Supporting Informations

Triazides of Heavy Group 15 Elements

Stephan Schulz,* Benjamin Lyhs, Georg Jansen, Dieter Bläser and Christoph Wölper

Caution!

Antimony and bismuth azide compounds are potentially toxic and can decompose explosively under various conditions! They should be handled only on a scale of less than 2 mmol with appropriate safety precautions (safety shields, safety glasses, face shields, leather gloves, protective clothing, such as leather suits, and ear plugs). Teflon containers should be used, whenever possible, to avoid hazardous fragmentation. Ignoring safety precautions can lead to serious injuries.

Experimental Section

Reactions were carried out in traps constructed from FEP tubes. Volatile materials were handled in a stainless steel-Teflon-FEP or Duran glass vacuum line. Nonvolatile materials were handled in the dry argon atmosphere of a glove box. The CH₂Cl₂ was dried over CaH₂ and degassed prior to use. The (CH₃)₃SiN₃ and pyridine were purified by fractional condensation prior to use. The SbF₃ was purified by sublimation. The BiF₃ was commercially available and used as received. A Bruker Avance 500 spectrometer was used for NMR spectroscopy. ¹H and ¹³C{¹H} NMR spectra were referenced to internal CDCl₃ (¹H: $\delta = 7.26$; ¹³C: $\delta = 77.0$), ¹⁴N{¹H} spectra to external CH₃NO (δ (¹⁴N) = 0). The Raman spectra were recorded with a Bruker FT-Ramanspectrometer RFS 100/S using the 1064 nm line of a Nd:YAG laser. The backscattered (180°) radiation was sampled and analysed (Stoke range: 50 to 4000 cm⁻¹). The powdered samples were measured in melting point capillaries (typical operation parameters: 8000 scans and a resolution of 2 cm⁻¹) using a laserpower of 100 mW. IR spectra were recorded on a Alpha-T FT-IR spectrometer with a single reflection ATR sampling module.

General synthesis of $E(N_3)_3$ (E = Sb 1, Bi 2)

A sample of EF_3 (SbF₃: 0.10 g (0.56 mmol; BiF₃: 0.10 g (0.38 mmol)) was loaded in the glovebox into a FEP reaction trap. 3 mL of Me₃SiN₃ was condensed into the trap and the resulting suspension was slowly warmed to ambient temperature over a period of 6 h. After

stirring the suspension for 7 days, all volatile components were pumped off, yielding the triazides as colorless (1) and light yellow (2) solids in quantitative yields.

Sb(N₃)₃ (1): M.p: Detonation at 248 °C (sealed capillary). Yield 0.14 g (100%). IR (ATR, 32 scans): $\nu = 2080$ (s), 1326 (m), 1242 (s), 1162 (w), 659 (s), 584 (m), 440 (m) cm⁻¹. Raman (100 mW, 25 °C, 8000 Scans): $\nu = 2122$, 2094, 2078, 1329, 1261, 1247, 659, 386, 263, 244, 208, 140, 113, 81 cm⁻¹. ¹⁴N NMR (500 MHz, CH₂Cl₂, 25 °C): $\delta = -134$ (N_β, $\Delta \mu_{1/2} = 26$ Hz), -169 (N_γ, $\Delta \mu_{1/2} = 34$ Hz), -321 (N_α, $\Delta \mu_{1/2} = 170$ Hz).

Bi(*N*₃)₃ (2): M.p: Detonation at 254 °C (sealed capillary). Yield 0.13 g (100 %). IR (ATR, 32 scans): v = 2056 (s), 1317 (m), 1252 (s), 1175 (w), 649 (m), 590 (m) cm⁻¹. Raman (100 mW, 25 °C, 8000 Scans): v = 2103, 2069, 2054, 1333, 1319, 1271, 1254, 652, 590, 342, 309, 250, 230, 202, 178, 167, 131, 117, 85 cm⁻¹. ¹⁴N NMR (500 MHz, CH₂Cl₂, 25 °C): $\delta = -135$ (N_β, $\Delta \mu_{1/2} = 20$ Hz), -170 (N_γ, $\Delta \mu_{1/2} = 32$ Hz), -324 (N_α, $\Delta \mu_{1/2} = 140$ Hz).

Synthesis of $(Py)_2$ -Bi $(N_3)_3$ (3)

3 mL of CH_2Cl_2 and 2 mL of pyridine were condensed in a FEP reaction trap filled with 0.10 g (0,30 mmol) $Bi(N_3)_3$ and the resulting mixture was warmed to ambient temperature over a period of 6 h. Single crystals of **3** were obtained from this solution after storage at 0 °C for 48 h.

M.p: Detonation at 250 °C (sealed capillary). IR (ATR, 32 scans): $\nu = 3311$ (w), 2954 (w), 2922 (w), 2853 (w), 2040 (s), 2022 (s), 1721 (w), 1625 (w), 1595 (m), 1485 (w), 1439 (m), 1316 (s), 1254 (s), 1214 (m), 1145 (w), 1063 (m), 1033 (w), 1002 (m), 746 (m), 698 (s), 642 (m), 618 (m), 593 (w), 521 (w), 417 (w) cm⁻¹. Raman (100 mW, 25 °C, 8000 Scans): $\nu = 3188$, 3144, 3066, 2996, 2963, 2918, 2095, 2044, 1596, 1572, 1486, 1444, 1327, 1274, 1215, 1150, 1064, 1035, 1003, 650, 620, 602, 417, 336, 309, 253, 223, 197, 165, 103, 84 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 25 °C): $\delta = 7.29$ (m, H-2), 7.68 (m, H-3), 8.62 (d, H-1) ppm. ¹³C{¹H} NMR (500 MHz, CDCl₃, 25 °C): $\delta = 123.7$ (C-2), 135.9 (C-3), 149.9 (C-1) ppm. ¹⁴N NMR (500 MHz, CH₂Cl₂, 25 °C): $\delta = -66$ (N_{py}, $\Delta \mu_{1/2} = 120$ Hz), -135 (N_β, $\Delta \mu_{1/2} = 25$ Hz), -172 (N_γ, $\Delta \mu_{1/2} = 480$ Hz), -325 (N_α, $\Delta \mu_{1/2} = 580$ Hz) ppm.

Single Crystal Structure Determination of 1 and 3

The crystals were mounted on nylon loops in inert oil. Data were collected on a Bruker AXS D8 Kappa diffractometer with APEX2 detector (mono-chromated $Mo_{K\alpha}$ radiation, $\lambda = 0.71073$ Å) at 100 K. The structures were solved by Direct Methods (SHELXS-97)^[1] and refined anisotropically by full-matrix least-squares on F^2 (SHELXL-97)^[2]. Absorption corrections were performed semi-empirically from equivalent reflections on basis of multi-scans (Buker AXS APEX2). Hydrogen atoms were refined using a riding model.

Details of the crystal structure determination of 1 may be obtained from Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: +49-7247-808-666; e-mail: crysdata@fiz-karlsruhe.de,) on quoting the deposition number CSD-422405. CCDC-803386 contains the supplementary crystallographic data of complex 3. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

References

[1] G. M. Sheldrick, Acta Crystallogr. 1990, A46, 467.

[2] G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures University of Göttingen, Göttingen (Germany) **1997**. (see also Sheldrick, G. M. Acta Crystallogr. 2008, **A64**, 112)

Table 1. Crystal data and structure refinement	ent for 1 .		
Empirical formula	N₀Sb		
Formula weight	247.84 Da		
Density (calculated)	2.811 g cm ⁻³		
<i>F</i> (000)	228		
Temperature	103(1) K		
Crystal size	0.07 x 0.05 x 0.01 mm		
Crystal colour	colourless		
Crystal description	plate		
Wavelength	0.71073 Å		
Crystal system	triclinic		
Space group	$P \overline{1}$		
Unit cell dimensions	a = 6.6694(6) Å	$\alpha = 83.651(5)^{\circ}$	
	b = 6.9045(6) Å	$\beta = 65.850(5)^{\circ}$	
	c = 7.0314(6) Å	.γ= 83.595(5)°	
Volume	292.85(4) Å ³		
Ζ	2		
Cell measurement reflections used	2561		
Cell measurement theta min/max	2.97° to 25.12°		
Diffractometer control software	Bruker AXS APEX 2 Ver	rs.3.0/2009	
Diffractometer measurement device	Bruker D8 KAPPA series II with		
	APEX II area detector sys	stem	
Diffractometer measurement method	Data collection strategy A	PEX 2/COSMO	
Theta range for data collection	2.98° to 25.20°		
Completeness to theta = 25.20°	96.3 %		
Index ranges	-7<=h<=7, -8<=k<=8, -7<	<= <i>l</i> <=8	
Computing data reduction	Bruker AXS APEX 2 Ver	rs.3/2009	
Absorption coefficient	4.642 mm ⁻¹		
Absorption correction	Semi-empirical from equi	valents	
Empirical absorption correction	Bruker AXS APEX 2 Ver	rs.3/2009	

