Chemistry of a Geminal Frustrated Lewis Pair featuring Electron Withdrawing C₆F₅ Substituents at Both Phosphorus and Boron

Annika Stute, Gerald Kehr, Roland Fröhlich, Gerhard Erker Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany

Supporting Information

Experimental Section

All experiments were carried out under a dry Argon atmosphere using standard Schlenk techniques or in a glovebox. Solvents (including deuterated solvents used for NMR) were dried and distilled prior to use. ¹H, ¹³C, ¹¹B, ¹⁹F, ³¹P NMR spectra were recorded on a Varian 500 MHz INOVA or a Varian 600 MHz UNITY plus NMR spectrometer at ambient temperature unless otherwise stated. Chemical shifts are given in ppm relative to solvents (¹H and ¹³C) or an external standard [$\delta(BF_3 \cdot OEt_2) = 0$ for ¹¹B NMR, $\delta(CFCl_3) =$ 0 for ¹⁹F NMR and $\delta(85\% H_3PO_4) = 0$ for ³¹P NMR). Coupling constants are in Hz. Elemental analysis data was recorded on Foss-Heraeus CHNO-Rapid. HRMS was recorded on GTC Waters Micromass (Manchester, UK). X-ray structure analysis: Data sets were collected with a Nonius KappaCCD diffractometer. Programs used: data collection COLLECT (Nonius B.V., 1998), data reduction Denzo-SMN (Z. Otwinowski and W. Minor, Methods in Enzymology, 1997, 276, 307-326), absorption correction Denzo (Z.Otwinowski, D. Borek, W. Majewski and W. Minor, Acta Cryst. 2003, A59, 228-234), structure solution SHELXS-97 (G.M. Sheldrick, Acta Cryst., 1990, A46, 467-473), structure refinement SHELXL-97 (G.M. Sheldrick, Acta Cryst., 2008, A64, 112-122), graphics XP (BrukerAXS, 2000). Graphics show the thermal ellipsoids with 50 % probability, R values are given for the observed reflections, wR^2 values for all reflections. $B(C_6F_5)_3$ was prepared according to procedures reported in the literature (caution: the intermediate involved is explosive) [(a) A. G. Massey, A. J. Park, J. Organomet. Chem. 1964, 2, 245-250. (b) C. Wang, G. Erker, G. Kehr, K. Wedeking and R. Fröhlich, Organometallics, 2005, 24, 4760-4773].

HB(C₆F₅)₂ was prepared according to the procedures reported in the literature [a) D. J. Parks, R. E. v. H. Spence and W. E. Piers, *Angew. Chem.*, 1995, **107**, 895-897; *Angew. Chem. Int. Ed. Engl.*, 1995, **34**, 809-811; b) D. J. Parks, W. E. Piers and G. P. A. Yap, *Organometallics*, 1998, **17**, 5492-5503].

(C₆F₅)₂PCl was prepared according to the procedures reported in the literature [D. D. Magnelli, G. Tesi, J. U. Lowe and W. E. McQuistion, *Inorg. Chem.*, 1966, **5**, 457-461; G. Mancino, A. J. Ferguson, A. Beeby, N. J. Long and T. S. Jones, *J. Am. Chem. Soc.*, 2005, **127**, 524-525].

Preparation of compound 4a:

A solution of bis(pentafluorophenyl)chlorophosphine (2.33 g, 5.90 mmol) in thf (100 mL) was cooled to 0 °C. Vinylmagnesiumchloride (1.6 M solution in thf, 1.60 mL, 2.50 mmol) was added slowly and the reaction mixture was stirred for 0.5 h at 0 °C and 0.5 h at rt. The solvent of the red solution was removed *in vacuo* and the red residue was dissolved in pentane (70 mL). The suspension was filtrated over *Celite* and washed with pentane (2x50 mL). The filtrate was removed *in vacuo* to yield a yellow oil (1.63 g, 4.16 mmol, 71%). Single crystals suitable for X-ray structure analysis were obtained by slow evaporation of a solution of **4a** in pentane at 4 °C.

¹H NMR (600 MHz, C₆D₆, 298 K): δ 5.56 (ddd, ³*J*_{PH} = 50.8 Hz, ³*J*_{HH} = 11.2 Hz, ²*J*_{HH} = 1.3 Hz, 1H, ⁼CH_{2(E)}), 5.80 (ddm, ³*J*_{PH} = 21.6 Hz, ³*J*_{HH} = 18.4 Hz, 1H, ⁼CH_{2(Z)}), 6.90 (ddm, ³*J*_{HH} = 18.4 Hz, ³*J*_{HH} = 11.2 Hz, 1H, ^PCH⁼).

¹³C{¹H} NMR (151 MHz, C₆D₆, 298 K)¹: δ 108.9 (m, *i*-C₆F₅), 129.4 (m, ^PCH⁼), 134.6 (d, ²*J*_{PC} = 48.9 Hz, ⁼CH₂), 137.5 (dm, ¹*J*_{FC} ~ 254 Hz, *m*-C₆F₅), 142.3 (dm, ¹*J*_{FC} ~ 256 Hz, *p*-C₆F₅), 147.4 (dm, ¹*J*_{FC} ~ 247 Hz, *o*-C₆F₅).

¹H, ¹H-GCOSY (600 MHz, C₆D₆, 298 K): $\delta(^{1}H) / \delta(^{1}H) 5.56 / 6.90 (=CH_{2(E)} / {}^{P}CH=)$, 5.80 / 6.90 (=CH_{2(Z)} / $^{P}CH=$), 6.90 / 5.56, 5.80 ($^{P}CH= / {}^{=}CH_{2(E)} = CH_{2(Z)}$).

¹H,¹³C-GHSQC (600 MHz / 151 MHz, C₆D₆, 298 K): δ (¹H) / δ (¹³C) 5.56, 5.80 / 134.6 (²CH₂), 6.90 / 129.4 (^PCH⁼).

¹H,¹³C-GHMBC (600 MHz / 151 MHz, C₆D₆, 298 K): δ (¹H) / δ (¹³C) 5.80 / 129.4 (⁼CH_{2(Z)} / ^PCH⁼), 6.90 / 134.6 (^PCH⁼ / ⁼CH₂).

