 H), 6.14 (s,1 H), 3.62 (s, 2 H); 13 C NMR(75 MHz, CDCl₃), δ (ppm): 193.51, 148.02, 146.67, 146.14, 136.05, 129.89, 123.73, 34.25; MS(EI) m/z: 191.1 (M⁺,0.13), 174.0 (94.3), 145.0 (47.3), 144.0 (60.4), 115.0 (100.0).

Phl + 🚧 1a	∕_OH + (HCHO) _n	[Pd] (1 mol%) Et ₂ NH(10 mol%) <i>n</i> -Bu ₄ NCI(2eq), NaHC CH ₃ CN	Ph H O ₃ (2.1eq) Ph 5a
entry	transitional-metal catalyst	time (h)	yield (%) ^b
1	$Pd(OAc)_2$	12	54
2	$Pd(Ph_3P)_4$	16	0
3	Pd(Ph ₃ P) ₂ Cl ₂	24	0
4	PdCl ₂	24	43
5	Pd[(PhCHCH) ₂ CO] ₂	16	40
6	CuI	24	0
7	_	24	0

Table2. Screening of various transitional-metal catalysts^a

^a The reaction of aryl iodide **1a** (0.90 mmol), propenol (0.45 mmol) and paraformaldehyde (2.25 mmol) in acetonitrile (0.5 mL) was performed under the catalysis of transition-metal catalyst (0.0045 mmol, 1 mol%) and Et₂NH (0.045 mmol,10 mol%) in the presence of *n*-Bu₄NCl (0.90 mmol) and NaHCO₃ (0.95 mmol) at 60°C under nitrogen. ^bIsolated yields of **5a**.

Scheme 1. Various organocatalysts

Phl + 🥢 1a	Pd(O/ OH + (HCHO) _n Organoo <i>n</i> -Bu ₄ NCI (Ac) ₂ (1 mol%) catalyst (10 mol%) (2eq), NaHCO ₃ (2.1eq CH ₃ CN	Ph H) Ph 5a
entry	organocatalyst	time (h)	yield (%) ^b
1	2a	12	52
2	2b	24	26
3	3a	12	56
4	3 b	24	41
5	3c	12	54
6	3d	10	62
7	3e	10	50
8	3f	12	46

Table 3 Screening of various organocatalysts^a

^a The reaction of aryl iodide **1a** (0.90 mmol), propenol (0.45 mmol) and paraformaldehyde (2.25 mmol) in acetonitrile (0.5 mL) was performed under the catalysis of Pd(OAc)₂ (0.0045 mmol, 1 mol%) and organocatalyst (0.045 mmol,10 mol%) in the presence of *n*-Bu₄NCl (0.90 mmol) and NaHCO₃ (0.95 mmol) at 60°C under nitrogen. ^bIsolated yields of **5a**.

Table 4 Screening of various solvents^a

Phl + 1a	OH + (HCHO) _n	$\frac{\mathrm{Pd}(\mathrm{OAc})_2 (1 \text{ mol}\%)}{3\mathrm{d} (10 \text{ mol}\%)}$ <i>n</i> -Bu ₄ NCl(2eq), NaHCO ₃ (2. solvent	Ph H 1eq) Ph 5a
entry	solvent	time (h)	yield ^b (%)
1	MeCN	10	62
2	NMP	8	60
3	THF	24	41
4	CHCl ₃	24	45
5	1,4-Dioxane	16	51
6	DMF	8	70
7 ^c	DMF	36	18
8^{d}	DMF	8	68

^a The reaction of aryl iodide **1a** (0.90 mmol), propenol (0.45 mmol) and paraformaldehyde (2.25 mmol) in a solvent (0.5 mL) was performed under the catalysis of Pd(OAc)₂ (0.0045 mmol, 1 mol%) and 3d (0.045 mmol,10 mol%) in the presence of *n*-Bu₄NCl (0.90 mmol) and NaHCO₃ (0.95 mmol) at 60°C under nitrogen. ^b Isolated yields of **5a**. ^c In the absence of 3d. ^d The reaction of aryl iodide **1a** (10.00 mmol), propenol (5.00 mmol) and paraformaldehyde (25.00 mmol) in DMF (5.5 mL) was performed under the catalysis of Pd(OAc)₂ (0.05 mmol, 1 mol%) and pyrrolidine **3d** (0.5 mmol, 10 mol%) in the presence of *n*-Bu₄NCl (10.00 mmol) and NaHCO₃ (10.56 mmol) at 60°C under nitrogen.

