Supporting Information

Controlled Morphology and Photoreduction Characteristics of Polyoxometalate(POM)/Lipid Complexes and the Effect of Hydrogen Bonding at Molecular Interfaces

T. Noguchi,^{ab} C. Chikara,^a K. Kuroiwa,^{ab} K. Kaneko,^{bc} and N. Kimizuka*^{abd}

^{*a*} Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan

E-mail: n-kimi@mail.cstm.kyushu-u.ac.jp; Fax: +81 92-802-2838

^b Japan Science and Technology (JST), CREST, Japan

^{*c*} Department of Materials Science and Technology, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan

^{*d*} International Research Center for Molecular Systems (IRCMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan

Scheme 1. Synthetic route for lipids 1-3.

Figure S1. TEM-EDX spectrum of nanofibrous assemblies prepared from the CHCl₃ solution of $[SiMo_{12}O_{40}](1)_4$ (1 μ M). The co-existence of Mo, Si, N elements is confirmed, consistent with the complex structure.

Figure S2. Structural transformation of helical ribbons $[SiMo_{12}O_{40}](2)_4$ into nanotubes and their bundles.

Figure S3. FT-IR spectra of air-dried gel prepared from the CHCl₃ gel (4 mM) of $[SiMo_{12}O_{40}](1-3)_4$ and the powdery sample of $[SiMo_{12}O_{40}](DODA)_4$.

Figure S4. Dependence of IVCT absorption maxima on the photoirradiation time.

Figure S5. Schematic illustration of photoreduction and formation of a charge-transfer complex.

Figure S6. Vis-NIR spectrum of $[SiMo_{12}O_{40}](DODA)_4$ in CHCl₃ (4 mM, 1 mm cell). After photoillumination for 120 min.

Figure S7. XPS spectra of $[SiMo_{12}O_{40}](1)_4$ and $[SiMo_{12}O_{40}](2)_4$ before (a,c) and after (b,d) photoirradiation for 120 min, respectively. From the spectral area of the Mo(V) and Mo(VI) peaks, percentages of Mo(V) were determined as 21% for $[SiMo_{12}O_{40}](1)_4$ and 29% for $[SiMo_{12}O_{40}](2)_4$.

Figure S8. (a) Chemical structure of $[SiMo_{12}O_{40}](4)_4$. (b,c) Photoreduction behavior of $[SiMo_{12}O_{40}](4)_4$ in CHCl₃ (b) and in CHCl₃/MeOH (1:1 v/v) (c). (d) Comparison of absorption intensity increase for $[SiMo_{12}O_{40}](4)_4$ in CHCl₃ and in CHCl₃/MeOH (1:1 v/v). (e) Comparison of ¹H NMR spectra for $[SiMo_{12}O_{40}](4)_4$ in CDCl₃ and in CDCl₃/CD₃OD (1:1 v/v).

To confirm that the photoreduction property of POMs is not impaired by self-assembly, we prepared a new POM-lipid complex $[SiMo_{12}O_{40}](4)_4$ (Figure S8a). The amphiphile 4 contains ether linkages in the alkyl chain moiety, which show better dispersibility in organic solvents. $[SiMo_{12}O_{40}](4)_4$ was dispersed in CHCl₃ or in the 1:1 (v/v) mixture of CHCl₃/MeOH.

When $[SiMo_{12}O_{40}](4)_4$ is dispersed in chloroform, ordered self-assemblies are formed as indicated by the broadening of ¹H-NMR spectrum. On the other hand, $[SiMo_{12}O_{40}](4)_4$ does not form aggregates when methanol is added to chloroform at 1:1 (v/v) ratio, as shown by the sharp ¹H-NMR spectrum (Figure S8e).

Upon photoillumination of $[SiMo_{12}O_{40}](4)_4$, blue-colored solutions were obtained with broad absorption bands at 726 nm, indicative of intervalence charge-transfer (IVCT, $Mo^V \rightarrow Mo^{VI}$) bands for reduced $SiMo_{12}O_{40}$ clusters (Figure S8b,c). Although methanol is known to serve as sacrificial electron donor in the photoreduction of POMs, it is noticeable that photoreduction of POMs-lipid complexes proceeded more effectively in CHCl₃, in the ordered nano-assemblies (Figure S8d). These results clearly demonstrate that the redox properties of POMs are well maintained in the self-assembly.