¹⁹F NMR (564 MHz, C₆D₆, 298 K): δ –131.9 (m, 2F, *o*-C₆F₅), –151.0 (m, 1F, *p*-C₆F₅), –161.5 (m, 2F, *m*-C₆F₅) [$\Delta\delta_{m,p}$ = 10.5].

³¹P{¹H} NMR (202 MHz, C₆D₆, 298 K): δ –52.5 (quin, ³J_{PF} = 27.3 Hz).

¹ For comparison P(C₆F₅)₃: ¹³C{¹⁹F} NMR (126 MHz, CD₂Cl₂, 298 K): δ 105.0 (d, ¹*J*_{PC} = 33.9 Hz, *i*-C₆F₅), 138.2 (d, *J* = 1.2 Hz, *m*-C₆F₅), 143.6 (*p*-C₆F₅), 148.2 (d, *J* = 11.8 Hz, *o*-C₆F₅).

IR (ATR): $\tilde{v} = 1640$ (w), 1514 (s), 1467 (s), 1386 (w), 1290 (w), 1085 (s), 972 (s), 836 (w).

Elemental analysis: calcd. for $C_{14}H_3F_{10}P$: C 42.88; H: 0.77. Found: C 43.22; H: 0.47. Exact mass calcd. for $C_{14}H_3F_{10}P$: 391.9813 m/z. Found: 391.9808 m/z.

Crystal data for C₁₄H₃F₁₀P (**4a**), M = 392.58, monoclinic, C2/c (No. 15), a = 19.8040(3), b = 8.1425(1), c = 17.4927(3) Å, $\beta = 96.179(1)^{\circ}$, V = 2804.38(7) Å³, $D_c = 1.858$ g cm⁻³, μ = 2.887 mm⁻¹, F(000) = 1536, Z = 8, $\lambda = 1.54178$ Å, T = 223(2) K, 18878 reflections collected ($\pm h$, $\pm k$, $\pm l$), [(sin θ)/ λ] = 0.60 Å⁻¹, 2470 independent ($R_{int} = 0.046$), and 2346 observed reflections [I $\ge 2\sigma(l)$], 226 refined parameters, R = 0.034, w $R^2 = 0.092$, GoF = 1.031.

Preparation of compound 4b:

A solution of bis(pentafluorophenyl)chlorophosphine (1.00 g, 2.50 mmol) in thf (60 mL) was cooled to 0 °C. 1-Propenylmagnesiumbromide (0.5 M solution in thf, 5.00 mL, 2.50 mmol) was added slowly. The solvent of the orange-yellow solution was removed *in vacuo* and the orange residue was dissolved in pentane (50 mL). The suspension was filtrated over *Celite* and washed with pentane (50 mL). The filtrate was removed *in vacuo* to yield a red oil (0.99 g, 98%, E : Z = 1 : 4).

Z-Isomer: ¹H NMR (600 MHz, C₆D₆, 298 K): δ 6.54 (dm, ³*J*_{HH,cis} = 11.3 Hz, 1H, CH^P), 6.15 (ddq, ³*J*_{PH} = 30.3 Hz, ³*J*_{HH,cis} = 11.3 Hz, ³*J*_{HH} = 7.0 Hz, 1H, CH^{CH3}), 1.80 (d, ³*J*_{HH} = 7.0 Hz, 3H, CH₃).

¹³C{¹H} NMR (151 MHz, C₆D₆, 298 K): δ 147.7 (dm, ${}^{1}J_{FC} \sim 246$ Hz, *p*-C₆F₅), 146.6 (d, ${}^{2}J_{PC} = 36.7$ Hz, CH^{CH3}), 142.3 (dm, ${}^{1}J_{FC} \sim 257$ Hz, *o*-C₆F₅), 137.7 (dm, ${}^{1}J_{FC} \sim 253$ Hz, *m*-C₆F₅), 120.7 (m, CH^P), 109.5 (m, *i*-C₆F₅), 16.1 (d, ${}^{3}J_{PC} = 29.7$ Hz, CH₃).

¹H, ¹H GCOSY (500 MHz, C₆D₆, 298 K): δ (¹H) / δ (¹H) 6.54 / 6.15, 1.80 (CH^P / CH^{CH3}, CH₃), 6.15 / 6.54, 1.80 (CH^{CH3} / CH^P, CH₃), 1.80 / 6.54, 6.15 (CH₃ / CH^P, CH^{CH3}).

 ${}^{1}\text{H}, {}^{13}\text{C} \text{ GHSQC (500 MHz / 126 MHz, C_6D_6, 298 K): } \delta({}^{1}\text{H}) / \delta({}^{13}\text{C}) 6.54 / 120.7 (CH^P), 6.15 / 146.6 (CH^{CH3}), 1.80 / 16.1 (CH_3).$

¹H,¹³C GHMBC (500 MHz / 126 MHz, C₆D₆, 298 K): δ (¹H) / δ (¹³C) 6.54 / 16.1 (CH^P / CH₃), 6.15 / 16.1 (CH^{CH3} / CH₃), 1.80 / 146.6, 120.7 (CH₃ / CH^{CH3}, CH^P).

¹⁹F NMR (470 MHz, C₆D₆, 298 K): δ –131.3 (m, 2F, *o*-C₆F₅), –150.7 (tt, ${}^{3}J_{FF} = 21.0$ Hz, ${}^{4}J_{FF} = 3.7$ Hz, 1F, *p*-C₆F₅), –160.9 (m, 2F, *m*-C₆F₅) [Δδ_{m,p} = 10.2].

³¹P{¹H} NMR (202 MHz, C₆D₆, 298 K): δ -71.6 (quin, ³J_{PF} = 27.5 Hz).