Table 5 Screening of various bases and additives ^a
--

Pd(OAc) ₂ (1 mol%) O 3d (10 mol%) Ph H					н
1a	1 (1.5.1	base, a DM	additives F	Ph 5a	
entry	base	additive	t (°C)	time (h)	yield (%) ^b
1	Et ₃ N	-	60	12	42
2	<i>n</i> -Bu ₃ N	-	60	12	53
3	K_2CO_3	-	60	24	22
4	Na ₂ CO ₃	-	60	24	12
5	NaHCO ₃	-	60	24	10
6	K_2CO_3	<i>n</i> -Bu ₄ NCl	60	12	58
7	Na ₂ CO ₃	<i>n</i> -Bu ₄ NCl	60	12	48
8	NaOAc	<i>n</i> -Bu ₄ NCl	60	12	54
9	NaHCO ₃	<i>n</i> -Bu ₄ NCl	60	12	70
10	NaHCO ₃	<i>n</i> -Bu ₄ NBr	60	24	41
11	NaHCO ₃	<i>n</i> -Bu ₄ NI	60	24	32
12	NaHCO ₃	<i>n</i> -Bu ₄ NCl	40	12	42
13	NaHCO ₃	<i>n</i> -Bu ₄ NCl	80	12	50
14	NaHCO ₃	<i>n</i> -Bu ₄ NCl	110	12	45
^a The reaction of aryl iodide 1a (0.90 mmol), propenol (0.45 mmol) and					
paraformaldehyde (2.25 mmol) in DMF (0.5 mL) was performed under the catalysis of					
Pd(OAc) ₂ (0.0045 mmol, 1 mol%) and 3d (0.045 mmol,10 mol%) in the presence of a					
base (0.95 mmol) and an additive (0.90 mmol) at 60°C under nitrogen. ^b Isolated yields					
of 5a .					

Part II. Cascade reaction by a combination of palladium(0) and aminocatalysis for the synthesis of (E)-trisubstituted alkenes

General procedure with one aryl iodide: The mixture of propenol (0.0261 g, 0.45 mmol), paraformaldehyde (0.0615 g, 2.05 mmol), Pd(OAc)₂ (1.0 mg,0.0045 mmol), n-Bu₄NCl (0.250 g, 0.90 mmol) and NaHCO₃ (0.0798 g, 0.95mmol) in DMF (0.5 mL) was stirred for 10 min at 60°C, and then aryl iodide 1a-n (0.90 mmol) and pyrrolidine 3d (3.20 mg, 0.045 mmol, 10 mol%) were added. The reaction mixture was stirred at 60°C for the time indicated in Table 2 of the text under nitrogen. After the reaction was finished, EtOAc was added to the reaction system. The mixture

was filtered, and the filtrate was washed with water and brine, and dried over $MgSO_4$. After concentration, the residue was subjected to column chromatography (silica gel, petroleum ether / EtOAc as eluent) to give the desired trisubstituted alkene **5a-n**.

(E)-2-Benzyl-3-phenylacrylaldehyde **5** a^2

Yield: 70%. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.71 (s, 1 H), 7.54-7.35 (m, 6 H), 7.32-7.14 (m, 5 H), 3.96 (s, 2 H).

(E)-2-(4-Fluorobenzyl)-3-(4-fluorophenyl)acrylaldehyde 5b

Yield: 81%. ¹H NMR(300 MHz, CDCl₃) δ (ppm): 9.68 (s, 1 H), 7.52-7.40 (m, 3 H), 7.20-7.02 (m, 4 H), 7.00-6.90 (m, 2 H), 3.89 (s, 2 H); ¹³C NMR(75 MHz, CDCl₃) δ (ppm): 194.9, 164.2 (d, *J*=155.3 Hz), 160.9 (d, *J*=146.8 Hz), 150.3, 140.1, 133.7 (d, *J*=3.0 Hz), 131.9 (d, *J*=8.6 Hz), 130.6 (d, *J*=3.8 Hz), 129.4 (d, *J*=8.0 Hz), 116.1 (d, *J*=21.2 Hz), 115.5 (d, *J*=20.2 Hz), 29.5; IR

(film): 3091, 2960, 2829, 2795, 1696, 1640, 1583, 1505, 1231, 1151, 846, 774 cm⁻¹; MS (EI) *m/z*: 258.0 (M⁺, 49.8), 228.0 (55.0), 134.0 (30.6), 133.0 (100.0), 109.0 (63.6).