Max. / min. transmission R(merg) before/after correction Computing structure solution Computing structure refinement Refinement method Reflections collected Independent reflections Data / restraints / parameters Goodness-of-fit on F^2 Weighting details

Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole
Comment

0.75 / 0.64 0.0511 / 0.0359 Bruker AXS SHELXTL Vers. 2008/4/(c) 2008 Bruker AXS SHELXTL Vers. 2008/4/(c) 2008 Full-matrix least-squares on F^2 3719 1012 [R(int) = 0.0275]933 / 0 / 91 1.120 $w = 1/[\sigma^2 (Fo^2) + (0.0212*P)^2 + 2.1026*P]$ where $P = (Fo^2 + 2Fc^2)/3$ R1 = 0.0254, wR2 = 0.0622R1 = 0.0303, wR2 = 0.06391.269 and -0.802 eÅ-3 The crystallization was performed on the diffractometer at a temperature of 296 K with a sublimation procedure using focussed infrared-laser-radiation according to: R. Boese, M. Nussbaumer, "In Situ Crystallisation Techniques", in: "Organic Crystal Chemistry", Ed. D.W. Jones, Oxford University

Press, Oxford, England, (1994) 20-37. For proper centring the crystal was removed from the capillary and mounted on a nylon loop.

	x	У	Z	U(eq)	
Sb(1)	1700(1)	4538(1)	6846(1)	15(1)	
N(1)	1364(9)	6458(7)	9185(8)	19(1)	
N(2)	1992(9)	8114(8)	8589(8)	19(1)	
N(3)	2559(10)	9634(8)	8088(9)	28(1)	
N(4)	3750(8)	6537(7)	4561(8)	19(1)	
N(5)	2798(8)	7867(7)	3815(8)	20(1)	
N(6)	2000(9)	9062(8)	3070(9)	27(1)	
N(7)	-1127(8)	6091(7)	6556(8)	18(1)	
N(8)	-2619(8)	6668(7)	8172(8)	18(1)	
N(9)	-4045(9)	7186(8)	9623(9)	25(1)	

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å ² x 10³) for for **1**. U(eq) is defined as one third of the trace of the orthogonalized *Uij* tensor.

Table 3. Bond lengths [Å] and angles $[\circ]$ for for 1.

Sb(1)-N(4)	2.119(5)	N(4)-Sb(1)-N(7)	89.92(19)
Sb(1)-N(7)	2.136(5)	N(4)-Sb(1)-N(1)	88.4(2)
Sb(1)-N(1)	2.151(5)	N(7)-Sb(1)-N(1)	88.52(19)
N(1)-N(2)	1.231(7)	N(2)-N(1)-Sb(1)	117.8(4)
N(2)-N(3)	1.125(7)	N(3)-N(2)-N(1)	178.5(6)
N(4)-N(5)	1.248(7)	N(5)-N(4)-Sb(1)	116.1(4)
N(5)-N(6)	1.128(7)	N(6)-N(5)-N(4)	177.4(6)
N(7)-N(8)	1.235(7)	N(8)-N(7)-Sb(1)	117.1(4)
N(8)-N(9)	1.133(8)	N(9)-N(8)-N(7)	177.4(6)

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011 Table 4. Intermolecular contacts [Å] and angles [°] for for 1.

$Sb(1) - N(1)_{1}$	2.768 (5)
Sb(1) - N(4)	2.819 (5)
$Sb(1) - N(7)_{3}$	2.659 (5)
$N(1) - Sb(1) - N(1)_{1}$	65.1 (2)
N(1) - Sb(1) - N(4)	99.2 (2)
$N(1) - Sb(1) - N(7)_{3}$	149.7 (2)
$N(4) - Sb(1) - N(1)_{1}$	152.3 (2)
N(4) - Sb(1) - N(4)	65.2 (2)
$N(4) - Sb(1) - N(7)_{3}$	77.5 (2)
$N(7) - Sb(1) - N(1)_{1}$	82.1 (2)
N(7) - Sb(1) - N(4)	153.5 (2)
$N(7) - Sb(1) - N(7)_{3}$	65.1 (2)
$N(1)_{1} = Sb(1) - N(4)_{2}$	124.1 (1)
$N(1)_{1} = Sb(1) - N(7)_{3}$	121.6 (2)

Symmetry transformations used to generate equivalent atoms:

- \$1 -x, -y+1, -z+2
- \$2 -x+1, -y+1, -z+1
- \$3 -x, -y+1, -z+1

	<i>U</i> 11	U22	<i>U</i> 33	<i>U</i> 23	<i>U</i> 13	<i>U</i> 12
Sb(1)	12(1)	20(1)	11(1)	0(1)	-4(1)	-2(1)
N(1)	23(3)	22(3)	10(3)	0(2)	-5(2)	-6(2)
N(2)	24(3)	25(3)	12(3)	0(2)	-12(2)	-3(2)
N(3)	40(4)	25(3)	26(3)	3(3)	-19(3)	-9(3)
N(4)	11(3)	26(3)	16(3)	6(2)	-1(2)	-5(2)
N(5)	16(3)	24(3)	10(3)	1(2)	3(2)	-3(2)
N(6)	22(3)	29(3)	18(3)	4(2)	0(3)	5(2)
N(7)	11(3)	29(3)	9(3)	-4(2)	-3(2)	8(2)
N(8)	15(3)	22(3)	20(3)	2(2)	-10(3)	-4(2)
N(9)	17(3)	38(3)	16(3)	-3(3)	-2(3)	6(3)

Table 5. Anisotropic displacement parameters (Å²x 10³) for for **1**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U 1 1 + ... + 2h k a^* b^* U 12]$

Asymmestric unit of **1**. Thermal ellipsiods shown at 50% probability levels.

Empirical absorption correction

R(merg) before/after correction

Computing structure refinement

Computing structure solution

Max. / min. transmission

Table 1. Crystal data and structure refinement for	3	
--	---	--

Empirical formula	C10H10BiN11	
Formula weight	493.27 Da	
Density (calculated)	2.208 g cm ⁻³	
F(000)	920	
Temperature	100(2) K	
Crystal size	0.15 x 0.10 x 0.10 mm	
Crystal colour	colourless	
Crystal description	prism	
Wavelength	0.71073 Å	
Crystal system	orthorhombic	
Space group	$Cmc2_1$	
Unit cell dimensions	a = 21.7967(16) Å	$\alpha = 90^{\circ}$
	b = 10.8375(8) Å	$\beta = 90^{\circ}$
	c = 6.2825(5) Å	.γ=90°
Volume	1484.06(19) Å ³	
Ζ	4	
Cell measurement reflections used	9892	
Cell measurement theta min/max	3.4° to 30.7°	
Diffractometer control software	Bruker AXS APEX 2	Vers.3.0/2009
Diffractometer measurement device	Bruker D8 KAPPA set	ries II with
	APEX II area detector	system
Diffractometer measurement method	Data collection strateg	y APEX 2/COSMO
Theta range for data collection	1.87° to 30.55°	
Completeness to theta = 30.55°	99.9 %	
Index ranges	-31<=h<=31, -15<=k<	=15, - 8<= <i>l</i> <=8
Computing data reduction	Bruker AXS APEX 2	Vers.3/2009
Absorption coefficient	11.896 mm ⁻¹	
Absorption correction	Semi-empirical from e	quivalents

Bruker AXS APEX 2 Vers.3/2009 0.7461 / 0.5245

0.1000/ 0.0586 Bruker AXS SHELXTL Vers. 2008/4/(c) 2008 Bruker AXS SHELXTL Vers. 2008/4/(c) 2008

Full-matrix least-squares on F^2
31065
2319 [$R(int) = 0.0327$]
2234 / 1 / 106
1.114
$w = 1/[\sigma^2 (Fo^2) + (0.0121*P)^2 + 0.5372*P]$
where $P = (Fo^2 + 2Fc^2)/3$
R1 = 0.0126, wR2 = 0.0284
R1 = 0.0138, wR2 = 0.0287
-0.001(6)
Flack H.D., Acta Cryst. A39 (1983) 876-881
1.038 and -0.762 eÅ ⁻³
Riding model on idealized geometries
with the 1.2 fold isotropic displacement
parameters of the equivalent Uij of the
corresponding carbon atom.

	x	У	Z	U(eq)	
Bi(1)	5000	8704(1)	8770(1)	11(1)	
N(1)	5000	7507(3)	11747(5)	19(1)	
N(2)	5000	6405(3)	11396(6)	27(1)	
N(3)	5000	5365(4)	11149(8)	79(2)	
N(4)	4350(1)	9933(2)	10736(3)	15(1)	
N(5)	3853(1)	10211(2)	10004(3)	13(1)	
N(6)	3376(1)	10494(2)	9404(3)	23(1)	
N(7)	3997(1)	7443(2)	8050(3)	16(1)	
C(1)	3516(1)	7347(2)	9372(4)	19(1)	
C(2)	2982(1)	6727(2)	8832(9)	22(1)	
C(3)	2945(1)	6177(2)	6843(5)	24(1)	
C(4)	3439(2)	6274(2)	5477(5)	26(1)	
C(5)	3953(1)	6916(2)	6149(4)	22(1)	

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² $x \ 10^3$) for **3**. *U*(eq) is defined as one third of the trace of the orthogonalized *Uij* tensor.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011 Table 3. Bond lengths [Å] and angles [°] for 3.