E-Isomer: ¹H NMR (600 MHz, C₆D₆, 298 K): δ 6.68 (dm, ³*J*_{HH,trans} = 16.5 Hz, 1H, CH^P), 6.39 (ddq, ³*J*_{PH} = 21.8 Hz, ³*J*_{HH,trans} = 16.5 Hz, ³*J*_{HH} = 6.5 Hz, 1H, CH^{CH3}), 1.51 (dt, ³*J*_{HH} = 6.5 Hz, ⁴*J*_{PH} ~ ⁴*J*_{HH} ~ 1.4 Hz, 3H, CH₃). ¹³C {¹H} NMR (151 MHz, C₆D₆, 298 K): δ 149.3 (d, ¹*J*_{PC} = 57.7 Hz, CH^{CH3}), 147.7 (dm, ¹*J*_{FC} ~ 246 Hz, *p*-C₆F₅), 142.3 (dm, ¹*J*_{FC} ~ 257 Hz, *o*-C₆F₅), 137.7 (dm, ¹*J*_{FC} ~ 251 Hz, *m*-C₆F₅), 121.5 (m, CH^P), 109.5 (m, *i*-C₆F₅), 20.4 (d, ³*J*_{PC} = 20.3 Hz, CH₃). ¹H, ¹H GCOSY (500 MHz, C₆D₆, 298 K): δ (¹H) / δ (¹H) 6.68 / 6.39, 1.51 (CH^P / CH^{CH3}, CH₃), 6.39 / 6.68, 1.51 (CH^{CH3} / CH^P, CH₃), 1.51 / 6.68, 6.39 (CH₃ / CH^P, CH^{CH3}). ¹H, ¹³C GHSQC (500 MHz / 126 MHz, C₆D₆, 298 K): δ (¹H) / δ (¹³C) 6.68 / 121.5 (CH^P), 6.39 / 149.3 (CH^{CH3}), 1.51 / 20.4 (CH₃). ¹H, ¹³C GHMBC (500 MHz / 126 MHz, C₆D₆, 298 K): δ (¹H) / δ (¹³C) 6.68 / 20.4 (CH^P / CH₃), 6.39 / 20.4 (CH^{CH3} / CH₃), 1.51 / 149.3, 121.5 (CH₃ / CH^{CH3}, CH^P). ¹⁹F NMR (470 MHz, C₆D₆, 298 K): δ –131.4 (m, 2F, *o*-C₆F₅), -150.8 (tt, ³*J*_{FF} = 21.4 Hz, ⁴*J*_{FF} = 3.5 Hz, 1F, *p*-C₆F₅), -160.9 (m, 2F, *m*-C₆F₅) [$\Delta\delta_{m,p}$ = 10.1].

³¹P{¹H} NMR (202 MHz, C₆D₆, 298 K): δ -53.4 (quin, ³J_{PF} = 26.9 Hz).

IR (ATR): $\tilde{v} = 1640$ (w), 1514 (s), 1466 (s), 1383 (w), 1298 (w), 1084 (s), 971 (s), 835 (w), 762 (w), 736 (w), 699 (w).

Elemental analysis: calcd. for C₁₅H₅F₁₀P: C 44.36; H 1.24. Found: C 44.46; H 1.17.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

spectrum, respectively).

Preparation of compound 5a/5b:

Bis(pentafluorophenyl)vinyl-phosphine (56.0 mg, 0.14 mmol) and bis(pentafluorophenyl)borane (49.4 mg, 0.14 mmol) were dissolved in d₆-benzene. The resulting solution was investigated directly by NMR measurements. Due to the ¹H and ³¹P NMR the products are formed in a ratio of **5a** : **5b** = 2.5 : 1.

5a: ¹H NMR (200 MHz, C₆D₆, 300 K): δ 2.59 (br m, 2H, ^PCH₂), 1.91 (m, 2H, ^BCH₂).

¹¹B{¹H} NMR (64 MHz, C₆D₆, 300 K): δ 73 (v_{1/2} ~ 2000 Hz). ³¹P{¹H} NMR (81 MHz, C₆D₆, 300 K): δ -39.8 (m).

5b: ¹H NMR (200 MHz, C₆D₆, 300 K): δ 4.19 (quint., ²*J*_{PH} ~ ³*J*_{HH} ~ 7.6 Hz, 1H, CH), 1.51 (dd, ³*J*_{PH} = 19.5 Hz, ³*J*_{HH} = 7.6 Hz, 3H, CH₃).

¹¹B{¹H} NMR (64 MHz, C₆D₆, 300 K): δ 73 (v_{1/2} ~ 2000 Hz). ³¹P{¹H} NMR (81 MHz, C₆D₆, 300 K): δ -37.1 (m).

Preparation of compound 6:

$$(C_6F_5)_2P_{-}$$
 + $HB(C_6F_5)_2$ - C_6D_6 + $(C_6F_5)_2P_{-}$ + $B(C_6F_5)_2$

Bis(pentafluorophenyl)propenyl-phosphine (32.8 mg, 0.08 mmol) and bis(pentafluorophenyl)borane (27.9 mg, 0.08 mmol) were dissolved in d_6 -benzene. The resulting yellow solution was investigated directly by NMR measurements.

¹H NMR (500 MHz, C₆D₆, 298 K): δ 4.40 (m, 1H, CH), 1.84, 1.51 (each m, each 1H, CH₂), 0.69 (t, ³*J*_{HH} = 7.4 Hz, 3H, CH₃).

¹³C{¹H} NMR (500 MHz, C₆D₆, 298 K): δ 34.1 (br d, ¹*J*_{PC} ~ 20 Hz, CH), 22.5 (d, ²*J*_{PC} = 20.3 Hz, CH₂), 15.6 (d, ³*J*_{PC} = 11.4 Hz, CH₃), [C₆F₅ not listed].

¹H, ¹H GCOSY (500 MHz, C₆D₆, 298 K): δ 4.40 / 1.84, 1.51 (CH / CH₂), 1.84 / 4.40, 1.51, 0.69 (CH₂ / CH, CH₂, CH₃), 1.51 / 4.40, 1.84, 0.69 (CH₂ / CH, CH₂, CH₃), 0.69 / 1.84, 1.51 (CH₃ / CH₂).

¹H,¹³C GHSQC (500 MHz / 126 MHz, C₆D₆, 298 K): δ 4.40 / 34.1 (CH), 1.84, 1.51 / 22.5 (CH₂), 0.69 / 15.6 (CH₃).