(*E*)-2-(4-Chlorobenzyl)-3-(4-chlorophenyl)acrylaldehyde **5**c

Yield: 75%. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.67 (s, 1 H), 7.46 (s, 1 H), 7.42-7.36 (m, 4 H), 7.27-7.19 (m, 2 H), 7.10-7.00 (m, 2 H), 3.87 (s, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 194.68, 150.19, 140.43, 136.53, 136.24, 132.76, 132.22, 130.95, 129.29, 129.24, 128.83, 29.80; IR (film): 3066, 2928, 2826, 2817, 1686, 1632, 1590, 1491, 1146, 1092,

1013, 824, 804, cm⁻¹; MS (EI) m/z: 290.0 (M⁺, 1.7), 255.0 (100.0), 149.0 (30.2), 143.0 (97.2), 125.0 (62.5), 115.0 (81.2).

(E)-2-(4-Bromobenzyl)-3-(4-bromophenyl)acrylaldehyde 5d

Yield: 77%. ¹H NMR(300 MHz, CDCl₃) δ (ppm): 9.68 (s, 1H), 7.60-7.48 (m, 2 H), 7.44(s, 1 H), 7.42-7.27 (m, 4 H), 7.10 (d, *J*=8.7 Hz, 2 H), 3.85 (s, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 194.63, 150.22, 140.47, 137.03, 133.16, 132.23, 131.78, 131.10, 129.68, 124.68, 120.32, 29.89; IR (film): 3063, 2933, 2845, 2732, 1681, 1625, 1586, 1488, 1141, 1071, 1009, 818,

803 cm⁻¹; MS (EI) *m/z*: 379.9 [(M+2)⁺, 3.0)], 301.0 (97.9), 298.0 (100.0), 191.1 (75.4), 189.0 (74.3), 168.9 (48.8), 143.0 (94.3), 115.0 (95.4).

(E)-2-(4-Acetylbenzyl)-3-(4-acetylphenyl)acrylaldehyde 5e

Yield: 73%. ¹H NMR(300 MHz, CDCl₃) δ (ppm): 9.73(s, 1 H), 7.97 (d, *J*=8.4 Hz, 2 H), 7.87 (d, *J*=8.4 Hz, 2 H), 7.58 (s, 1 H), 7.51 (d, *J*=8.4 Hz, 2 H), 7.22 (d, *J*=8.4 Hz, 2 H), 3.97 (s, 2 H), 2.60 (s, 3 H), 2.56(s, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 197.63, 197.15, 194.45, 150.07, 145.66, 143.71, 141.44, 138.60, 135.60, 129.66, 128.85,

128.77, 128.17, 30.61, 26.68, 26.56; IR (film):3088, 2968, 2810, 2802, 1691, 1682, 1627, 1608, 1463, 1269, 1182, 1019, 833, 791 cm⁻¹; MS (ESI) m/z [M+Na]⁺ Calcd for C₂₀H₁₈NaO₃: 329.13, found: 329.25.

 $(E) \hbox{-} 2-(4-Methoxylcarbonylbenzyl) \hbox{-} 3-(4-Methoxylcarbonylphenyl) acrylaldehyde {\bf 5f}$

Yield: 78%. ¹H NMR(300 MHz, CDCl₃) δ (ppm): 9.73(s, 1 H), 8.04 (d, *J*=8.4 Hz, 2 H), 7.93 (d, *J*=8.4 Hz, 2 H), 7.57 (s, 1 H), 7.47 (d, *J*=8.4 Hz, 2 H), 7.19(d, *J*=8.4 Hz, 2 H), 3.96 (s, 2 H), 3.92 (s, 3 H), 3.89 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 194.54, 166.89, 166.27, 150.26, 143.51, 141.42, 138.50, 131.16, 130.03, 129.40, 128.46,

128.00, 52.39, 52.07, 30.56; IR (film): 3041, 2954, 2841, 2728, 1724, 1674, 1623, 1565, 1434, 1285, 1187, 1108, 833, 810 cm⁻¹; MS (ESI) m/z [M+Na]⁺ Calcd for C₂₀H₁₈NaO₅: 361.12, found 361.17.