Bi(1)-N(1)	2.277(3)	N(4)#2-Bi(1)-N(4)#3	60.92(8)
Bi(1)-N(4)	2.304(2)	N(4)-Bi(1)-N(7)	83.13(7)
Bi(1)-N(7)	2.618(2)	N(4)#1-Bi(1)-N(7)	155.27(7)
Bi(1)-N(4)#2	2.797(2)	N(7)-Bi(1)-N(4)#2	74.61(6)
N(1)-N(2)	1.214(4)	N(7)#1-Bi(1)-N(4)#2	125.54(7)
N(2)-N(3)	1.138(5)	N(7)-Bi(1)-N(7)#1	113.27(9)
N(4)-N(5)	1.213(3)	N(2)-N(1)-Bi(1)	114.3(3)
N(5)-N(6)	1.148(3)	N(3)-N(2)-N(1)	177.4(5)
N(7)-C(5)	1.327(3)	N(5)-N(4)-Bi(1)	119.25(15)
N(7)-C(1)	1.341(3)	N(5)-N(4)-Bi(1)#4	125.40(16)
C(1)-C(2)	1.386(3)	Bi(1)-N(4)-Bi(1)#4	111.00(8)
C(2)-C(3)	1.387(6)	N(6)-N(5)-N(4)	176.8(2)
C(3)-C(4)	1.380(5)	C(5)-N(7)-C(1)	117.9(2)
C(4)-C(5)	1.385(4)	C(5)-N(7)-Bi(1)	116.13(18)
		C(1)-N(7)-Bi(1)	125.88(16)
N(1)-Bi(1)-N(4)	83.62(9)	N(7)-C(1)-C(2)	122.9(3)
N(1)-Bi(1)-N(4)#2	149.40(4)	C(1)-C(2)-C(3)	118.5(3)
N(1)-Bi(1)-N(7)	81.04(6)	C(4)-C(3)-C(2)	118.9(3)
N(4)-Bi(1)-N(4)#2	75.42(4)	C(3)-C(4)-C(5)	118.6(3)
N(4)-Bi(1)-N(4)#1	75.96(10)	N(7)-C(5)-C(4)	123.3(3)
N(4)#1-Bi(1)-N(4)#2	111.86(4)		

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y,z #2 x,-y+2,z-1/2 #3 -x+1,-y+2,z-1/2 #4 -x+1,-y+2,z+1/2

Table 4. Anisotropic displacement parameters (Å²x 10³) for **3**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U 11 + ... + 2h k a^* b^* U 12]$

	<i>U</i> 11						
		022	<i>U</i> 33	<i>U</i> 23	<i>U</i> 13	<i>U</i> 12	
Bi(1)	9(1)	13(1)	10(1)	0(1)	0	0	
N(1)	21(2)	21(1)	13(1)	4(1)	0	0	
N(2)	40(2)	24(2)	16(2)	5(1)	0	0	
N(3)	177(7)	22(2)	38(3)	11(2)	0	0	
N(4)	10(1)	22(1)	13(1)	-2(1)	1(1)	1(1)	
N(5)	11(1)	17(1)	12(1)	-3(1)	2(1)	1(1)	
N(6)	14(1)	32(1)	22(1)	-4(1)	-2(1)	6(1)	
N(7)	15(1)	18(1)	16(1)	0(1)	0(1)	-4(1)	
C(1)	20(1)	18(1)	20(1)	0(1)	0(1)	-2(1)	
C(2)	15(1)	18(1)	32(1)	2(2)	4(2)	-2(1)	
C(3)	20(1)	18(1)	33(2)	3(1)	-9(1)	-5(1)	
C(4)	35(2)	25(1)	19(1)	-1(1)	-6(1)	-10(1)	
C(5)	24(1)	24(1)	18(1)	0(1)	2(1)	-8(1)	

Table 5. Hydrogen coordinates ($x \ 10^4$) and displacement parameters (Å² $x \ 10^3$) for **3**.

	x	у	Ζ	U(eq)	
H(1)	3543	7720	10737	23	
H(2)	2648	6681	9803	26	
H(3)	2587	5741	6427	28	
H(4)	3426	5908	4104	32	
H(5)	4291	6983	5202	26	

Table 6. Torsion angles [°]for **3**.

N(4)#1-Bi(1)-N(1)-N(2)	-141.74(5)	N(4)#1-Bi(1)-N(7)-C(5)	178.30(19)
N(4)-Bi(1)-N(1)-N(2)	141.74(5)	N(4)-Bi(1)-N(7)-C(5)	146.0(2)
N(7)-Bi(1)-N(1)-N(2)	57.72(5)	N(7)#1-Bi(1)-N(7)-C(5)	-53.2(2)
N(7)#1-Bi(1)-N(1)-N(2)	-57.72(5)	N(4)#2-Bi(1)-N(7)-C(5)	69.32(19)
N(4)#2-Bi(1)-N(1)-N(2)	95.10(17)	N(4)#3-Bi(1)-N(7)-C(5)	34.0(2)
N(4)#3-Bi(1)-N(1)-N(2)	-95.10(17)	N(1)-Bi(1)-N(7)-C(1)	54.8(2)
N(1)-Bi(1)-N(4)-N(5)	-125.8(2)	N(4)#1-Bi(1)-N(7)-C(1)	2.4(3)
N(4)#1-Bi(1)-N(4)-N(5)	149.20(16)	N(4)-Bi(1)-N(7)-C(1)	-29.8(2)
N(7)-Bi(1)-N(4)-N(5)	-44.11(19)	N(7)#1-Bi(1)-N(7)-C(1)	130.92(18)
N(7)#1-Bi(1)-N(4)-N(5)	-177.69(16)	N(4)#2-Bi(1)-N(7)-C(1)	-106.5(2)
N(4)#2-Bi(1)-N(4)-N(5)	31.72(17)	N(4)#3-Bi(1)-N(7)-C(1)	-141.83(19)
N(4)#3-Bi(1)-N(4)-N(5)	81.52(17)	C(5)-N(7)-C(1)-C(2)	-0.1(4)
N(1)-Bi(1)-N(4)-Bi(1)#4	76.35(8)	Bi(1)-N(7)-C(1)-C(2)	175.72(19)
N(4)#1-Bi(1)-N(4)-Bi(1)#4	-8.64(11)	N(7)-C(1)-C(2)-C(3)	0.4(4)
N(7)-Bi(1)-N(4)-Bi(1)#4	158.05(9)	C(1)-C(2)-C(3)-C(4)	-0.4(4)
N(7)#1-Bi(1)-N(4)-Bi(1)#4	24.5(2)	C(2)-C(3)-C(4)-C(5)	0.1(4)
N(4)#2-Bi(1)-N(4)-Bi(1)#4	-126.13(11)	C(1)-N(7)-C(5)-C(4)	-0.2(4)
N(4)#3-Bi(1)-N(4)-Bi(1)#4	-76.32(11)	Bi(1)-N(7)-C(5)-C(4)	-176.4(2)
N(1)-Bi(1)-N(7)-C(5)	-129.4(2)	C(3)-C(4)-C(5)-N(7)	0.2(4)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y,z #2 x,-y+2,z-1/2 #3 -x+1,-y+2,z-1/2 #4 -x+1,-y+2,z+1/2 Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011 Table 7. Hydrogen bonds for 3 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(2)-H(2)N(6)#5	0.95	2.59	3.268(3)	128.6

Symmetry transformations used to generate equivalent atoms:

#5 -x+1/2,y-1/2,z

Figure 2

Computational Studies

All geometries were fully optimized within the designated symmetry constraints (using tightened convergence criteria and improved integration grids) at the density functional theory level, employing the B3LYP and BP86 exchange-correlation functionals [1] as implemented in the Turbomole V6.0 quantum chemistry program package [2,3]. A triple-zeta valence quality Gaussian type function basis set termed def2-TZVP [4] has been used throughout. The core electrons of the Bi atom were replaced with a scalar relativistiv effective core potential [5]. In the BP86 computations the resolution-of-the-identity approximation was employed, making use of an appropriate auxiliary basis set [6]. This level of theory has also been employed to verify that the optimized structures were minima by frequency analyses making use of analytical second derivatives [7].

