Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Supplementary Information

An Eleven-Vertex Deltahedron with Hexacapped Trigonal Bipyramidal Geometry

C. W. Liu,*^a Ping-Kuei Liao,^a Ching-Shiang Fang,^a Jean-Yves Saillard,*^b Samia Kahlal^b, Ju-Chun Wang^c

^a Department of Chemistry, National Dong Hwa University, Hualien, Taiwan 97401, R.O.C.

Email: chenwei@mail.ndhu.edu.tw

^b UMR-CNRS, 6226 "Sciences Chimiques de Rennes", Université de Rennes 1, 35042

Rennes Cedex, France Email: <u>jean-yves.saillard@univ-rennes1.fr</u>

c Department of Chemistry, Soochow University, Taipei, Taiwan 111, ROC

Content

Synthesis	S 1
UV-Vis, normalized excitation and emission spectra of compound 1_{H}	S2
Tables of the total energies and cartesian coordinates of the optimized geometries.	S 3
TDDFT-simulated absorption spectrum of $[Ag_{11}(\mu_5-H){S_2CNH_2}_9]^+$.	S4
Full reference for Gaussian 03.	S5

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

S1 Synthesis

Experimental Details

All of the reactions were carried out under an inert atmosphere using a Schlenk apparatus.

Synthesis.

 $[Ag_{11}(H){S_2CNPr_2}_9](NO_3)$, **1**_H: A solution of AgNO₃ (0.208 g, 1.23 mmol), Na[S₂CNPr₂] (0.200 g, 1.00 mmol) and NaBH₄ (0.0044 g, 0.11 mmol) in 30mL of CH₃CN were stirred at -20°C for 3h under nitrogen. The reaction mixture was filtered, and the filtrate was evaporated to dryness under a vacuum to obtain a dark-red solid. The solid was washed with deionized water, then subjected to column chromatography (Al₂O₃) by using ethyl acetate / hexane (1/1) as eluents to afford dark-red powders.

1_H. Yield: 0.164g (53%). Mp: 126°C (decomp.). Anal calcd for Ag₁₁H₁₂₇C₆₃N₁₀O₃S₁₈ • 0.5C₆H₆: C, 27.57; H, 4.56; N, 4.87. Found: C, 27.82; H, 4.75; N, 4.90. ¹H NMR (300.13MHz, CDCl₃, δ, ppm): 7.50 (bs, 1H, μ₄-H), 3.87 (t, ³*J*_{HH} = 7 Hz, 36H, C*H*₂), 1.83 (m, 36H, C*H*₂), 0.88 (t, ³*J*_{HH} = 7.4 Hz, 54H, C*H*₃). IR, cm⁻¹: *v*(NO), 1384.2(s), 824.8 (w).

1_D. Yield: 0.173g (56%). Mp:123°C (decomp.). Anal calcd for $Ag_{11}H_{126}D_1C_{63}N_{10}O_3S_{18} \cdot C_6H_6$: C, 28.41; H, 4.67; N, 4.80. Found: C, 28.46; H, 4.94; N, 4.66. ¹H NMR (300.13MHz, CDCl₃, δ , ppm): 3.87 (t, ³J_{HH} = 7 Hz, 36H, CH₂), 1.83 (m, 36H, CH₂), 0.88 (t, ³J_{HH} = 7.4 Hz, 54H, CH₃). ²H NMR (300.13MHz, CDCl₃, δ , ppm): 7.50 (bs, 1D). IR, cm⁻¹: ν (NO), 1381.4(s), 823.3(w).

Fig. S2. UV-Vis (green curve), normalized emission spectra (blue curve) of compound 1H in DCM glass at 77K, normalized excitation (black curve) and emission spectra (red curve) of $\mathbf{1}_{H}$ in the solid state at 77K.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Table S3. Cartesian coordinates of the optimized geometries

(S = 0)

 C_3

 $[Ag_{11}(H){S_2CNH_2}_9]^+$ Energy = -2632.3886712 a. u.