(*E*)-2-(3-Fluorobenzyl)-3-(3-fluorophenyl)acrylaldehyde 5g

Yield: 78%. ¹H NMR(300 MHz, CDCl₃) δ (ppm): 9.70 (s, 1 H), 7.49 (s, 1 H), 7.43-7.33 (m, 1 H), 7.30-7.19 (m, 2 H), 7.18-7.03 (m, 2 H), 7.00-6.79 (m, 3 H), 3.92 (s, 2 H); ¹³C NMR(75 MHz, CDCl₃) δ (ppm): 194.6, 164.6 (d, *J*=21.2 Hz), 161.3 (d, *J*=23.8 Hz), 150.1 (d, *J*=2.6 Hz), 140.9, 140.6 (d, *J*=6.5 Hz), 136.3 (d, *J*=7.4 Hz), 130.4 (d, *J*=8.3 Hz), 130.1 (d, *J*=9.0 Hz), 125.4 (d, *J*=2.6 Hz), 123.6 (d, *J*=2.8 Hz), 117.0 (d, *J*=20.9 Hz), 116.3 (d, *J*=22.4 Hz), 114.9 (d,

J=20.8 Hz), 113.4 (d, *J*=20.6 Hz), 30.1 (d, *J*=1.9 Hz); IR (film): 3096, 2956, 2823, 2788, 1698, 1645, 1569, 1496, 1257, 1129, 850, 791, 750 cm⁻¹; MS (EI) *m/z*: 258.1 (M⁺, 100.0), 228.1 (32.3), 149.0 (30.2), 133.0 (93.5), 109.0 (49.6).

(E)-2-(3-Chlorobenzyl)-3-(3-chlorophenyl)acrylaldehyde 5h

Yield: 74%. ¹H NMR(300 MHz, CDCl₃) δ (ppm): 9.69 (s, 1 H), 7.48-7.27 (m, 5 H), 7.26-7.10 (m, 3 H), 7.05-6.95 (m, 1 H), 3.88 (s, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 194.57, 149.94, 141.00, 140.13, 135.97, 134.91, 134.54, 130.19, 129.98, 129.93, 129.55, 128.13, 127.45, 126.71, 126.25, 30.12; IR (film):3077, 2881, 2822, 2813, 1688, 1636, 1575, 1478, 1264, 833, 750, 721 200.0 (M^{+}_{+} 15 (c) 255.0 (100.0) 140.0 (52.2) 142.0 (76.0) 115.0 (57.52)

cm⁻¹; MS (EI) *m/z*: 290.0 (M⁺,15.6), 255.0 (100.0), 149.0 (53.2), 143.0 (76.9), 115.0 (57.52).

(E)-2-(3-Bromobenzyl)-3-(3-bromophenyl)acrylaldehyde 5i

Yield: 76%. ¹H NMR(300 MHz, CDCl₃) δ (ppm): 9.68 (s, 1 H), 7.62-7.40 (m, 3 H), 7.39-7.20 (m, 4 H), 7.19-7.00 (m, 2 H), 3.86 (s, 2 H); ¹³C NMR(75 MHz, CDCl₃) δ (ppm): 194.53, 149.88, 141.04, 140.48, 136.23, 132.87, 132.46, 131.07, 130.43, 130.25, 129.64, 127.85, 126.72, 122.97, 122.85, 30.09; IR (film):3065, 2831, 2841, 2730, 1683, 1631, 1569, 1466, 1192, 827, 786, 707 cm⁻¹; MS (EI) *m/z*: 379.9 [(M+2)⁺, 12.4], 300.9 (74.6), 298.9 (95.5),

191.0 (54.1), 143.0 (100.0), 115.0 (76.6).

(E)-2-(4-Methylbenzyl)-3-(4-methylphenyl)acrylaldehyde 5j

Yield: 69%. ¹H NMR(300 MHz, CDCl₃) δ (ppm): 9.68 (s, 1 H), 7.55-7.37 (m, 3 H), 7.27-7.18 (m, 2 H), 7.08 (s, 4 H), 3.93 (s, 2 H), 2.38 (s, 3 H), 2.31 (s, 3 H); ¹³C NMR(75 MHz, CDCl₃) δ (ppm): 195.33, 151.65, 140.53, 139.84, 135.70, 135.25, 131.82, 130.03, 129.63, 129.33, 127.86, 30.07, 21.49, 21.03; IR (film): 3044, 2963, 2827, 2734, 1689, 1629, 1606, 1577,

1450, 1209, 1159, 837, 810 cm⁻¹; MS (ESI) m/z [M+Na]⁺ Calcd for C₁₈H₁₈NaO: 273.14, found: 273.25.