Atom coordinates, energies and frequencies of all optimized geometries are given below.

[1] (a) P. A. M. Dirac; Proc. Roy. Soc. (London) A 123 (1929) 714. (b) J. C. Slater; Phys. Rev. 81 (1951) 385. (c) S. Vosko, L.Wilk, M. Nussair; Can. J. Phys. 58 (1980) 1200. (d) A. D. Becke; Phys. Rev. A 38 (1988) 3098. (e) C. Lee, W. Yang, and R. G. Parr; Phys. Rev. B 37 (1988) 785. (f) A. D. Becke,; J. Chem. Phys. 98 (1993) 5648. (g) J. P. Perdew; Phys. Rev. B 33 (1986) 8822.

[2] TURBOMOLE V6.0 2009, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com

[3] (a) R. Ahlrichs, M. Bär, M. Häser, H. Horn, and C. Kölmel; Chem. Phys. Lett. 162 (1989)
165. (b) O. Treutler and R. Ahlrichs, J. Chem. Phys. 102 (1995) 346. (c) M. von Arnim and R. Ahlrichs; J. Chem. Phys. 111 (1999) 183.

[4] F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7 (2005) 3297.

[5] B. Metz, H. Stoll, and M. Dolg, J. Chem. Phys. 113 (2000) 2563.

[6] . Weigend, Phys. Chem. Chem. Phys. 8 (2006) 1057.

[7] P. Deglmann, K. May, F. Furche, and R. Ahlrichs, Chem. Phys. Lett. 384 (2004) 103.

Calculated Structures and Frequencies

BP86/def2-TZVP-calculated C₃-symmetrical structure of Bi(N₃)₃.

Energy (in Hartree) and atomic corrdinates (in Å) of the BP86/def2-TZVP-calculated C_3 -symmetrical structure of Bi(N_3)₃:

Energy = -707.7129931738							
Bi	0.000000	0.000000	-1.8106910				
Ν	-1.3906848	-1.3323815	-0.7573443				
Ν	-1.0188723	-1.9759376	0.2239646				
Ν	-0.7567260	-2.6182869	1.1369434				
Ν	-0.4585338	1.8705591	-0.7573443				
Ν	-1.2017760	1.8703381	0.2239646				
Ν	-1.8891400	1.9644873	1.1369434				
Ν	1.8492186	-0.5381776	-0.7573443				
Ν	2.2206483	0.1055995	0.2239646				
Ν	2.6458659	0.6537995	1.1369434				

Vibrational frequencies of the BP86/def2-TZVP-calculated C₃-symmetrical structure of $Bi(N_3)_3$:

#	mode	symmetry	wave number	IR intensity	selection	on rules
#			cm**(-1)	km/mol	IR	RAMAN
	1		0.00	0.0000	-	-
	2		0.00	0.0000	-	-
	3		0.00	0.0000	-	-
	4		0.00	0.0000	-	-
	5		0.00	0.0000	-	-
	6		0.00	0.0000	-	-
	7	е	27.09	0.15865	YES	YES
	8	e	27.09	0.15865	YES	YES
	9	a	36.72	0.29878	YES	YES
	10	е	65.12	0.41864	YES	YES
	11	е	65.12	0.41864	YES	YES
	12	a	76.05	0.37977	YES	YES
	13	e	163.82	4.00378	YES	YES
	14	е	163.82	4.00378	YES	YES
	15	a	194.37	16.62553	YES	YES
	16	е	357.63	61.29850	YES	YES
	17	e	357.63	61.29850	YES	YES
	18	a	388.31	5.22633	YES	YES

19	е	574.97	2.45292	YES	YES
20	е	574.97	2.45292	YES	YES
21	a	575.25	3.09213	YES	YES
22	a	622.69	2.35510	YES	YES
23	е	623.15	2.95433	YES	YES
24	е	623.15	2.95433	YES	YES
25	е	1277.83	113.09546	YES	YES
26	е	1277.83	113.09546	YES	YES
27	a	1287.01	125.11628	YES	YES
28	е	2125.56	474.81241	YES	YES
29	е	2125.56	474.81241	YES	YES
30	a	2150.31	628.44679	YES	YES

Energy (in Hartree) and atomic corrdinates (in Å) of the B3LYP/def2-TZVP-calculated C_3 -symmetrical structure of $Bi(N_3)_3$:

Energy = -707.2041532475							
Bi	0.000000	0.000000	-1.8259954				
Ν	-1.3709089	-1.3215156	-0.7593389				
N	-1.0070319	-1.9454235	0.2280931				
Ν	-0.7411108	-2.5592284	1.1399109				
Ν	-0.4590116	1.8479997	-0.7593389				
N	-1.1812702	1.8448269	0.2280931				
N	-1.8458014	1.9214350	1.1399109				
Ν	1.8299205	-0.5264842	-0.7593389				
Ν	2.1883021	0.1005965	0.2280931				
Ν	2.5869122	0.6377935	1.1399109				

Vibrational frequencies of the B3LYP/def2-TZVP-calculated C₃-symmetrical structure of $Bi(N_3)_3$:

#	mode	symmetry	wave number	IR intensity	selecti	on rules
#			cm**(-1)	km/mol	IR	RAMAN
	1		0.00	0.00000	-	-
	2		0.00	0.00000	-	-
	3		0.00	0.00000	-	-
	4		0.00	0.00000	-	-
	5		0.00	0.00000	-	-
	6		0.00	0.00000	-	-
	7	е	29.50	0.22307	YES	YES
	8	е	29.50	0.22307	YES	YES
	9	a	38.50	0.25118	YES	YES
	10	е	73.32	0.51071	YES	YES
	11	е	73.32	0.51071	YES	YES
	12	a	82.43	0.41766	YES	YES
	13	е	172.96	5.21844	YES	YES
	14	е	172.96	5.21844	YES	YES
	15	a	205.81	20.57237	YES	YES
	16	е	370.94	68.10485	YES	YES
	17	е	370.94	68.10485	YES	YES
	18	a	404.37	7.92860	YES	YES
	19	е	607.13	4.17318	YES	YES
	20	е	607.13	4.17318	YES	YES
	21	a	607.84	4.30364	YES	YES
	22	a	653.81	2.92152	YES	YES
	23	е	654.20	5.65188	YES	YES
	24	е	654.20	5.65188	YES	YES
	25	е	1313.98	163.07240	YES	YES
	26	е	1313.98	163.07240	YES	YES
	27	a	1327.34	197.18776	YES	YES
	28	e	2200.44	563.91025	YES	YES
	29	e	2200.44	563.91025	YES	YES
	30	a	2230.41	846.86187	YES	YES

BP86/def2-TZVP-calculated C_s-symmetrical structure of Bi(N₃)₃.