Atom	Х	Y	Z (Angstrom)
Ag	1.657059	.922312	.002502
Ag	-1.627275	.973899	.002502
Ag	029784	-1.896211	.002502
Ag	.000000	.000000	-2.279912
Ag	.000000	.000000	2.286410
Ag	.022644	3.028146	-1.752221
Ag	-2.633773	-1.494463	-1.752221
Ag	2.611130	-1.533683	-1.752221
Ag	.047214	3.025882	1.747082
Ag	-2.644098	-1.472053	1.747082
Ag	2.596884	-1.553829	1.747082
S	899587	-2.047316	3.690176
S	-1.323234	1.802723	3.690176
S	2.222821	.244593	3.690176
S	-2.216833	.281194	-3.688911
S	.864895	-2.060431	-3.688911
S	1.351938	1.779237	-3.688911
S	-1.036459	-3.569701	-1.737857
S	-2.573222	2.682451	-1.737857
S	3.609682	.887250	-1.737857
S	2.626646	2.629508	1.729457
S	-3.590544	.959988	1.729457
S	.963898	-3.589496	1.729457
С	039370	-3.437075	3.142833
С	-2.956910	1.752633	3.142833
С	2.996279	1.684443	3.142833
С	-2.960314	1.740564	-3.147468
С	027215	-3.433989	-3.147468
С	2.987529	1.693425	-3.147468
Ν	122427	-4.531713	3.904391
Ν	-3.863365	2.371882	3.904391
Ν	3.985792	2.159831	3.904391
Ν	-3.935919	2.234233	-3.915286
Ν	.033056	-4.525722	-3.915286

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Ν	3.902862	2.291489	-3.915286
Н	701711	-4.531866	4.734358
Н	.382107	-5.371553	3.650289
Н	-3.573855	2.873632	4.734358
Н	-4.842955	2.354862	3.650289
Н	4.275566	1.658233	4.734358
Н	4.460848	3.016691	3.650289
Н	-4.233700	1.735395	-4.744078
Н	-4.392037	3.103131	-3.667379
Н	.613954	-4.534189	-4.744078
Н	491372	-5.355181	-3.667379
Н	3.619746	2.798795	-4.744078
Н	4.883409	2.252050	-3.667379
S	1.305389	4.978167	828868
S	-1.281243	4.958554	.851531
С	.000000	5.748667	.002462
Ν	018864	7.088781	011241
Н	719748	7.592566	.515322
Н	.670536	7.600651	545104
S	-4.963913	-1.358584	828868
S	-3.653612	-3.588866	.851531
С	-4.978492	-2.874334	.002462
Ν	-6.129632	-3.560727	011241
Н	-6.215481	-4.419603	.515322
Н	-6.917624	-3.219624	545104
S	3.658525	-3.619583	828868
S	4.934855	-1.369688	.851531
С	4.978492	-2.874334	.002462
Ν	6.148496	-3.528054	011241
Н	6.935229	-3.172963	.515322
Н	6.247089	-4.381026	545104
Н	.000000	.000000	005455

 $[Ag_{11}(H){S_2CNH_2}_9]^+$ (S = 1) C₁ Energy = -2632.3244657 a. u.

Atom X Y Z (Angstrom)

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Ag	-1.714811	0.588153	0.343635
Ag	0.667250	-0.648255	2.267489
Ag	0.084587	2.288390	2.541151
Ag	-0.502290	0.509837	-2.525022
Ag	2.464866	-0.574238	-2.316182
S	-2.494523	1.228917	2.795667
S	-1.482905	-1.586312	3.615347
S	0.028038	4.693923	1.900646
S	-2.303371	2.296336	-3.211269
S	1.233961	-2.802417	-2.563005
S	4.509593	0.658183	-1.504523
Ν	-2.789099	0.084706	5.135216
Ν	-2.252730	5.982841	1.881829
Ν	0.333416	-3.534831	-4.889168
С	-2.291813	-0.070579	3.902997
Н	-3.227989	0.959397	5.394313
Н	-2.714330	-0.658491	5.818021
С	-1.633785	4.869644	1.464813
Н	-3.200048	6.178397	1.587254
Н	-1.763547	6.640722	2.474031
С	0.104365	-2.674915	-3.889259
Н	-0.286867	-3.559358	-5.688348
Н	1.132956	-4.154744	-4.857218
Н	0.353825	0.070000	0.518797
Ag	1.877921	1.129364	0.130219
Ag	3.080039	-1.525790	0.881390
Ag	-2.465137	-1.365426	-1.677988
S	3.822146	1.047529	1.951120
S	1.609515	0.937171	4.146951
S	4.983250	-2.250861	-0.578655
S	1.517131	1.479515	-3.873731
S	-4.072942	0.743308	-1.172443
S	-3.731358	-3.507494	-0.549590
Ν	4.134186	1.462633	4.508713
Ν	6.827916	-0.537711	-1.308511
Ν	-4.877143	2.539410	-2.887275
С	3.232105	1.171308	3.562998
Н	5.105727	1.590309	4.256718
Н	3.850110	1.561572	5.474696