(E)-2-(3-Methylbenzyl)-3-(3-methylphenyl)acrylaldehyde 5k

Yield: 68%. ¹H NMR(300 MHz, CDCl₃) δ (ppm): 9.70 (s, 1 H), 7.48 (s, 1 H), 7.35-7.14 (m, 5 H), 7.03-6.95 (m, 3 H), 3.92 (s, 2 H), 2.36 (s, 3 H), 2.32 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 195.37, 151.85, 140.58, 138.54, 138.52, 138.20, 134.58, 130.82, 130.76, 128.90, 128.79, 128.53, 127.06, 126.87, 125.08, 30.49, 21.55, 21.43; IR (film): 3066, 2962, 2822, 2728, 1691, 1626, 1603, 1588, 1431, 1261, 1143, 829, 783, 686 cm⁻¹; MS (ESI) *m/z*

[M+Na]⁺ Calcd for C₁₈H₁₈NaO: 273.14, found: 273.25.

(*E*)-2-(2-Methylbenzyl)-3-(2-methylphenyl)acrylaldehyde 51

Yield: 67%. ¹H NMR(300 MHz, CDCl₃) δ (ppm): 9.74 (s, 1 H), 7.70 (s, 1 H), 7.24-7.18 (m, 2 H), 7.17-7.00 (m, 5 H), 6.94–6.82 (m, 1 H), 3.69 (s, 2 H), 2.35 (s, 3H), 2.23 (s, 3H); ¹³C NMR(75 MHz, CDCl₃) δ (ppm): 194.94, 150.19, 141.44, 137.14, 136.87, 136.30, 133.71, 130.53, 130.18, 129.64, 128.20, 127.08, 126.25, 126.12, 126.09, 28.31, 20.05, 19.79; IR (film): 3041, 2926, 2856, 2733, 1697, 1623, 1605, 1573, 1438, 1211, 1150, 823, 754 cm⁻¹; MS (EI) *m*/z: 250.2

 $(M^+, 49.1), 235.1 (85.6), 145.1 (100.0), 129.1 (64.4), 115.1 (90.6), 105.1 (82.2), 91.1 (43.6).$

(*E*)-3-(Naphthalen-1-yl)-2-(naphthalen-1-ylmethyl)acrylaldehyde **5m**

Yield: 66%. ¹H NMR(CDCl₃) δ (ppm): 9.98 (s, 1 H), 8.32 (s, 1 H), 8.10-7.97 (m, 1 H), 7.95-7.80 (m, 4 H), 7.71 (d, *J*=8.1 Hz, 1 H), 7.65-7.55 (m, 2 H), 7.50-7.43 (m, 1 H), 7.40-7.25 (m, 4 H), 7.17 (d, *J*=7.2 Hz, 1 H), 4.28 (s, 1 H); ¹³C NMR(75 MHz, CDCl₃) δ (ppm): 194.65, 149.49, 142.42, 134.28, 133.84, 133.52, 131.32, 131.23, 130.95, 130.11, 128.84, 128.70, 127.59, 127.04, 126.94, 126.42, 125.91, 125.60, 125.48, 125.35, 124.92, 123.90, 123.54, 28.56; IR

(film): 3051, 2866, 2836, 2726, 1688, 1620, 1575, 1443, 1218, 1170, 825, 803, 772 cm⁻¹; MS (EI) *m/z*: 322.2 (M⁺, 30.9), 303.1(16.2), 165.1 (100.0), 141.1 (49.4), 115.1 (17.7).

