Supporting Information

The Bis(Hydrogenheptaphosphide)iron(II) dianion: a Zintl ion analogue of ferrocene.

Caroline Knapp, Joseph S. Large, Nicholas H. Rees and Jose M. Goicoechea*

Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K.

- 1. Experimental section
- 2. Computed structures and analysis of electronic structure
- 3. NMR spectra
- 4. ES-MS spectra

1. Experimental Section

General synthetic methods. All reactions and product manipulations were carried out under an inert atmosphere using standard Schlenk-line or glovebox techniques (MBraun UNIIab glovebox maintained at < 0.1 ppm H₂O and < 0.1 ppm O₂). The Zintl phase precursor K_3P_7 was synthesised according to a previously reported synthetic procedure from a mixture of the elements (K: 99.95%, Aldrich; P: 99.99%, Aldrich).¹ Anhydrous FeCl₂ (98%, Strem) was used as received. 2,2,2-crypt (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane; 99+%, Merck) was also used as received after careful drying under vacuum. Toluene (tol; 99.9%, Rathburn), tetrahydrofuran (THF; 99.9%, Rathburn) and dimethylformamide (DMF; 99.9%, Aldrich) and pyridine (py; 99.9%, Rathburn) were distilled over sodium metal and CaH₂, respectively. d₅-Pyridine (99.5%, Cambridge Isotope Laboratories, Inc.) was dried over CaH₂ and vacuum distilled. All solvents were stored under argon in gas-tight ampoules. In addition toluene was stored over activated 3 Å molecular sieves (Acros).

 $[K(2,2,2-crypt)]_2[Fe(HP_7)_2]$ (1): K₃P₇ (123 mg, 0.37 mmol), FeCl₂ (30 mg, 0.24 mmol), $[NH_4][B(C_6H_5)_4]$ (95 mg, 0.28 mmol) and 2,2,2-crypt (228 mg, 0.61 mmol) were dissolved in approximately 3 mL of ethylenediamine and left to stir under argon for 3 hours. The resulting reddish-black solution was reduced to dryness under a dynamic vacuum yielding a dark brown residue. This solid was washed twice with approximately 10 mL of THF and sonicated in an effort to dissolve the chloride and tetraphenylborate salt by-products. The THF fractions were filtered off and disposed off and the remaining solid residue dried under vacuum yielding 184 mg (76% yield) of a dark brown solid. X-ray quality crystals of **1** were grown from a pyridine/toluene solvent mixture. Anal. Calcd for $C_{36}H_{74}FeK_2N_4O_{12}P_{14}$: C, 32.69; H, 5.64; N, 4.24. Found: C, 32.39; H, 5.47; N, 4.18. ¹H NMR (500 MHz, d₅-pyridine): δ (ppm) 6.54 (d, ¹*J*(*H*,*P*)=169 Hz, 1H: H1,1A), 3.47 (br s, 12H: 2,2,2-crypt), 3.42 (br s, 12H: 2,2,2-crypt), 2.41 (br s, 12H: 2,2,2-crypt); ³¹P NMR (202.4 MHz, d₅-pyridine): δ (ppm) 151.1 ppm (dt, ¹*J*(*P*,*P*)=267 Hz, ¹*J*(*H*,*P*)=169 Hz, 1P: P1,1A), -0.7 (m, 2P; P2,3,2A,3A), -80.6 (m, 2P: P4,5,4A,5A/P6,7,6A,7A), -121.5 (m, 2P; P6,7,6A,7A/P4,5,4A,5A). ESI– MS (DMF): *m/z* 491.6 [Fe(HP₇)₂]⁻, 907.0 {[K(2,2,2-crypt)][Fe(HP₇)₂]⁻. ESI+ MS (DMF): *m/z* 1737.0 {[K(2,2,2-crypt)]₃[Fe(HP₇)₂]⁺, 2151.2 {[K(2,2,2-crypt)]₄[Fe(HP₇)₂]⁺.

Single crystal X-ray structure determination: Single-crystal X-ray diffraction data were collected using an Enraf-Nonius Kappa-CCD diffractometer and a 95 mm CCD area detector with a graphite-monochromated molybdenum K_{α} source ($\lambda = 0.71073$ Å). Crystals were selected under Paratone-N oil before being mounted on fibres and positioned under a nitrogen stream. Nitrogen flow temperatures were controlled by an Oxford Cryosystems cryostat. Equivalent reflections were merged and diffraction patterns processed with the DENZO and SCALEPACK programs.² The structure was subsequently solved using direct methods, and refined on F² using the SHELXL 97-2 package.³ CCDC-794183 contains the supplementary crystallographic data for 1.