¹H,¹³C GHMBC (500 MHz / 126 MHz, C₆D₆, 298 K): δ 4.40 / 22.5, 15.6 (CH / CH₂, CH₃), 1.84 / 15.6 (CH₂ / CH₃), 1.51 / 15.6 (CH₂ / CH₃), 0.69 / 34.1, 22.5 (CH₃ / CH, CH₂).

¹¹B{¹H} NMR (160 MHz, C₆D₆, 298 K): δ 71 (v_{1/2} ~ 1500 Hz).

¹⁹F NMR (470 MHz, C₆D₆, 298 K): δ –128.7 (m, 4F, *o*), –144.6 (t, ${}^{3}J_{FF}$ = 19.9 Hz, 2F, *p*), –159.7 (m, 4F, *m*) (B(C₆F₅)₂) [Δδ_{m,p} = 15.1], –131.0 (m, 2F, *o*), –147.8 (t, ${}^{3}J_{FF}$ = 21.5 Hz, 1F, *p*), –159.5 (m, 2F, *m*) (PC₆F₅^A) [Δδ_{m,p} = 11.7], –130.3 (br m, 2F, *o*),–148.5 (t, ${}^{3}J_{FF}$ = 20.8 Hz, 1F, *p*), –159.7 (m, 2F, *m*) (PC₆F₅^B) [Δδ_{m,p} = 11.2].

¹⁹F,¹⁹F GCOSY (470 MHz, C₆D₆, 298 K) [selected traces]: δ -144.6 / -159.7 (*p*- / *m*-B(C₆F₅)₂), -148.5 / -159.7 (*p*- / *m*-PC₆F₅^B), -159.5 / -131.0, -147.8 (*m*- / *o*-, *p*-PC₆F₅^A), -159.7 / -130.3 (*m*- / *o*-PC₆F₅^B), -159.7 / -128.7 (*m*- / *o*-B(C₆F₅)₂).

 $^{31}P{^{1}H}$ NMR (202 MHz, C₆D₆, 298 K): δ -40.8 (m).

Preparation of compound 7:

Bis(pentafluorophenyl)propenyl-phosphine (200 mg, 0.49 mmol) and bis(pentafluorophenyl)borane (170 mg, 0.49 mmol) were dissolved in pentane (30 mL) and stirred for 10 min. *p*-Tolylisocyanate (64.9 mg, 0.49 mmol) was added to the solution. After stirring 30 min at room temperature the precipitate was isolated *via* filtration and washed with pentane (20 mL). The white powder (339 mg ,0.38 mmol, 78%) was dried *in vacuo*. Single crystals suitable for X-ray structural analysis were obtained by slow diffusion of pentane in a solution of the compound in dichloromethane at -30 °C.

¹H NMR (500 MHz, CD₂Cl₂, 188 K): δ 6.93 (d, ³*J*_{HH} = 8.3 Hz, 2H, *m*-tol), 6.82 (br, 2H, *o*-tol), 4.02 (br, 1H, CH), 2.15 (s, 3H, ^{tol}CH₃), 2.04 (br d, ³*J*_{PH} ~ 50 Hz), 1.84 (br) (each 1H, CH₂), 0.91 (br t, ³*J*_{HH} = 6.0 Hz, 3H, CH₃).

¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 188 K): δ 158.9 (br d, ¹*J*_{PC} ~ 105 Hz, C=O), 136.9 (d, ³*J*_{PC} = 12.6 Hz, *i*-tol), 136.5 (*p*-tol), 128.9 (*m*-tol), 124.1 (*o*-tol), 118.1, 115.4 (each br, *i*-B(C₆F₅)₂), 96.7 (br d, ¹*J*_{PC} ~ 75 Hz), 92.7 (br d, ¹*J*_{PC} ~ 65 Hz) (*i*-P(C₆F₅)₂), 40.3 (br, CH), 20.5 (^{tol}CH₃), 19.2 (br, CH₂), 16.3 (br d, ³*J*_{PC} ~ 8 Hz, CH₃), [C₆F₅ not listed].

¹H, ¹H GCOSY (500 MHz, CD₂Cl₂, 188 K): δ (¹H) / δ (¹H) 6.93 / 6.82 (*m*-tol / *o*-tol), 6.82 / 6.93 (*o*-tol / *m*-tol), 2.04 / 0.91 (CH₂ / CH₃), 1.84 / 0.91 (CH₂ / CH₃), 0.91 / 2.04, 1.84 (CH₃ / CH₂).

 $\label{eq:constraint} {}^{1}\text{H}, {}^{13}\text{C} \ \text{GHSQC} \ (500 \ \text{MHz} \ / \ 126 \ \text{MHz}, \ \text{CD}_2\text{Cl}_2, \ 188 \ \text{K}): \ \delta({}^{1}\text{H}) \ / \ \delta({}^{13}\text{C}) \ 6.93 \ / \ 128.9 \ (\textit{m-tol}), \ 6.82 \ / \ 124.1 \ (\textit{o-tol}), \ 2.15 \ / \ 20.5 \ ({}^{\text{tol}}\text{CH}_3), \ 2.04, \ 1.84 \ / \ 19.2 \ (\text{CH}_2), \ 0.91 \ / \ 16.3 \ (\text{CH}_3).$

¹H,¹³C GHMBC (500 MHz / 126 MHz, CD₂Cl₂, 188 K): δ (¹H) / δ (¹³C) 6.93 / 136.5, 128.9, 20.5 (*m*-tol / *p*-tol, *m*-tol, ^{tol}CH₃), 2.15 / 136.5, 128.9 (^{tol}CH₃ / *p*-tol, *m*-tol).

¹⁹F NMR (470 MHz, CD₂Cl₂, 188 K): δ –121.8 (2F, *o*), –136.0 (1F, *p*), –155.1 (2F, *m*) (each br, PC₆F₅^A) [Δδ_{m,p} = 19.1], –125.5 (*o*), –139.6 (*o*'), –156.6 (*p*), –162.0 (*m*), –163.8

(*m*') (each br, each 1F, BC₆F₅^A) [$\Delta\delta_{m,p} = 5.4, 7.2$], -126.7 (2F, *o*), -137.1 (1F, *p*), -154.3 (2F, *m*) (each br, PC₆F₅^B) [$\Delta\delta_{m,p} = 17.2$], -128.3 (*o*), -137.6 (*o*'), -156.5 (*p*), -163.7 (*m*), -163.9 (*m*') (each br, each 1F, BC₆F₅^B) [$\Delta\delta_{m,p} = 7.2, 7.4$].