(*E*)-3-(Phenanthren-9-yl)-2-(phenanthren-9-ylmethyl)acrylaldehyde **5n**

Yield: 68%. ¹H NMR(300 MHz, CDCl₃) δ (ppm): 10.00 (s, 1 H), 8.75-8.42 (m, 4 H), 8.23 (s, 1 H), 7.96 (d, *J*=7.2 Hz, 1 H), 7.86 (d, *J*=8.1 Hz, 1 H), 7.70-7.41 (m, 8 H), 7.40-7.29 (m, 3 H), 7.26-7.18 (m, 1 H), 4.29 (s, 2 H); ¹³C NMR(75 MHz, CDCl₃) δ (ppm): 194.67, 150.09, 146.34, 142.72, 132.72, 131.63, 131.06, 130.69, 130.38, 130.28, 130.00, 129.90, 129.78, 129.33,

128.99, 128.91, 128.34, 127.69, 127.07, 126.91, 126.62, 126.57, 126.34, 126.25, 126.08, 124.72,

124.17, 123.27, 123.14, 122.46, 122.38, 28.95; IR (film): 3056, 2863, 2825, 2718, 1681, 1622, 1606, 1448, 1224, 1071, 841, 822, 751 cm⁻¹; MS (EI) *m/z*: 422.2 (M⁺, 50.7), 244.0 (21.3), 216.0 (22.0), 215.0 (100.0), 191.0 (58.9).

General procedure with two aryl iodides: The mixture of propenol (0.0261 g, 0.45 mmol), paraformaldehyde (0.0615 g, 2.05 mmol), $Pd(OAc)_2$ (1.0 mg,0.0045 mmol), *n*-Bu₄NCl (0.250 g, 0.90 mmol) and NaHCO₃ (0.0798 g, 0.95mmol) in DMF (0.5 mL) was stirred for 10 min at 60°C, and then Ar^1I (0.45 mmol), Ar^2I (0.45 mmol) and pyrrolidine **3d** (3.20 mg, 0.045 mmol, 10 mol%) were added. The reaction mixture was stirred at 60°C for the time indicated in Table 3 of the text under nitrogen. A similar work-up to the above general procedure with one aryl iodide afforded the desired trisubstituted alkene **50-r**.

 $(E) \hbox{-} 2 \hbox{-} (4 \hbox{-} Fluorobenzyl) \hbox{-} 3 \hbox{-} phenylacrylaldehyde {\bf 50}$

Yield: 63%. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.65 (s, 1 H), 7.60 -7.32 (m, 4 H), 7.30-6.82 (m, 6 H), 3.90 (d, *J*=8.1 Hz,2 H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 195.2, 165.2 (d, *J*=155.3 Hz), 151.8, 140.4, 134.5, 134.0 (d, *J*=3.9 Hz), 132.0 (d, *J*=8.3 Hz), 129.8, 128.8, 127.9, 116.1 (d, *J*=21.8 Hz), 30.3; IR (film): 3089, 2956, 2825, 2791, 1692, 1636, 1578, 1496, 1230, 1148, 829,

733 cm⁻¹; MS (EI) *m/z*: 240.0 (M⁺, 62.9), 210.0 (59.4), 133.0 (54.9), 115.0 (46.8), 109.0 (100.0), 91.0 (95.9).

(*E*)-2-(4-Fluorobenzyl)-3-(4-tolyl)acrylaldehyde **5p**

Yield: 58%. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.62 (d, *J*=5.7 Hz, 1 H), 7.52-7.30 (m, 3 H), 7.28-6.80 (m, 6 H), 3.87 (d, *J*=7.8 Hz, 2 H), 2.33 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 195.5, 164.2 (d, *J*=156.8 Hz), 152.3, 139.4, 135.0, 134.1 (d, *J*=2.8 Hz), 132.1 (d, *J*=8.5 Hz), 131.7, 130.1, 129.8, 116.1 (d, *J*=21.4 Hz) 29.9, 21.5; IR (film): 3091, 2949, 2819, 2769, 1691,

1630, 1569, 1489, 1228, 1141, 822, 730 cm⁻¹; MS (EI) *m/z*: 254.0 (M⁺, 47.3), 239.0 (90.6), 143.0 (54.9), 133.0 (47.2), 115.0 (44.7), 109.0 (68.4), 105.0 (100.0), 91.0 (48.3).