1: Formula: $C_{36}H_{74}FeK_2N_4O_{12}P_{14}$; $M_r = 1322.62$; crystal colour and morphology: small orange plates; crystal size: $0.14 \times 0.10 \times 0.05$ mm; triclinic; space group: *P-1*; a = 10.9876(3) Å; b = 12.1241(4) Å; c = 12.7331(6) Å; $a = 66.710(1)^\circ$; $\beta = 84.955(1)^\circ$; $\gamma = 73.754(2)^\circ$; V = 1495.31(10) Å³; Z = 1; $\rho_{calcd} = 1.469$ g cm⁻³; $\mu = 0.820$ mm⁻¹; T = 150(2) K; 8683 reflections collected; 5154 independent reflections; $R_{int} = 0.0427$; $R_1 = 4.27$ and $R_2 = 8.63$ for $I \ge 2\sigma(I)$; $R_1 = 7.57$ and $R_2 = 10.00$ for all data.

Other characterization techniques: Positive and negative ion mode electrospray mass spectra were recorded on DMF solutions (10–20 mm) on a Masslynx LCT Time of Flight mass spectrometer with a Z-spray source (150°C source temperature, 200°C desolvation temperature, 2.4 kV capillary voltage and 25 V cone voltage). The samples were made up inside a glovebox under an inert atmosphere and rapidly transferred to the spectrometer in an air-tight syringe. Samples were introduced directly with a 1 mL SGE syringe and a syringe pump at 0.6 mL h⁻¹.

¹H and ³¹P NMR spectra were acquired at 500.0 and 202.4 MHz, respectively, on a Varian Unity-plus 500 NMR spectrometer. ¹H spectra were referenced to the most upfield residual protic solvent resonance (pyridine δ 7.22 ppm). ³¹P spectra were externally referenced to H₃PO₄ (δ 0 ppm). Spectral simulations were carried out using the program gNMR.⁴

Elemental analyses were carried out by Stephen Boyer of the London Metropolitan University Samples (approx. 5 mg) were submitted in sealed Pyrex ampoules.

- (a) Corbett, J. D.; Adolphson, D. G.; Merryman, D. J.; Edwards, P. A.; Armatis, F. J. J. Am. Chem. Soc. 1975, 97, 6267. (b) Emmerling, F.; Röhr, C. Z. Naturforsch. 2002, 57b, 963. (c) Santandrea, R. P.; Mensing, C.; von Schnering, H. G. Thermochim. Acta 1986, 98, 301.
- [2] Otwinowski, Z.; Minor, W. Processing of X-ray Diffraction Data Collected in Oscillation Mode, Academic Press: New York, 1997.
- [3] (a) Sheldrick, G. M. Acta Crystallogr. Sect. A 1990, 46, 467. (b) SHELX97, Programs for Crystal Structure Analysis (Release 97–2), Sheldrick, G. M. University of Göttingen (Germany), 1998.
- [4] NMR spectra simulated using: gNMR v5.0, Budzelaar, P. H. M., 1995-2006, IvorySoft.

2. Computed structures and analysis of electronic structure

2.1 Computational details

All calculations described in this paper were performed using the Amsterdam Density Functional package (ADF2007.01).⁵ A triple- ζ Slater-type basis set, extended with a single polarization function, was used to describe all atoms. The local density approximation was employed for the optimizations,⁶ along with the local exchange-correlation potential of Vosko, Wilk and Nusair⁷ and the gradient corrections to exchange and correlation proposed by Becke and Perdew (BP86).⁸ Relativistic effects were incorporated using the Zeroth Order Relativistic Approximation (ZORA).⁹ The presence of cations in the crystal lattice of **1** was modelled by surrounding the anion with a continuum dielectric using COSMO.¹⁰ The chosen dielectric constant $\varepsilon = 16.9$ corresponds to that of ammonia, although structural parameters are not strongly dependent on this choice. All structures were optimized using the gradient algorithm of Versluis and Ziegler.¹¹

[5] (a) te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. J. Comput. Chem. 2001, 22, 931. (b) Fonseca Guerra, C.; Snijders, J. G.; te Velde G.; Baerends, E. J. Theor. Chem. Acc. 1998, 99, 391. (c) ADF 2008.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.