Energy (in Hartree) and atomic corrdinates (in Å) of the BP86/def2-TZVP-calculated C_s -symmetrical structure of Bi(N₃)₃:

Energy = -707.7115539326								
Bi	-0.4539545	-1.5447165	0.000000					
Ν	-1.2425930	0.5070263	0.000000					
Ν	-2.4583375	0.6922216	0.000000					
Ν	-3.5732580	0.9690870	0.000000					
Ν	0.8907462	-1.1969506	-1.6895274					
Ν	1.2799661	-0.0635649	-1.9726683					
Ν	1.6887153	0.9496200	-2.3198416					
Ν	0.8907462	-1.1969506	1.6895274					
Ν	1.2799661	-0.0635649	1.9726683					
Ν	1.6887153	0.9496200	2.3198416					

Vibrational frequencies of the BP86/def2-TZVP-calculated C_s -symmetrical structure of $Bi(N_3)_3$:

#	mode	symmetry	wave number	IR intensity	selecti	on rules
#			cm**(-1)	km/mol	IR	RAMAN
	1	a"	-41.14	0.00000	YES	YES
	2	a"	-11.77	0.00000	YES	YES
	3		0.00	0.00000	-	-
	4		0.00	0.00000	-	-
	5		0.00	0.00000	-	-
	6		0.00	0.00000	-	-
	7		0.00	0.00000	-	-
	8		0.00	0.00000	-	-
	9	a'	29.23	0.10259	YES	YES
	10	a'	52.52	1.36792	YES	YES
	11	a"	89.58	0.69525	YES	YES
	12	a'	115.47	5.93234	YES	YES
	13	a'	137.22	2.98721	YES	YES
	14	a"	164.59	8.33074	YES	YES
	15	a'	198.55	13.32084	YES	YES
	16	a"	358.59	68.88265	YES	YES
	17	a'	362.55	56.48315	YES	YES
	18	a'	390.53	5.81672	YES	YES
	19	a"	573.73	0.10760	YES	YES
	20	a"	574.34	4.21146	YES	YES
	21	a'	577.05	7.96503	YES	YES
	22	a'	623.30	0.80359	YES	YES
	23	a"	623.98	1.99767	YES	YES
	24	a'	630.67	3.79726	YES	YES
	25	a"	1275.66	105.85533	YES	YES

·] · · · · (·)	· · · · · · · · ·	.,			
26	a'	1281.38	193.70425	YES	YES
27	a'	1287.56	88.47277	YES	YES
28	a"	2121.62	354.86834	YES	YES
29	a'	2127.81	931.63865	YES	YES
30	a'	2147.07	521.27916	YES	YES

Energy (in Hartree) and atomic corrdinates (in Å) of the B3LYP/def2-TZVP-calculated C_s -symmetrical structure of $Bi(N_3)_3$:

```
Energy = -707.2025187082
```

Bi	-0.4509910	-1.5529855	0.000000
Ν	-1.2403783	0.4876188	0.000000
Ν	-2.4439073	0.6941569	0.000000
Ν	-3.5420587	0.9737195	0.000000
Ν	0.8874344	-1.1870511	-1.6727956
Ν	1.2761356	-0.0598503	-1.9495995
Ν	1.6750976	0.9456465	-2.2777008
Ν	0.8874344	-1.1870511	1.6727956
Ν	1.2761356	-0.0598503	1.9495995
Ν	1.6750976	0.9456465	2.2777008

Vibrational frequencies of the B3LYP/def2-TZVP-calculated C_s -symmetrical structure of $Bi(N_3)_3$:

#	mode	symmetry	wave number	IR intensity	selecti	on rules
#			cm**(-1)	km/mol	IR	RAMAN
	1	a"	-41.86	0.00000	YES	YES
	2	a"	-11.24	0.00000	YES	YES
	3		0.00	0.00000	-	-
	4		0.00	0.00000	-	-
	5		0.00	0.00000	-	-
	6		0.00	0.00000	-	-
	7		0.00	0.00000	-	-
	8		0.00	0.00000	-	-
	9	a'	31.02	0.11399	YES	YES
	10	a'	55.99	1.41000	YES	YES
	11	a"	94.29	0.80748	YES	YES
	12	a'	122.23	6.47333	YES	YES
	13	a'	146.49	3.64126	YES	YES
	14	a"	173.74	10.18706	YES	YES
	15	a'	208.60	16.46730	YES	YES
	16	a"	373.13	76.77620	YES	YES
	17	a'	375.11	65.13545	YES	YES
	18	a'	405.45	8.88875	YES	YES
	19	a"	605.90	0.00609	YES	YES
	20	a"	607.06	7.40864	YES	YES
	21	a'	609.40	11.62419	YES	YES
	22	a'	653.05	1.25294	YES	YES
	23	a"	654.81	3.91494	YES	YES
	24	a'	660.78	6.77663	YES	YES
	25	a"	1309.92	151.52653	YES	YES
	26	a'	1319.79	281.74674	YES	YES
	27	a'	1330.69	150.10179	YES	YES
	28	a"	2196.93	416.62325	YES	YES
	29	a'	2202.30	1157.59603	YES	YES
	30	a'	2227.96	704.63455	YES	YES

Figure 5

 $BP86/def2\text{-}TZVP\text{-}calculated \ C_1\text{-}symmetrical \ structure \ of \ Py_2\text{-}Bi(N_3)_3.$

Energy (in Hartree) and atomic corrdinates (in Å) of the BP86/def2-TZVP-calculated C_1 -symmetrical structure of Py_2 -Bi $(N_3)_3$:

```
Energy = -1204.519670886
```

Bi	-1.3389254	0.4145418	-0.0819615
Ν	-0.5900977	-1.6924772	-0.0059502
Ν	-0.7438349	-2.3912260	-1.0000999
Ν	-0.8466166	-3.1063077	-1.8961012
Ν	-2.7646334	0.1563409	-1.8048259
Ν	-3.9038489	-0.2619609	-1.6364856
Ν	-4.9858477	-0.6434611	-1.5579164
Ν	0.3452518	0.5045262	-2.3286529
С	-0.1530795	0.3981163	-3.5734668
Н	-1.2376395	0.2837441	-3.6362489
С	0.6575261	0.4240109	-4.7093121
Н	0.2078554	0.3305423	-5.6976819
С	2.0360005	0.5637306	-4.5506990
Н	2.6963993	0.5849475	-5.4186340
С	2.5568689	0.6710073	-3.2597583
Η	3.6278784	0.7767460	-3.0872248
С	1.6750140	0.6354198	-2.1811267
Н	2.0449561	0.7083754	-1.1550249
Ν	-3.0584144	0.0715037	1.3363788
Ν	-2.9290643	-0.6272850	2.3279732
Ν	-2.8772061	-1.2716841	3.2840419
Ν	0.1398506	0.3263562	2.2723273
С	0.6067782	-0.8219863	2.7943766
Н	0.4424818	-1.7157349	2.1895139
С	1.2559558	-0.8735956	4.0284500
Н	1.6115013	-1.8289877	4.4135959
С	1.4252208	0.3069712	4.7508324
Н	1.9242364	0.2985514	5.7207166
С	0.9370078	1.5001111	4.2145486
Η	1.0402560	2.4458702	4.7462254
С	0.3007998	1.4606544	2.9756632
Η	-0.1026305	2.3726392	2.5265272

Vibrational frequencies of the BP86/def2-TZVP-calculated C₁-symmetrical structure of Py_2 -Bi(N₃)₃:

#	mode	symmetry	wave number	IR intensity	selecti	on rules
#			cm**(-1)	km/mol	IR	RAMAN
	1		0.00	0.00000	-	-
	2		0.00	0.00000	-	-
	3		0.00	0.00000	-	-
	4		0.00	0.00000	-	-
	5		0.00	0.00000	_	-
	6		0.00	0.00000	-	-
	7	a	16.97	0.48779	YES	YES
	8	a	18.01	0.48702	YES	YES
	9	a	19.13	0.90151	YES	YES
	10	a	23.24	0.11443	YES	YES
	11	a	25.05	0.50007	YES	YES
	12	a	30.71	0.05170	YES	YES
	13	a	39.23	0.25341	YES	YES
	14	a	50.53	2,90125	YES	YES
	15	a	56.36	4.87508	YES	YES
	16	a	61.30	0.81415	YES	YES
	17	a	73.83	3.50268	YES	YES
	18	a	80 52	1 14779	YES	YES
	19	a	81 04	2 93811	VES	VES
	20	a	87 69	0 65148	VES	VES
	21	a	97.02	1 60736	VES	VES
	21	a	109 56	4 10167	VES	VES
	22	a 2	117 67	4.10107	VEC	VEG
	20	a 2	120 0/	2 70627	VEC	VEC
	24	a	164 29	17 90601	VEC	VEC
	25	a	172 79	11 21222	VEC	VEC
	20	a	195 07	25 96990	VEC	VEC
	27	a	105.07	25.90000	IES	IES
	20	a	329.49	102.29032	IES	IES
	29	a	352.45	16 45626	IES	IES
	3U 21	a	358.97	10.45030	IES	IES
	31	a	371.20	0.02481	IES	IES
	32	a	371.69	0.06204	IES	IES
	33	a	407.02	2.83663	YES	IES
	34	a	407.40	2.26686	YES	YES
	35	a	588.20	3.5413/	YES	YES
	36	a	590.45	4.44627	YES	YES
	37	a	591.90	2.98826	YES	YES
	38	a	610.37	17.91025	YES	YES
	39	a	611.43	10.01877	YES	YES
	40	a	629.81	3.59304	YES	YES
	41	a	633.02	5.18544	YES	YES
	42	a	638.81	2.74139	YES	YES
	43	a	644.84	0.36891	YES	YES
	44	a	645.04	0.21571	YES	YES
	45	a	694.89	48.34001	YES	YES
	46	a	696.30	48.61210	YES	YES
	47	a	742.41	11.93498	YES	YES
	48	a	743.50	12.51009	YES	YES
	49	a	865.75	0.11847	YES	YES
	50	a	867.71	0.09530	YES	YES
	51	a	927.85	0.06859	YES	YES
	52	a	930.08	0.03157	YES	YES
	53	a	969.99	0.08149	YES	YES
	54	a	973.10	0.08436	YES	YES
	55	a	984.03	0.04955	YES	YES
	56	a	987.87	0.35307	YES	YES
	57	a	994.88	29.33455	YES	YES
	58	a	995.69	15.39471	YES	YES
	59	a	1021.79	4.00516	YES	YES