$(E)\mbox{-}2\mbox{-}(3\mbox{-}Fluorobenzyl)\mbox{-}3\mbox{-}phenylacrylaldehyde} {\bf 5q}$

Yield: 60%. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.68 (s, 1 H), 7.60-7.30 (m, 5 H), 7.26 (m, 3 H), 7. 00-6.80, 3.92 (s, 2 H), ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 195.1, 164.6 (d, *J*=22.5 Hz), 152.1, 141.1 (d, *J*=9.1 Hz), 139.8, 134.3, 130.5 (d, *J*=8.3 Hz), 129.8, 129.0, 128.0, 123.7 (d, *J*=2.7 Hz), 116.9 (d, *J*=21.6

Hz), 113.3 (d, *J*=21.7 Hz), 30.4; IR (film): 3092, 2952, 2822, 2783, 1693, 1633, 1573, 1492, 1229, 1140, 828, 753, 732 cm⁻¹; MS (EI) *m/z*: 240.0 (M⁺, 100.0), 210.0 (79.2), 133.0 (66.1), 115.0 (66.1), 109.0 (43.8), 91.0 (51.2).

(*E*)-2-(3-Fluorobenzyl)-3-(4-tolyl)acrylaldehyde **5r**

Yield: 56%. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.66 (d, *J*=3.9 Hz, 1 H), 7.54-7.30 (m, 2 H), 7.28-7.14 (m, 3 H), 7.12-6.80 (m, 4 H), 3.92 (d, *J*=10.2 Hz, 2 H), 2.36 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 195.1, 164.6 (d, *J*=23.3 Hz), 152.3, 141.1(d, *J*=7.7 Hz), 140.9, 138.9, 131.6, 130.5 (d, *J*=8.3 Hz), 130.0, 129.8, 123.7 (d, *J*=2.7 Hz), 116.8 (d, *J*=20.8 Hz), 113.2 (d, *J*=20.6

Hz), 30.0, 21.0; IR (film): 3088, 2946, 2818, 2772, 1688, 1632, 1576, 1493, 1228, 1146, 826, 751, 730 cm⁻¹; MS (EI) *m*/*z*: 254.0 (M⁺, 66.0), 239.0 (100.0), 143.0 (42.8), 133.0 (59.4), 115.0 (31.1), 109.0 (19.2).

References

- 1. T. Yamada, S. Sakaguchi and Y. Ishii, J. Org. Chem., 2005, 70, 5471.
- 2. S. Kiyooka, H. Fujimoto, M. Mishima, S. Kobayashi, K. M. Uddin and M. Fujio, *Tetrahedron Lett.*, 2003, 44, 927.

Part III. Spectra of ¹H NMR, ¹³C NMR and MS

¹H NMR of (*E*)-2-(4-Fluorobenzyl)-3-(4-fluorophenyl)acrylaldehyde **5b**

 $^{13}\mathrm{C}$ NMR of (*E*)-2-(4-Fluorobenzyl)-3-(4-fluorophenyl) acrylaldehyde **5b**

MS (EI) of (*E*)-2-(4-Fluorobenzyl)-3-(4-fluorophenyl)acrylaldehyde **5b**

 $^1\mathrm{H}$ NMR of (E)-2-(4-Chlorobenzyl)-3-(4-chlorophenyl) acrylaldehyde $\mathbf{5c}$

 $^{13}\mathrm{C}$ NMR of (*E*)-2-(4-Chlorobenzyl)-3-(4-chlorophenyl) acrylaldehyde $\mathbf{5c}$

MS (EI) of (*E*)-2-(4-Chlorobenzyl)-3-(4-chlorophenyl)acrylaldehyde 5c

 $^1\mathrm{H}$ NMR of (E)-2-(4-Bromobenzyl)-3-(4-bromophenyl) acrylaldehyde $\mathbf{5d}$

 $^{13}\mathrm{C}$ NMR of (E)-2-(4-Bromobenzyl)-3-(4-bromophenyl) acrylaldehyde $\mathbf{5d}$

MS (EI) of (*E*)-2-(4-Bromobenzyl)-3-(4-bromophenyl)acrylaldehyde **5d**

 $^1\mathrm{H}$ NMR of (E)-2-(4-Acetylbenzyl)-3-(4-acetylphenyl)acrylaldehyde $\mathbf{5e}$

 $^{13}\mathrm{C}$ NMR of (E)-2-(4-Acetylbenzyl)-3-(4-acetylphenyl)acrylaldehyde $\mathbf{5e}$