¹⁹F,¹⁹F GCOSY (470 MHz, CD₂Cl₂, 188 K) [selected traces]: $\delta(^{19}F) / \delta(^{19}F) -125.5 / -139.6, -162.0 (o - / o' -, m-BC_6F_5^{A}), -137.6 / -163.9 (o' - / m'-BC_6F_5^{B}), -139.6 / -163.8 (o' - / m'-BC_6F_5^{A}), -154.3 / -126.7, -137.1 (m - / o -, p-PC_6F_5^{B}), -155.1 / -121.8, -136.0 (m - / o -, p-PC_6F_5^{A}), -162.0 / -125.5, -156.6 (m - / o -, p-BC_6F_5^{A}), -163.7 / -128.3, -137.6, -156.5 (m - / o -, o' -, p-BC_6F_5^{B}).$

 $^{31}P\{^{1}H\}$ NMR (202 MHz, CD₂Cl₂, 188 K): δ –2.8 (v_{1/2} \sim 50 Hz).

Melting point: 144.9 °C

IR (KBr): $\tilde{v} = 2968$ (w), 2930 (w), 2873 (w), 1700 (s), 1645 (s), 1522 (s), 1487 (s), 1456 (s), 1394 (w), 1291 (s), 1112 (s), 1030 (w), 978 (s), 811 (w), 784 (w).

Elemental analysis calcd. for C₃₅H₁₃BF₂₀NOP: C 47.49; H 1.48; N 1.58. Found: C 46.72; H 1.19; N 1.34.

[p: pentane].

Crystal data for C₃₅H₁₃BF₂₀NOP * 0.75 CH₂Cl₂ (7), M = 948.94, monoclinic, *C*2/c (No. 15), a = 24.3493(10), b = 8.8572(2), c = 34.2513(11) Å, $\beta = 92.683(3)^{\circ}$, V = 7378.8(4) Å³, $D_c = 1.708$ g cm⁻³, $\mu = 2.921$ mm⁻¹, F(000) = 3756, Z = 8, $\lambda = 1.54178$ Å, T = 223(2) K, 31219 reflections collected ($\pm h, \pm k, \pm l$), [(sin θ)/ λ] = 0.60 Å⁻¹, 6421 independent ($R_{int} = 0.063$), and 5002 observed reflections [I $\ge 2\sigma(l)$], 561 refined parameters, R = 0.069, w $R^2 = 0.202$, GoF = 1.029.

Preparation of compound 8:

Bis(pentafluorophenyl)propenyl-phosphine (200 mg, 0.49 mmol) and bis(pentafluorophenyl)borane (170 mg, 0.49 mmol) were dissolved in pentane (30 mL) and stirred for 1 h. 1-Pentyne (33.5 mg, 0.49 mmol) was added and the solution was stirred 1 h at room temperature. The solvent was removed *in vacuo* and a white powder was isolated (181 mg, 0.22 mmol, 45%).

¹H NMR (500 MHz, CD₂Cl₂, 298 K): δ 8.33 (d, ³*J*_{PH} = 67.9 Hz, 1H, ⁼CH^B), 3.26 (m, 1H, ^PCH^B), 2.20, 2.12 (each m, each 1H, ⁼CH₂^{Pr}), 1.80 (d, ³*J*_{PH} ~ 32 Hz), 1.72 (m) (each 1H, CH₂), 1.65 (m, 2H, CH₂^{Pr}), 0.92 (t, ³*J*_{HH} = 7.3 Hz, 3H, CH₃^{Pr}), 0.89 (t, ³*J*_{HH} = 7.8 Hz, 3H, CH₃).

¹H{³¹P} NMR (500 MHz, CD₂Cl₂, 298 K): δ 8.33 (s, 1H, ⁼CH^B), 3.26 (br, 1H, ^PCH^B), 2.20, 2.12 (each m, each 1H, ⁼CH₂^{Pr}), 1.80, 1.72 (each m, each 1H, CH₂), 1.65 (m, 2H, CH₂^{Pr}), 0.92 (t, ³J_{HH} = 7.3 Hz, 3H, CH₃^{Pr}), 0.89 (t, ³J_{HH} = 7.8 Hz, 3H, CH₃).

¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 298 K): δ 181.7 (br m, ⁼CH^B), 124.9 (d, ¹*J*_{PC} = 75.9 Hz, ^PC=), 123.3, 120.9 (each br, *i*-B(C₆F₅)₂), 101.0 (dm, ¹*J*_{PC} = 64.5 Hz), 98.5 (dm, ¹*J*_{PC} = 63.4 Hz) (*i*-P(C₆F₅)₂), 37.1 (m, ^PCH^B), 31.8 (br d, ²*J*_{PC} = 14.5 Hz, ⁼CH₂^{Pr}), 21.4 (d, ²*J*_{PC} = 7.3 Hz, CH₂), 21.3 (br, CH₂^{Pr}), 16.2 (d, ³*J*_{PC} = 8.9 Hz, CH₃), 13.7 (CH₃^{Pr}), [C₆F₅ not listed].