Supplementary This journal is (o	Material (ESI) for C c) The Royal Socie	Chemical Communications ty of Chemistry 2011			
60	a	1022.56	3.01729	YES	YES
61	a	1058.81	0.20031	YES	YES
62	a	1059.94	0.47045	YES	YES
63	a	1064.32	22.99305	YES	YES
64	a	1064.71	15.45793	YES	YES
65	a	1145.94	2.05605	YES	YES
66	a	1146.33	1.84763	YES	YES
67	a	1206.36	33.46360	YES	YES
68	a	1208.11	30.67727	YES	YES
69	a	1290.21	82.00842	YES	YES
70	a	1290.88	3.26007	YES	YES
71	a	1292.64	9.15380	YES	YES
72	a	1295.38	139.80070	YES	YES
73	a	1304.82	97.52133	YES	YES
74	a	1344.27	3.00332	YES	YES
75	a	1344.74	3.29895	YES	YES
76	a	1435.67	26.96888	YES	YES
77	a	1435.89	24.09797	YES	YES
78	a	1469.65	1.79570	YES	YES
79	a	1470.45	1.59217	YES	YES
80	a	1569.67	2.35936	YES	YES
81	a	1569.89	2.59757	YES	YES
82	a	1587.92	24.53536	YES	YES
83	a	1588.90	25.87690	YES	YES
84	a	2114.97	970.10954	YES	YES
85	a	2120.47	435.10018	YES	YES
86	a	2134.90	800.36137	YES	YES
87	a	3076.52	8.33739	YES	YES
88	a	3082.70	6.81277	YES	YES
89	a	3098.04	19.05748	YES	YES
90	a	3106.18	9.04726	YES	YES
91	a	3109.92	0.58326	YES	YES
92	a	3112.26	0.94305	YES	YES
93	a	3126.29	8.11630	YES	YES
94	a	3127.86	7.82804	YES	YES
95	a	3132.36	14.16584	YES	YES
96	а	3133.98	11.47834	YES	YES

Energy (in Hartree) and atomic corrdinates (in Å) of the B3LYP/def2-TZVP-calculated C_1 -symmetrical structure of Py_2 -Bi(N_3)₃:

Energy = -1203.685427197					
Bi	-1.3690307	0.4361552	-0.0826810		
Ν	-0.6331331	-1.6571395	-0.0039801		
Ν	-0.7727138	-2.3589454	-0.9883458		
Ν	-0.8665502	-3.0641864	-1.8726315		
Ν	-2.7806316	0.1592761	-1.7909791		
Ν	-3.9031769	-0.2840479	-1.6297446		
Ν	-4.9599933	-0.6873080	-1.5490880		
Ν	0.3533228	0.5006483	-2.3663782		
С	-0.1414909	0.4194594	-3.6056526		
Н	-1.2189647	0.3315513	-3.6774366		
С	0.6674240	0.4374023	-4.7351302		
Η	0.2212234	0.3657596	-5.7181106		
С	2.0418247	0.5413927	-4.5728019		
Η	2.6998113	0.5553108	-5.4328268		
С	2.5594302	0.6224657	-3.2857665		
Н	3.6242738	0.6999191	-3.1104006		
С	1.6774031	0.5974504	-2.2153315		
Η	2.0458777	0.6513849	-1.1961352		
Ν	-3.0637468	0.0943491	1.3341537		
Ν	-2.9615048	-0.6381335	2.2942473		
Ν	-2.9257455	-1.3083064	3.2129748		
Ν	0.1413237	0.3454114	2.3191586		
С	0.6485752	-0.7914096	2.8065815		

-			
Η	0.5102428	-1.6720006	2.1915022
С	1.3077957	-0.8512908	4.0277855
Η	1.6965780	-1.7959571	4.3838125
С	1.4431572	0.3113578	4.7732216
Η	1.9474882	0.2970825	5.7314117
С	0.9131745	1.4939250	4.2716032
Η	0.9889515	2.4232781	4.8202722
С	0.2708078	1.4611160	3.0428819
н	-0.1620032	2.3640295	2.6238141

Vibrational	frequencies	of the	B3LYP/def2-TZVP-calculated	C ₁ -symmetrical	structure	of
Py_2 -Bi(N ₃) ₃	:					

#	mode	symmetry	wave number	IR intensity	selecti	on rules
#			cm**(-1)	km/mol	IR	RAMAN
	1		0.00	0.0000	-	-
	2		0.00	0.00000	-	-
	3		0.00	0.0000	-	-
	4		0.00	0.00000	-	-
	5		0.00	0.0000	-	-
	6		0.00	0.0000	-	-
	7	a	16.37	0.52739	YES	YES
	8	a	17.83	0.56761	YES	YES
	9	a	20.41	0.42517	YES	YES
	10	a	22.99	0.26090	YES	YES
	11	a	26.12	0.58683	YES	YES
	12	a	31.53	0.05268	YES	YES
	13	a	39.65	0.19843	YES	YES
	14	a	50.09	3.63660	YES	YES
	15	a	57.00	5.50199	YES	YES
	16	a	64.17	0.99957	YES	YES
	17	a	71.87	3.55087	YES	YES
	18	a	77.70	3.31753	YES	YES
	19	a	80.77	1.12136	YES	YES
	20	a	92.06	1.24565	YES	YES
	21	a	101.22	0.68227	YES	YES
	22	a	107.87	4.13634	YES	YES
	23	a	116.74	4.11999	YES	YES
	24	a	134.74	3.60578	YES	YES
	25	a	174.99	18.02765	YES	YES
	26	a	181.04	13.43266	YES	YES
	27	a	195.38	29.53326	YES	YES
	28	a	342.60	108.23752	YES	YES
	29	a	347.03	77.26784	YES	YES
	30	a	377.13	19.46835	YES	YES
	31	a	392.02	0.02501	YES	YES
	32	a	392.55	0.03993	YES	YES
	33	a	425.76	3.44076	YES	YES
	34	a	426.10	2.45092	YES	YES
	35	a	620.18	5.05941	YES	YES
	36	a	622.51	4.98283	YES	YES
	37	a	623.95	5.74490	YES	YES
	38	a	630.60	20.41205	YES	YES
	39	a	631.49	12.44218	YES	YES
	40	a	661.76	5.09054	YES	YES
	41	a	665.14	7.46813	YES	YES
	42	a	667.59	0.04007	YES	YES
	43	a	667.65	0.39886	YES	YES
	44	a	670.23	4.31064	YES	YES
	45	a	718.72	49.38465	YES	YES
	46	a	720.01	48.61874	YES	YES
	47	a	769.81	14.31000	YES	YES
	48	a	770.55	14.76762	YES	YES
	49	a	897.35	0.12205	YES	YES
	50	a	898.87	0.09896	YES	YES