[6] Parr R. G.; Yang, W. *Density Functional Theory of Atoms and Molecules*, Oxford University Press: Oxford, 1989.

[7] Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200.

[8] (a) Becke, A. D. Phys. Rev. A 1988, 38, 3098. (b) Perdew, J. P. Phys. Rev. B 1986, 33, 8822.

[9] (a) van Lenthe, E.; Baerends, E. J.; Snijders, J. G. J. Chem. Phys. 1993, 99, 4597. (b) van Lenthe, E.;
Baerends E. J.; Snijders, J. G. J. Chem. Phys. 1994, 101, 9783. (c) van Lenthe, E.; Ehlers, A.; Baerends, E. J. J. Chem. Phys. 1999, 110, 8943.

[10] Klamt, A. J. Phys. Chem. 1995, 2224.

[11] Versluis L.; Ziegler, T. J. Chem. Phys. 1988, 88, 322.

Cartesian coordinates [Å] for the optimized structure of the norbornadiene-like isomer of [HP₇]²⁻

X	У	Z
-0.612522	2.004977	0.000000
-0.240560	0.574797	-1.677158
-0.240560	0.574797	1.677158
1.746484	-0.141037	-1.084488
1.746484	-0.141037	1.084488
-1.126080	-1.348493	-1.075277
-1.126080	-1.348493	1.075277
-2.042863	1.892607	0.000000
	x -0.612522 -0.240560 -0.240560 1.746484 1.746484 -1.126080 -1.126080 -2.042863	xy-0.6125222.004977-0.2405600.574797-0.2405600.5747971.746484-0.1410371.746484-0.141037-1.126080-1.348493-1.1260801.892607

Figure S1. Optimized geometry of the norbornadiene-like isomer of the $[HP_7]^{2-}$ cluster anion from DFT calculations.

Figure S2. Selected frontier orbitals for the optimized structure of the $[HP_7]^{2-}$ anion. a) LUMO b) HOMO, c) HOMO – 1, d) HOMO – 9, e) HOMO – 11.

Cartesian coordinates [Å] for the optimized structure of *staggered* [Fe(HP₇)₂]²⁻

Atom	X	У	Z
Fe1	0.000000	0.000000	0.000000
P1	0.037816	0.371658	4.423898
P2	-1.678297	0.059825	3.065422
P3	1.724140	0.026016	3.040191
P4	-1.089812	1.523059	1.452430
P5	1.101632	1.517585	1.484160
P6	-1.068879	-1.478804	1.550033
P7	1.096611	-1.488778	1.485973
H1	0.017708	-0.905890	5.083853
P1A	0.261063	0.261733	-4.420870
P2A	1.278335	-1.139015	-3.050936
P3A	-1.225067	1.161861	-3.064470
P4A	-0.225192	-1.826987	-1.532797
P5A	-1.811586	-0.354790	-1.492939
P6A	1.839142	0.349065	-1.448929
P7A	0.234367	1.842377	-1.501259
H1A	-0.581997	-0.677482	-5.113691

Figure S3. Optimized geometry of the staggered isomer of the $[Fe(HP_7)_2]^{2-}$ cluster anion from DFT calculations.

Cartesian coordinates [Å] for the optimized structure of *eclipsed* [Fe(HP₇)₂]²⁻

Atom	X	У	Ζ
Fe	0.000000	0.000000	0.000000
P1	0.158366	-0.191586	-4.508978
P2	-1.592919	0.161187	-3.213461
P3	1.811160	0.006541	-3.065380
P4	-1.113011	-1.365328	-1.631619
P5	1.062500	-1.483228	-1.558274
P6	-0.973849	1.551236	-1.552367
P7	1.179231	1.478562	-1.484512
H1A	0.241936	1.104376	-5.126068
P1A	-0.158366	0.191586	4.508978
P2A	1.592919	-0.161187	3.213461
P3A	-1.811160	-0.006541	3.065380
P4A	1.113011	1.365328	1.631619
P5A	-1.062500	1.483228	1.558274
P6A	0.973849	-1.551236	1.552367
P7A	-1.179231	-1.478562	1.484512
H1A	-0.241936	-1.104376	5.126068

Figure S4. Optimized geometry of the eclipsed isomer of the $[Fe(HP_7)_2]^{2-}$ cluster anion from DFT calculations.