¹H, ¹H GCOSY (500 MHz, CD₂Cl₂, 298 K): $\delta(^{1}H) / \delta(^{1}H) 8.33 / 2.20$, 2.12 (^{$^{-}}CH^B / ^{<math>^{-}}CH₂^{Pr}$), 3.26 / 1.80, 1.72 (^{P CH^B / CH₂), 2.20 / 8.33, 1.65 (^{$^{-}}CH₂^{Pr} / ^{<math>^{-}}CH^B$, CH₂^{Pr}), 2.12 / 8.33, 1.65 (^{$^{-}}CH₂^{Pr} / ^{<math>^{-}}CH^B$, CH₂^{Pr}), 1.80 / 0.89 (CH₂ / CH₃), 1.72 / 0.89 (CH₂ / CH₃), 1.65 / 2.20, 2.12, 0.92 (CH₂^{Pr} / ^{$^{-}}CH₂^{Pr}, CH₃^{Pr}), 0.92 / 1.65 (CH₃^{Pr} / CH₂^{Pr}), 0.89 / 1.80, 1.72 (CH₃ / CH₂).}$ </sup></sup></sup></sup></sup></sup></sup>

¹H, ¹³C GHSQC (500 MHz / 126 MHz, CD₂Cl₂, 298 K): $\delta(^{1}H) / \delta(^{13}C) 3.26 / 37.1 (^{P}CH^{B})$, 2.20, 2.12 / 31.8 ($^{=}CH_{2}^{Pr}$), 1.80, 1.72 / 21.4 (CH₂), 1.65 / 21.3 (CH₂^{Pr}), 0.92 / 13.7 (CH₃^{Pr}), 0.89 / 16.2 (CH₃).

¹H,¹³C GHMBC (500 MHz / 126 MHz, CD₂Cl₂, 298 K): $\delta(^{1}H) / \delta(^{13}C) 1.65 / 124.9$, 31.8, 13.7 (CH₂^{Pr} / ^PC⁼, ⁼CH₂^{Pr}, CH₃^{Pr}), 0.92 / 31.8, 21.3 (CH₃^{Pr} / ⁼CH₂^{Pr}, CH₂^{Pr}), 0.89 / 21.4 (CH₃ / CH₂).

¹H{¹H} TOCSY (500 MHz, CD₂Cl₂, 298 K): $\delta({}^{1}H)_{irr.} / \delta({}^{1}H)_{res.} 8.33 / 0.92 (= CH^B / CH₃), 3.26 / 0.89 (PCH^B / CH₃), 2.20 / 1.65, 0.92 (= CH₂^{Pr} / CH₂^{Pr}, CH₃^{Pr}), 2.12 / 1.65, 0.92 (= CH₂^{Pr} / CH₂^{Pr}, CH₃^{Pr}), 2.12 / 1.65, 0.92 (= CH₂^{Pr} / CH₂^{Pr}, CH₃^{Pr}), 1.80 / 0.89 (CH₂ / CH₃), 1.72 / 0.89 (CH₂ / CH₃), 0.92 / 3.26, 2.20, 2.12, 1.80, 1.72, 1.65 (CH₃^{Pr} / PCH^B, = CH₂^{Pr}, CH₂^{Pr}, CH₂, CH₂^{Pr})¹, 0.89 / 3.26, 2.20, 2.12, 1.80, 1.72, 1.65 (CH₃ / PCH^B, = CH₂^{Pr}, CH₂^{Pr})¹ [¹ irradiation points at 0.92 and 0.89 are too close for the irradiation pulse, therefore unselective exitation].$

¹¹B{¹H} NMR (160 MHz, CD₂Cl₂, 298 K): δ -8.6 (d, $J \sim$ 14 Hz).

¹⁹F NMR (470 MHz, CD₂Cl₂, 298 K)¹: δ –127.7 (2F, *o*), –141.4 (1F, *p*), –157.1 (2F, *m*) (each br, PC₆F₅^A) [$\Delta\delta_{m,p}$ = 15.7], –127.9 (2F, *o*), –140.5 (1F, *p*), –156.8 (2F, *m*) (each br, PC₆F₅^B) [$\Delta\delta_{m,p}$ = 16.3], –131.8 (2F, *o*)^t, –160.1 (1F, *p*), –165.2 (2F, *m*) (each br, BC₆F₅^A) [$\Delta\delta_{m,p}$ = 5.1], –132.9 (2F, *o*)^t, –160.6 (1F, *p*), –165.2 (2F, *m*) (each br, BC₆F₅^B) [$\Delta\delta_{m,p}$ = 4.6] [¹.assignment supported by ¹⁹F{³¹P} NMR] [^t.tentative assignment].

¹⁹F,¹⁹F COSY (470 MHz, CD₂Cl₂, 298 K) [selected traces]: $\delta(^{19}F) / \delta(^{19}F) -131.8 / -165.2 (o-BC_6F_5^A / m-BC_6F_5^{A+B}), -132.9 / -165.2 (o-BC_6F_5^B / m-BC_6F_5^{A+B}), -156.8 / -127.9, -140.5 (m- / o-, p-PC_6F_5^B), -157.1 / -127.7, -141.4 (m- / o-, p-PC_6F_5^A), -160.1 / -165.2 (p-BC_6F_5^A / m-BC_6F_5^{A+B}), -165.2 / -131.8, -132.9, -160.1, -160.6 (m-BC_6F_5^{A+B} / o-BC_6F_5^A, o-BC_6F_5^B, p-BC_6F_5^A, p-BC_6F_5^B).$

³¹P{¹H} NMR (202 MHz, CD₂Cl₂, 298 K): δ 29.8 (br m).

³¹P{¹⁹F} NMR (202 MHz, CD₂Cl₂, 298 K): δ 29.8 (br, $v_{1/2} \sim$ 135 Hz).

Melting point: 132.7 °C

IR (KBr): $\tilde{v} = 2977$ (w), 2940 (w), 2882 (w), 1644 (s), 1522 (s), 1482 (s), 1459 (s), 1394 (w), 1302 (w), 1281 (w), 1102 (s), 979 (s), 782 (w), 674 (w), 548 (w).

Elemental analysis calcd. for C₃₂H₁₄BF₂₀P: C 46.86; H 1.72. Found: C 45.93; H 1.34.

Preparation of compound 9:

Bis(pentafluorophenyl)propenyl-phosphine (170 mg, 0.42 mmol) and bis(pentafluorophenyl)borane (148 mg, 0.49 mmol) were dissolved in pentane (10 mL) and stirred for 5 min. The flask was evacuated and ethylene (2 bar) was pressed on the solution and the reaction mixture was stirred for 4 days at room temperature. The white precipitate was isolated by filtration. The product was dried *in vacuo* to yield a white powder (55.1 mg, 0.07 mmol, 17%).