Supplementary	Material (ESI) for 0	Chemical Communications ty of Chemistry 2011			
51	a	967 16	0 04957	YES	YES
52	a	969 09	0 03576	YES	YES
53	a	1011 42	0 03918	YES	YES
54	a	1013 32	0 06960	VES	VES
55	a	1013.52	32 11186	VES	VEG
56	2	1022.37	12 64011	VEG	VFC
57	a	1023.24	2 85203	VES	VEG
58	2	1024.02	0 02963	VFC	VFC
50	a	1051 67	0.02505	VEC	VEC
59	a	1051.07	9.95540	VEC	VEC
61	a	1097 94	9.17390	VEC	VEC
62	a 2	1088 82	0.00772	VFC	VFC
62	a	1000.02	21 50057	VEC	VEC
64	a	1004 94	12 14002	VEC	VEC
64	a	1094.04	13.14093 2 17771	IES	I LO VEC
65	a	1177 EQ	3.1/7/1	IES	I LO VEC
60	a	1044 15	2.93031	IES	I E O VEC
67	a	1244.15	33.598/5	IES	IES
68	a	1245.04	30.34080	IES	IES
69	a	1287.72	0.23067	IES VEC	IES VEC
70	a	1288.81	0.05634	YES	IES VEC
71	a	1330.34	147.63668	ILS	ILS
72	a	1335.99	218.45009	YES	YES
/3	a	1350.76	158.11029	YES	YES
74	a	1394.70	2.84/53	YES	YES
75	a	1395.29	2.65875	YES	YES
76	a	1480.93	29.18423	YES	YES
.7.7	a	1481.11	27.50527	YES	YES
78	a	1521.11	1.98132	YES	YES
.79	a	1521.62	2.07450	YES	YES
80	a	1617.81	3.56280	YES	YES
81	a	1618.03	3.28206	YES	YES
82	a	1636.92	34.09320	YES	YES
83	a	1637.66	33.86724	YES	YES
84	a	2187.18	1178.45158	YES	YES
85	a	2192.75	569.59794	YES	YES
86	a	2210.63	984.51109	YES	YES
87	a	3149.90	7.97126	YES	YES
88	a	3154.28	6.70163	YES	YES
89	a	3176.61	7.78048	YES	YES
90	a	3178.19	4.61828	YES	YES
91	a	3183.29	3.56115	YES	YES
92	a	3187.33	2.40803	YES	YES
93	a	3196.77	8.04089	YES	YES
94	a	3198.12	7.57298	YES	YES
95	a	3202.91	13.39491	YES	YES
96	a	3204.31	10.94169	YES	YES

Figure 6

 $BP86/def2\text{-}TZVP\text{-}calculated \ C_s\text{-}symmetrical \ structure \ of \ Py_2\text{-}Bi(N_3)_3.$

Energy (in Hartree) and atomic corrdinates (in Å) of the BP86/def2-TZVP-calculated C_s -symmetrical structure of Py_2 -Bi $(N_3)_3$:

```
Energy = -1204.513950393
```

DILCT :	51 1201.5	10000000	
Bi	-1.6559817	0.7124258	0.0000000
Ν	-1.6054751	-1.5218878	0.0000000
Ν	-0.5149414	-2.0768708	0.000000
Ν	0.4675969	-2.6811807	0.000000
Ν	-3.2814844	0.8133824	-1.5473661
Ν	-3.2701218	0.0687418	-2.5125434
Ν	-3.3259386	-0.6030520	-3.4505207
Ν	0.0970864	0.3253727	-2.1777587
С	0.0224279	-0.7272819	-3.0115744
Н	-0.7210308	-1.4876683	-2.7682009
С	0.8334604	-0.8522526	-4.1399430
Н	0.7300304	-1.7234612	-4.7859813
С	1.7602439	0.1516095	-4.4164746
Н	2.4090837	0.0836360	-5.2905732
С	1.8411676	1.2481264	-3.5556527
Н	2.5480457	2.0584648	-3.7332997
С	0.9905452	1.2913433	-2.4533762
Н	1.0208850	2.1367959	-1.7600879
Ν	-3.2814844	0.8133824	1.5473661
Ν	-3.2701218	0.0687418	2.5125434
Ν	-3.3259386	-0.6030520	3.4505207
Ν	0.0970864	0.3253727	2.1777587
С	0.0224279	-0.7272819	3.0115744
Н	-0.7210308	-1.4876683	2.7682009
С	0.8334604	-0.8522526	4.1399430
Н	0.7300304	-1.7234612	4.7859813
С	1.7602439	0.1516095	4.4164746
Н	2.4090837	0.0836360	5.2905732
С	1.8411676	1.2481264	3.5556527
Н	2.5480457	2.0584648	3.7332997
С	0.9905452	1.2913433	2.4533762
Н	1.0208850	2.1367959	1.7600879

Vibrational frequencies of the BP86/def2-TZVP-calculated Cs-symmetrical structure of Py2-Bi(N₃)₃:

# m	node	symmetry	wave number	IR intensity	selecti	on rules
#			cm**(-1)	km/mol	IR	RAMAN
	1		0.00	0.00000	-	-
	2		0.00	0.00000	_	-
	3		0.00	0.00000	_	_
	4		0.00	0.00000	_	_
	5		0.00	0.0000	_	_
	6		0 00	0 00000	_	_
	7	2	13 04	1 18918	VFC	VFC
	γ 8	a a"	13 92	0 07572	VEC	VFC
	0	a 2 !	15 02	0.07572	VEC	VEC
	10	a 2 "	10 10	0.45551	VEC	VEC
	11	a	10.10	1 00447	I ES VEC	VEC
	10	a	30.00	1.09447	IES	IES
	12	a"	40.13	0.31017	IES	ILS
	14	a" a"	42.70	0.2/55/	IES	IES
	14	a" "	44.40	0.15640	IES	IES
	15	a"	58.30	1.1/368	YES	YES
	16	a'	61.41	2.48923	YES	YES
	17	a"	67.61	6.65933	YES	YES
	18	a'	73.33	3.42473	YES	YES
	19	a'	84.83	1.12228	YES	YES
	20	a"	88.15	0.53720	YES	YES
	21	a'	91.16	5.66354	YES	YES
	22	a"	100.78	6.58497	YES	YES
	23	a"	117.39	1.16041	YES	YES
	24	a'	128.20	4.76105	YES	YES
	25	a'	151.80	1.20751	YES	YES
	26	a"	162.95	26.51840	YES	YES
	27	a'	171.22	13.31736	YES	YES
	28	a"	330.37	130.73754	YES	YES
	29	a'	338.45	61.80758	YES	YES
	30	a'	363.09	22.90950	YES	YES
	31	a"	373.34	0.02347	YES	YES
	32	a'	374.33	0.41100	YES	YES
	33	a"	406.39	1.69618	YES	YES
	34	a'	407.38	4.67063	YES	YES
	35	a"	586.27	3.15988	YES	YES
	36	a'	588.40	4.42484	YES	YES
	37	a"	590.13	4.58259	YES	YES
	38	a"	610.52	17.15172	YES	YES
	39	a'	610.99	6.93976	YES	YES
	40	a"	631.14	0.58180	YES	YES
	41	a'	633.83	8.57664	YES	YES
	42	a'	640.34	1.80295	YES	YES
	43	a"	644.59	0.22732	YES	YES
	44	a'	645.15	0.05310	YES	YES
	45	a"	693 94	23 98816	YES	YES
	46	al	695.91	69 81141	VES	VES
	47	a"	741 83	6 28017	VES	VES
	48	al	741 98	14 07426	VES	VES
	-10 / 0	a a"	863 91	0 55031	VEC	VFC
	50	a a'	864 88	0.05335	VEC	VFC
	50	a a "	Q22 Q1	0.00333	VEG	VEG
	51 51	a	744.74 071 10	0.400/2	IED	ILS
	52 52	a '	744.4U 060 57	0.14/40	IED	IEO VEC
	55	d"	702.57	0.90304	ILD	IED
	24 FF	d '	903.25	0.08384	1 ES	ILS
	55	a"	984.32	0.47000	YES	YES
	56	a'	984.39	0.01684	YES	YES
	57	a"	994.35	31.22952	YES	YES
	58	a'	994.74	10.80583	YES	YES
	59	a"	1024.30	1.87224	YES	YES

Supplementary	Material (ESI) for Cl	hemical Communications			
60	a'	1024.83	1.07000	YES	YES
61	a"	1061.04	0.77035	YES	YES
62	a'	1061.57	4.15202	YES	YES
63	a"	1063.18	20.75292	YES	YES
64	a'	1063.62	7.67854	YES	YES
65	a"	1146.49	0.30837	YES	YES
66	a'	1146.53	3.33540	YES	YES
67	a"	1205.71	19.31431	YES	YES
68	a'	1206.95	10.54887	YES	YES
69	a'	1288.94	77.37834	YES	YES
70	a"	1292.48	1.96779	YES	YES
71	a'	1292.58	0.51738	YES	YES
72	a"	1304.08	170.16583	YES	YES
73	a'	1307.57	37.21265	YES	YES
74	a"	1345.76	1.04757	YES	YES
75	a'	1346.32	2.72896	YES	YES
76	a"	1434.61	2.83685	YES	YES
77	a'	1434.88	52.39077	YES	YES
78	a"	1472.76	0.25339	YES	YES
79	a'	1473.37	0.07867	YES	YES
80	a"	1570.67	0.09158	YES	YES
81	a'	1571.27	1.98237	YES	YES
82	a"	1589.04	37.40233	YES	YES
83	a'	1589.26	21.27914	YES	YES
84	a'	2106.59	487.22087	YES	YES
85	a"	2108.47	1380.46483	YES	YES
86	a'	2124.39	306.56102	YES	YES
87	a"	3073.35	0.89944	YES	YES
88	a'	3074.04	18.55121	YES	YES
89	a"	3109.68	4.12832	YES	YES
90	a'	3109.71	1.65637	YES	YES
91	a"	3115.71	0.00650	YES	YES
92	a'	3115.79	0.29362	YES	YES
93	a"	3128.35	0.66011	YES	YES
94	a'	3128.41	17.25622	YES	YES
95	a"	3136.52	9.16578	YES	YES
96	a'	3136.57	2,90789	YES	YES