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

С	5.510603	-0.708933	-1.127538
Η	7.184014	0.326946	-1.692462
Η	7.470267	-1.280171	-1.066615
С	-3.795403	1.886306	-2.442516
Η	-4.781458	3.249939	-3.601458
Η	-5.785611	2.353018	-2.484238
Ag	0.211625	-1.519309	-0.506297
Ag	-2.178188	-2.373098	1.278010
Ag	-0.784226	3.109467	-1.115023
S	-0.120459	-3.912834	0.713507
S	1.938446	-2.934065	2.826933
S	-4.642703	-1.603327	1.491227
S	-1.243608	-1.626742	-4.064611
S	1.738999	3.310217	-1.354505
S	-2.580379	3.768860	0.522287
Ν	0.932007	-5.335298	2.633172
Ν	-6.268579	-2.721273	-0.302616
Ν	2.933555	3.661731	-3.643105
С	0.918919	-4.107881	2.099546
Н	0.341603	-6.062648	2.250820
Η	1.554798	-5.550262	3.401675
С	-5.028037	-2.609504	0.168390
Η	-6.463793	-3.314262	-1.098994
Η	-7.026159	-2.195062	0.113935
С	2.104267	2.836839	-2.998809
Н	3.211234	3.461969	-4.595750
Η	3.305035	4.477662	-3.173241

 $[Ag_{11}{S_2CNH_2}_9]^{2+}$ (S = 0) C_1 Energy = -2631.5094321 u. a.

Atom	X	Y	Z (Angst	rom)
Ag	0.136079	-0.071158	4.377787	
Ag	-0.104422	0.056075	-3.691145	
Ag	1.493199	3.389241	1.563045	
Ag	-3.651471	-0.486099	1.637456	
Ag	2.287410	-2.985703	1.450277	

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Ag	0.518684	3.093114	-1.842236
Ag	-2.991095	-0.998486	-1.813045
Ag	2.309146	-1.990553	-1.966411
Ag	-1.852575	-3.041931	0.125145
Ag	-1.724861	3.116546	0.189371
Ag	3.567785	-0.078230	0.025083
S	1.105998	-2.405485	4.018256
S	0.030238	-4.070569	1.757722
С	-0.181627	-3.307678	3.307485
Ν	-1.330807	-3.488687	3.956612
Н	-1.443520	-3.129757	4.896633
Н	-2.055427	-4.083819	3.573319
S	4.456308	-3.347422	-1.779271
S	-4.059152	-2.901170	1.283793
С	-5.290911	-2.936225	0.004229
Ν	-6.362349	-3.662842	0.327830
Н	-6.429361	-4.123972	1.226306
Н	-7.131479	-3.751187	-0.325800
S	2.401545	-0.402798	-4.091558
S	-0.085567	-3.082080	-1.688883
С	3.007923	1.028071	-3.342246
Ν	3.797325	1.819680	-4.058738
Н	4.203624	2.649382	-3.641286
Н	4.023439	1.586451	-5.019835
S	1.653866	1.958263	4.066813
S	3.576956	1.983024	1.755893
С	3.062365	1.336769	3.288281
Ν	3.812789	0.402762	3.870684
Н	3.583535	0.076229	4.801279
Н	4.681349	0.097050	3.448328
S	-2.385784	0.244913	4.129958
S	-3.450754	2.007632	1.940220
С	-2.572104	1.810498	3.430343
Ν	-2.104416	2.896970	4.043414
Н	-1.670165	2.817060	4.954610
Н	-2.283496	3.821455	3.669908
S	-5.229041	-2.173068	-1.503185
S	-0.424824	4.932176	1.304987
С	0.092606	6.035199	0.011362

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Ν	0.022137	7.321382	0.359395
Н	-0.293647	7.596929	1.280663
Н	0.297007	8.040919	-0.298894
S	-1.769901	-1.890072	-3.995184
S	-2.752253	1.630911	-1.581634
С	-0.793270	-3.126745	-3.292927
Ν	-0.542067	-4.209207	-4.019651
Н	-0.003228	-4.973588	-3.628348
Н	-0.909452	-4.292507	-4.961630
S	0.634857	5.618655	-1.534594
S	4.571400	-2.112008	1.070846
С	5.184794	-3.096794	-0.274164
Ν	6.356042	-3.678110	-0.007816
Н	6.810688	-3.551295	0.887479
Н	6.799810	-4.266650	-0.703008
S	-0.955978	2.474175	-3.959159
S	2.667337	1.545010	-1.701311
С	-2.489794	2.252547	-3.200080
Ν	-3.577310	2.570516	-3.892360
Н	-4.494641	2.489206	-3.468427
Н	-3.498607	2.923253	-4.840312

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Figure S4. TDDFT-simulated absorption spectrum of $[Ag_{11}(\mu_5-H)\{S_2CNH_2\}_9]^+$. Solid lines represent the calculated electronic transitions and their lengths are proportional to their oscillator strengths. Values in italics indicate the theoretical λ_{max} values on the simulated curves.

S5. Full reference for Gaussian 03.

 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr. T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, *Gaussian 03, Revision B.04, Gaussian, Inc., Pittsburgh PA*, **2003**.