¹H NMR(500 MHz, CDCl₃, 298 K): δ 3.38, 2.91 (each m, each 1H, ^PCH₂), 3.31 (m, 1H, CH), 2.05 (dm, ³*J*_{PH} = 42.3 Hz), 1.40 (m) (each 1H, ^BCH₂), 1.75 (dm, ³*J*_{PH} = 32.7 Hz), 1.23 (m) (each 1H, CH₂), 0.82 (t, ³*J*_{HH} = 7.2 Hz, 3H, CH₃).

¹³C{¹H} NMR(126 MHz, CDCl₃ 298 K): δ 32.8 (br, CH), 27.8 (d, ${}^{1}J_{PC} = 52.3$ Hz, ${}^{P}CH_{2}$), 23.1 (d, ${}^{2}J_{PC} = 3.9$ Hz, CH₂), 16.5 (br, ${}^{B}CH_{2}$), 15.4 (d, ${}^{3}J_{PC} = 4.5$ Hz, CH₃), [C₆F₅ not listed].

¹H, ¹H GCOSY (500 MHz, CDCl₃, 298 K): δ(¹H) / δ(¹H) 3.38 / 2.91, 1.40 (^PCH₂ / ^PCH₂, ^BCH₂), 3.31 / 1.23 (CH / CH₂), 2.91 / 3.38, 2.05, 1.40 (^PCH₂ / ^PCH₂, ^BCH₂), 2.05 / 2.91, 1.40 (^BCH₂ / ^PCH₂, ^BCH₂), 1.75 / 3.31, 0.82 (CH₂ / CH, CH₃), 1.40 / 3.38, 2.91, 2.05 (^BCH₂ / ^PCH₂, ^BCH₂), 1.23 / 3.31, 1.75, 0.82 (CH₂ / CH, CH₂, CH₃), 0.82 / 1.75, 1.23 (CH₃ / CH₂).

¹H,¹³C GHSQC (500 MHz / 126 MHz, CDCl₃, 298 K): δ(¹H) / δ(¹³C) 3.38 / 27.8 (^PCH₂), 3.31 / 32.8 (CH), 2.91 / 27.8 (^PCH₂), 2.05 / 16.5 (^BCH₂), 1.75 / 23.1 (CH₂), 1.40 / 16.5 (^BCH₂), 1.23 / 23.1 (CH₂), 0.82 / 15.4 (CH₃).

¹H,¹³C GHMBC (500 MHz / 126 MHz, CDCl₃, 298 K): δ(¹H) / δ(¹³C) 1.23 / 15.4 (CH₂ / CH₃), 0.82 / 23.1 (CH₃ / CH₂).

¹H{¹H} NOE (500 MHz, CDCl₃, 298 K): δ (¹H)_{irr.} / δ (¹H)_{res.} 3.38 / 2.91 (^PCH₂ / ^PCH₂), 3.31 / 0.82 (CH / CH₃), 2.91 / 3.38 (^PCH₂ / ^PCH₂), 2.05 / 1.40 (^BCH₂ / ^BCH₂), 1.75 / 1.23 (CH₂ / CH₂), 1.40 / 2.05 (^BCH₂ / ^BCH₂), 1.23 / 1.75 (CH₂ / CH₂), 0.82 / 3.31 (CH₃ / CH).

¹H{¹H} TOCSY (500 MHz, CDCl₃, 298 K): δ (¹H)_{irr.} / δ (¹H)_{res.} 3.38 / 2.91, 2.05, 1.40 (^PCH₂ / ^PCH₂, ^BCH₂), 3.31 / 1.75, 1.23, 0.82 (CH / CH₂, CH₃), 2.91 / 3.38, 2.05, 1.40 (^PCH₂ / ^PCH₂, ^BCH₂), 2.05 / 3.38, 2.91, 1.40 (^BCH₂ / ^PCH₂, ^BCH₂), 1.75 / 3.31, 1.23 (CH₂ / ^CH, CH₂), 1.40 / 3.38, 2.91, 2.05 (^BCH₂ / ^PCH₂, ^BCH₂), 1.23 / 3.31, 1.75, 0.82 (CH₂ / CH, CH₂, CH₃), 0.82 / 1.75, 1.23 (CH₃ / CH₂).

¹¹B{¹H} NMR(160 MHz, CDCl₃, 298 K): δ -8.7 (v_{1/2} ~ 55 Hz).

¹⁹F NMR (470 MHz, CDCl₃ 298 K): δ –124.3 (2F, *o*), –139.2 (1F, *p*), –156.3 (2F, *m*) (each br, PC₆F₅^A) [$\Delta\delta_{m,p}$ = 17.1], –126.2 (2F, *o*), –138.5 (1F, *p*), –154.9 (2F, *m*) (each br, PC₆F₅^B) [$\Delta\delta_{m,p}$ = 16.4], –131.7 (2F, *o*), –159.8 (1F, *p*), –164.3 (2F, *m*) (each br, BC₆F₅^A) [$\Delta\delta_{m,p}$ = 4.5], –132.2 (2F, *o*), –159.0 (1F, *p*), –164.2 (2F, *m*) (each br, BC₆F₅^B) [$\Delta\delta_{m,p}$ = 4.2].

¹⁹F,¹⁹F GCOSY (470 MHz, CDCl₃, 298 K) [selected traces]: $\delta(^{19}F) / \delta(^{19}F) -154.9 / -126.2, -138.5 (m- / o-, p-PC_6F_5^B), -156.3 / -124.3, -139.2 (m- / o-, p-PC_6F_5^A), -164.2 / -132.2, -159.0 (m- / o-, p-BC_6F_5^B), -164.3 / -131.7, -159.8 (m- / o-, p-BC_6F_5^A).$ ³¹P{¹H} NMR(202 MHz, CDCl₃, 298 K): δ 37.5 (v_{1/2} ~ 50 Hz).