Energy (in Hartree) and atomic corrdinates (in Å) of the B3LYP/def2-TZVP-calculated C_s -symmetrical structure of Py_2 -Bi(N_3)₃:

Energy = -1203.679830666					
Bi	-1.6855772	0.7973992	0.000000		
Ν	-1.5267489	-1.4026483	0.000000		
Ν	-0.4347207	-1.9340879	0.000000		
Ν	0.5488274	-2.5032546	0.000000		
Ν	-3.2160401	0.7549583	-1.6190389		
Ν	-3.5226782	-0.2633300	-2.2006714		
Ν	-3.8430451	-1.1812008	-2.7916765		
Ν	0.1946822	0.4111744	-2.1654451		
С	-0.0367933	-0.5388251	-3.0770936		
Н	-0.8651223	-1.2092597	-2.8798988		
С	0.7290173	-0.6787954	-4.2268477		
Н	0.4992673	-1.4642909	-4.9341417		
С	1.7800906	0.2023100	-4.4403028		
Н	2.3974078	0.1206717	-5.3261846		
С	2.0253820	1.1915804	-3.4963788		
Н	2.8327812	1.9010504	-3.6204154		
С	1.2065154	1.2562158	-2.3782215		
Н	1.3676450	2.0190366	-1.6231821		
Ν	-3.2160401	0.7549583	1.6190389		
Ν	-3.5226782	-0.2633300	2.2006714		
Ν	-3.8430451	-1.1812008	2.7916765		
Ν	0.1946822	0.4111744	2.1654451		
С	-0.0367933	-0.5388251	3.0770936		

Н	-0.8651223	-1.2092597	2.8798988
С	0.7290173	-0.6787954	4.2268477
Η	0.4992673	-1.4642909	4.9341417
С	1.7800906	0.2023100	4.4403028
Η	2.3974078	0.1206717	5.3261846
С	2.0253820	1.1915804	3.4963788
Η	2.8327812	1.9010504	3.6204154
С	1.2065154	1.2562158	2.3782215
Н	1.3676450	2.0190366	1.6231821

Vibrational frequencies of the B3LYP/def2-TZVP-calculated C_s -symmetrical structure of Py_2 -Bi $(N_3)_3$:

# #	mode	symmetry	wave number cm**(-1)	IR intensity km/mol	selecti IR	on rules RAMAN
	1	a"	-22.84	0.00000	YES	YES
	2		0.00	0.0000	_	_
	3		0.00	0.0000	_	_
	4		0.00	0.0000	_	_
	5		0.00	0.00000	-	-
	6		0.00	0.00000	-	-
	7		0.00	0.00000	_	_
	8	a'	9.08	0.17328	YES	YES
	9	a'	14.99	0.89150	YES	YES
	10	a"	18.83	0.37423	YES	YES
	11	a"	29.57	0.91039	YES	YES
	12	a'	32.16	0.24963	YES	YES
	13	a'	37.93	1.80840	YES	YES
	14	a"	38.81	0.36285	YES	YES
	15	a"	52 68	0 13760	YES	YES
	16	a'	57 41	2 29610	YES	YES
	17	a"	63 63	8 40004	YES	YES
	18	a'	68 37	1 39756	YES	YES
	19	a'	80.97	3 84631	VES	YES
	20	a."	83 14	0 15661	VES	VES
	21	a '	92 23	3 96863	VES	VES
	22	a "	98 98	4 94664	VES	VES
	22	a "	123 18	0 13740	VES	VES
	20	a a !	1/6 99	2 77371	VEC	VFC
	25	a a !	154 04	7 58044	VEC	VFC
	25	a > "	177 09	28 39040	VEC	VFC
	20	a a !	193 73	23 40248	VEC	VFC
	27	a > "	338 97	128 50072	VEC	VFC
	20	a a !	350.57	77 95929	VEC	VEC
	20	a	302.02	17 21007	VEC	VEC
	21	a a"	303.25	0 04150	VEC	VEC
	30	a	292.10	0.04130	VEC	VEC
	22	a 2 "	425 12	1 27600	VEC	VEC
	22	a"	425.12	1.27699	IES	IES
	34	a'	420.53	4.82966	IES	IES
	35	a"	619.22	100300	IES	IES
	30 77	a"	620.37	12./193/	IES	IES
	37	a'	621.80	9.40439	IES	IES
	38	a"	629.72	15.58/32	YES	YES
	39	a'	630.20	7.94968	YES	YES
	40	a"	659.65	2.88861	YES	YES
	41	a'	661.15	9.42587	YES	YES
	42	a"	667.53	0.12946	YES	YES
	43	a'.	668.10	0.77529	YES	YES
	44	a'	669.53	3.22586	YES	YES
	45	a"	718.94	23.78225	YES	YES
	46	a'	720.78	77.46851	YES	YES
	47	a"	769.37	7.22314	YES	YES
	48	a'	769.61	20.13475	YES	YES
	49	a"	897.90	0.10946	YES	YES
	50	a'	899.07	0.01830	YES	YES

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011								
51	a"	963.	37	Ο.	00618	YE	S YES	
52	a'	965.	66	0.	02209	YE	S YES	
53	a"	1009.	11	0.	11938	YE	S YES	
54	a'	1010.	08	0.	08155	YE	S YES	
55	a"	1022.	32	29.	69310	YE	S YES	
56	a'	1022.	72	14.	28460	YE	S YES	
57	a"	1025.	87	0.	17817	YE	S YES	
58	a'	1025.	96	0.	01213	YE	S YES	
59	a"	1053.	14	9	26271	YE	S YES	
60	a'	1053.	81	2	86620	YE	S YES	
61	a"	1089.	42	0.	00015	YE	S YES	
62	a'	1090.	20	2	24101	YE	S YES	
63	a"	1093.	50	16	90803	YE	S YES	
64	a'	1093.	94	9	91291	YE	S YES	
65	a"	1177.	40	0	73168	YE	S YES	
66	a'	1177.	44	4	61320	YE	S YES	
67	a"	1243.	14	16	73077	YE	S YES	
68	a'	1244.	64	14	86175	YE	S YES	
69	a"	1288.	51	0	00479	YE	S YES	
70	a'	1288.	52	0	03489	YE	S YES	
71	a'	1341.	86	137	69358	YE	S YES	
72	a"	1345.	69	191	41216	YE	S YES	
73	a'	1352.	82	136	19955	YE	S YES	
74	a"	1394.	98	1	29121	YE	S YES	
75	a'	1395.	86	2	35090	YE	S YES	
76	a"	1479.	60	4	85249	YE	S YES	
77	a'	1479.	95	49.	61008	YE	S YES	
78	a"	1523.	38	1.	31476	YE	S YES	
79	a'	1524.	15	0.	37621	YE	S YES	
80	a"	1619.	22	0.	25407	YE	S YES	
81	a'	1620.	00	2.	74877	YE	S YES	
82	a"	1636.	89	47.	59379	YE	S YES	
83	a'	1637.	20	27	00332	YE	S YES	
84	a"	2179.	79	877.	62115	YE	S YES	
85	a'	2190.	87	772.	62321	YE	S YES	
86	a'	2205.	42	766.	16932	YE	S YES	
87	a"	3148.	87	4.	63083	YE	S YES	
88	a'	3149.	71	17.	75604	YE	S YES	
89	a"	3175.	96	4.	78672	YE	S YES	
90	a'	3176.	01	1.	37247	YE	S YES	
91	a"	3181.	82	1.	38292	YE	S YES	
92	a'	3181.	87	0.	50083	YE	S YES	
93	a"	3197.	68	0.	00019	YE	S YES	
94	a'	3197.	73	17.	83296	YE	S YES	
95	a"	3205.	04	8.	89622	YE	S YES	
96	a'	3205.	09	2.	63497	YE	S YES	