Table S1. Interatomic distances [Å] for the $[Fe(HP_7)_2]^{2-}$ cluster anion crystallographically characterized in **1** and for the optimized computed structures.

bond	1	staggered isomer	eclipsed isomer
Fe1-P4	2.370 (2)	2.367	2.401
Fe1-P5	2.412(2)	2.388	2.399
Fe1-P6	2.464(2)	2.395	2.401
Fe1-P7	2.486(2)	2.374	2.404
P1-P2	2.051(7)	2.208	2.207
P1-P3	2.208(6)	2.204	2.203
P2-P4	2.215(2)	2.257	2.251
P2-P6	2.206(3)	2.245	2.253
P3-P5	2.206(3)	2.244	2.248
P3-P7	2.218(3)	2.261	2.251
P4-P5	2.135(2)	2.193	2.180
P6-P7	2.149(3)	2.164	2.155
P4-P6	3.001(3)	3.001	2.921
P5-P7	3.023(3)	3.002	2.965
P1-H1	1.20(2)	1.440	1.438
Fe1-P4A	2.378(2)	2.394	2.401
Fe1-P5A	2.268(2)	2.372	2.399
Fe1-P6A	2.338(2)	2.370	2.401
Fe1-P7A	2.272(2)	2.392	2.404
P1A-P2A	2.177(8)	2.211	2.207
P1A -P3A	2.222(8)	2.209	2.203
P2A-P4A	2.197(3)	2.244	2.250
P2A-P6A	2.222(3)	2.256	2.253
P3A-P5A	2.206(3)	2.259	2.248
P3A-P7A	2.201(3)	2.244	2.251
P4A-P5A	2.132(3)	2.166	2.180
P6A-P7A	2.153(3)	2.192	2.155
P4A-P6A	3.002(3)	3.004	2.921
P5A-P7A	2.985(3)	3.006	2.965
P1A-H1A	1.07(7)	1.438	1.438

Figure S5. Qualitative molecular orbital diagram for the *staggered*-isomer of $[Fe(HP_7)_2]^{2-}$. An idealized D_{4d} geometry has been assumed to highlight symmetry allowed interactions between metal based orbitals and the symmetry adapted linear combinations (SALC) of the π -manifold frontier orbitals of two $[HP_7]^{2-}$ cages.

Figure S6. Selected frontier molecular orbitals for the computed optimized geometry of the *staggered*-isomer of $[Fe(HP_7)_2]^{2-}$. a) LUMO; b) LUMO+1; c) HOMO; d) HOMO-1; e) HOMO-2; f) HOMO-4; g) HOMO-11.

Figure S7. Qualitative molecular orbital diagram for the *eclipsed*-isomer of $[Fe(HP_7)_2]^{2-}$. An idealized D_{4h} geometry has been assumed to highlight symmetry allowed interactions between metal based orbitals and the symmetry adapted linear combinations (SALC) of the π -manifold frontier orbitals of two $[HP_7]^{2-}$ cages.

Figure S8. Selected frontier molecular orbitals for the computed optimized geometry of the *eclipsed*-isomer of $[Fe(HP_7)_2]^{2-}$. a) LUMO; b) LUMO+1; c) HOMO; d) HOMO-1; e) HOMO-2; f) HOMO-4; g) HOMO-9.

Figure S8. Room temperature ${}^{31}P{}^{1}H$ NMR spectrum of a d₅-pyridine solution of **1**.

Figure S9. Room temperature ³¹P NMR spectrum of a d₅-pyridine solution of 1.

Figure S10. Room temperature ¹H NMR spectrum of a d_5 -pyridine solution of **1**. Resonances highlighted with an asterisk correspond to protic pyridine whereas those highlighted with a triangle arise from trace amounts of THF.

Figure S11. Room temperature ${}^{1}H{}^{31}P{}$ NMR spectrum of a d₅-pyridine solution of **1**. Resonances highlighted with an asterisk correspond to protic pyridine. Resonances identified with a triangle arise from trace amounts of THF, whereas those with a square correspond to $[B(C_6H_5)_4]^-$.

4. ES-MS spectra