Melting point: 161.5 °C

IR (KBr): $\tilde{v} = 2983(w)$, 2946 (w), 2867 (w), 1645 s), 1522 (s), 1491 (s), 1463 (s), 1389 (w), 1305 (w), 1275 (w), 1103 (s), 1082 (s), 989 (s), 922 (w), 772 (w), . Elemental analysis calcd. for C₂₉H₁₀BF₂₀P: C 44.65; H 1.29. Found: C 43.56; H 1.14. Exact mass calcd. for C₂₉H₁₀BF₂₀P+Cl⁻: 814.99887 m/z. Found: 814.99929 m/z.

¹H, ¹H GCOSY (500 MHz, CDCl₃, 298 K; projections: ¹H spectrum).

¹H,¹³C GHSQC (500 MHz / 126 MHz, CDCl₃, 298 K; projections: ¹H and ¹³C {¹H} spectrum, respectively).

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Preparation of compound 10:

Bis(pentafluorophenyl)propenyl-phosphine (200 mg, 0.49 mmol) and bis(pentafluorophenyl)borane (170 mg, 0.49 mmol) were dissolved in pentane (30 mL) and stirred for 5 min. Mesitylazide (79.4 mg, 0.49 mmol) was added and a white precipitate is formed immediately. The solution was stirred for 10 min at room temperature. The white precipitate was isolated by filtration and dried *in vacuo* (222 mg, 0.24 mmol, 50%). The product could be stored as a white solid but it slowly decomposed in CD₂Cl₂ solution (T > -10 °C).

Single crystals suitable for X-ray structural analysis were obtained by slow diffusion of mesitylazide in pentane in a solution of bis(pentafluorophenyl)propenyl-phosphine and bis(pentafluorophenyl)borane in dichloromethane at -30 °C.

¹H NMR (500 MHz, CD₂Cl₂, 218 K): δ 6.72, 6.58 (each br, each 1H, *m*-Mes), 3.57 (br, 1H, ^PCH^B), 2.12, 1.97, 1.96 (each br, each 3H, CH₃^{Mes}), 2.04 (br d, ³*J*_{PH} ~ 40 Hz), 1.83 (br) (each 1H, CH₂), 0.82 (br, CH₃).

¹H, ¹H GCOSY (500 MHz / 126 MHz, CD₂Cl₂, 218 K): δ(¹H) / δ(¹H) 6.72 / 6.58, 2.12, 1.97, 1.96 (*m*-Mes / *m*-Mes, CH₃^{Mes}), 6.58 / 6.72, 2.12, 1.97, 1.96 (*m*-Mes / *m*-Mes, CH₃^{Mes}), 3.57 / 1.83 ($^{P}CH^{B}$ / CH₂), 2.12 / 6.72, 6.58, 0.82 (CH₃^{Mes} / *m*-Mes, CH₃), 1.97 / 6.72, 6.58, 0.82 (CH₃^{Mes} / *m*-Mes, CH₃), 1.96 / 6.72, 6.58, 0.82 (CH₃^{Mes} / *m*-Mes, CH₃), 1.83 / 3.57, 0.82 (CH₂ / $^{P}CH^{B}$, CH₃), 0.82 / 2.12, 1.97, 1.96, 1.83 (CH₃ / CH₃^{Mes}, CH₂).

 $^{11}B\{^{1}H\}$ NMR (160 MHz, CD₂Cl₂, 298 K): δ –9.3 (v_{1/2} \sim 100 Hz).

¹⁹F NMR (470 MHz, CD₂Cl₂, 218 K): δ –120.6, –125.9, –126.9, –131.0 (*o*), –139.2, –140.0 (*p*), –154.9, –155.7, –156.1, –158.5 (*m*) (each br, each 1F, P(C₆F₅)₂), –122.0 (*o*), –136.9 (*o*'), –156.5 (*p*), –163.7 (*m*'), –164.5 (*m*) (each br, each 1F, BC₆F₅^A) [$\Delta\delta_{m,p}$ = 7.2, 8.0], –124.8 (*o*), –128.8 (*o*'), –156.6 (*p*), –161.5 (*m*), –163.9 (*m*') (each br, each 1F, BC₆F₅^B) [$\Delta\delta_{m,p}$ = 4.9, 7.3].

¹⁹F,¹⁹F GCOSY (470 MHz, CD₂Cl₂, 218 K) [selected traces]: $\delta(^{19}F) / \delta(^{19}F) -161.5 / -124.8, -156.6 (m - / o -, p - BC_6F_5^B), -163.7 / -136.9, -156.5 (m - / o -, p - BC_6F_5^A), -163.9 / -128.8, -156.6 (m - / o -, p - BC_6F_5^B), -164.5 / -122.0, -156.5 (m - / o -, p - BC_6F_5^A).$ ³¹P{¹H} NMR (202 MHz, CD₂Cl₂): δ 4.0 (218 K, v_{1/2} ~ 50 Hz), 4.6 (298K, m).

Decomposition point: 125.9 °C

IR (KBr): $\tilde{v} = 2984(w)$, 2956 (w), 2936 (w), 2878 (w), 2123 (w), 1645 (s), 1526 (s), 1487 (s), 1456 (s), 1384 (m), 1323 (s), 1300 (s), 1226 (w), 1104 (s), 984 (s), 936 (w), 915 (w), Elemental analysis calcd. for C₃₆H₁₇BF₂₀N₃P: C 47.34; H 1.88; N 4.60. Found: C 47.05; H 2.20; N 4.10.

pentane].

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

298 K).

Crystal data for C₃₆H₁₇BF₂₀N₃P (**10**), M = 913.31, monoclinic, $P2_1/n$ (No. 14), a = 9.7940(3), b = 13.5562(5), c = 26.7495(9) Å, $\beta = 97.441(2)^\circ$, V = 3521.6(2) Å³, $D_c = 1.723$ g cm⁻³, $\mu = 2.005$ mm⁻¹, F(000) = 1816, Z = 4, $\lambda = 1.54178$ Å, T = 223(2) K, 29109 reflections collected ($\pm h$, $\pm k$, $\pm l$), [(sin θ)/ λ] = 0.60 Å⁻¹, 6200 independent ($R_{int} = 0.055$), and 5057 observed reflections [I $\ge 2\sigma(I)$], 554 refined parameters, R = 0.045, w $R^2 = 0.129$, GoF = 1.013.