MS (ESI) of (*E*)-2-(4-Acetylbenzyl)-3-(4-acetylphenyl)acrylaldehyde **5e**

 $^1\mathrm{H}$ NMR of (E)-2-(3-Fluorobenzyl)-3-(3-fluorophenyl) acrylaldehydem $\mathbf{5g}$

 $^{13}\mathrm{C}$ NMR of (E)-2-(3-Fluorobenzyl)-3-(3-fluorophenyl) acrylaldehydem $\mathbf{5g}$

MS (EI) of (*E*)-2-(3-Fluorobenzyl)-3-(3-fluorophenyl)acrylaldehydem **5g**

 $^1\mathrm{H}$ NMR of (E)-2-(3-Chlorobenzyl)-3-(3-chlorophenyl) acrylaldehyde $\mathbf{5h}$

 $^{13}\mathrm{C}$ NMR of (*E*)-2-(3-Chlorobenzyl)-3-(3-chlorophenyl) acrylaldehyde **5h**

MS (EI) of (*E*)-2-(3-Chlorobenzyl)-3-(3-chlorophenyl)acrylaldehyde **5h**

 $^1\mathrm{H}$ NMR of (E)-2-(3-Bromobenzyl)-3-(3-bromophenyl) acrylaldehyde $\mathbf{5i}$

 $^{13}\mathrm{C}$ NMR of (*E*)-2-(3-Bromobenzyl)-3-(3-bromophenyl)acrylaldehyde **5i**

MS (EI) of (E)-2-(3-Bromobenzyl)-3-(3-bromophenyl) acrylaldehyde $\mathbf{5i}$

 $^1\mathrm{H}$ NMR of (E)-2-(4-Methylbenzyl)-3-(4-methylphenyl) acrylaldehyde $\mathbf{5j}$

 $^{13}\mathrm{C}$ NMR of (E)-2-(4-Methylbenzyl)-3-(4-methylphenyl) acrylaldehyde $5\mathrm{j}$

MS (ESI) of (*E*)-2-(4-Methylbenzyl)-3-(4-methylphenyl)acrylaldehyde 5j

 $^1\mathrm{H}$ NMR of (E)-2-(3-Methylbenzyl)-3-(3-methylphenyl) acrylaldehyde $\mathbf{5k}$

 $^{13}\mathrm{C}$ NMR of (*E*)-2-(3-Methylbenzyl)-3-(3-methylphenyl)acrylaldehyde **5**k

MS (ESI) of (*E*)-2-(3-Methylbenzyl)-3-(3-methylphenyl)acrylaldehyde **5**k

 $^1\mathrm{H}$ NMR of (E)-2-(2-Methylbenzyl)-3-(2-methylphenyl) acrylaldehyde $\mathbf{5l}$

 $^{13}\mathrm{C}$ NMR of (E)-2-(2-Methylbenzyl)-3-(2-methylphenyl) acrylaldehyde $\mathbf{5l}$

MS (EI) of (E)-2-(2-Methylbenzyl)-3-(2-methylphenyl) acrylaldehyde $\mathbf{5l}$

 $^1\mathrm{H}$ NMR of (E)-2-(4-Fluorobenzyl)-3-phenylacrylaldehyde $\mathbf{5o}$

 $^{13}\mathrm{C}$ NMR of (E)-2-(4-Fluorobenzyl)-3-phenylacrylaldehyde $\mathbf{5o}$

MS (EI) of (E)-2-(4-Fluorobenzyl)-3-phenylacrylaldehyde 50

43

 $^1\mathrm{H}$ NMR of (E)-2-(3-Fluorobenzyl)-3-phenylacrylaldehyde $\mathbf{5q}$

 $^{13}\mathrm{C}$ NMR of (E)-2-(3-Fluorobenzyl)-3-phenylacrylaldehyde $\mathbf{5q}$

MS (EI) of (*E*)-2-(3-Fluorobenzyl)-3-phenylacrylaldehyde **5**q

NOESY spectrum (CDCl₃) of (*E*)-2-(4-Chlorobenzyl)-3-(4-chlorophenyl)acrylaldehyde 5c

NOESY spectrum (CDCl₃) of (*E*)-2-(3-Methylbenzyl)-3-(3-methylphenyl)acrylaldehyde $\mathbf{5k}$

NOESY spectrum (CDCl₃) of (E)-2-(2-Methylbenzyl)-3-(2-methylphenyl)acrylaldehyde **5**l

