Chemical Communications

Electronic Supplementary Information (ESI)

Expanding the chemical space for push-pull chromophores by non-concerted [2+2] and [4+2] cycloadditions: access to a highly functionalised 6,6-dicyanopentafulvene with an intense, low-energy charge-transfer band

Govindasamy Jayamurugan,^a Jean-Paul Gisselbrecht,^b Corinne Boudon,^b Franziska Schoenebeck,^{*a} W. Bernd Schweizer,^a Bruno Bernet^a and François Diederich^{*a}

^{*a*} Laboratorium für Organische Chemie, ETH Zürich, Hönggerberg, HCI, 8093 Zürich (Switzerland)

E-mail: <u>diederich@org.chem.ethz.ch</u>; Fax: +41 44 632 1109, Tel: +41 44 632 2992 ^b Laboratoire d'Electrochimie et de Chimie Physique du Corps Solide Institut de Chimie-UMR 7177, C.N.R.S., Université de Strasbourg 4, rue Blaise Pascal, CS 90032, 67081 Strasbourg Cedex (France)

Table of Contents

General experimental methods (ESI)ESI3
Solvent screening on selectivity between [2+2] and [4+2]
cycloaddition reactions (ESI)ESI5
Synthetic procedures and characterisation of the products (ESI)ESI6
X-ray data for compounds 1, 4, 5, 6 and 7 (ESI)ESI12
Quinoid character of compounds 1, 4, 5, 6 and 7 (ESI)ESI20
UV/Vis spectroscopic data (ESI)ESI20
Electrochemistry (ESI)ESI22
Discussion of the electrochemical data for chromophores 5 and 7 (ESI).ESI24
Summary table of optical and electrochemical data (ESI)ESI25
Theoretical calculations for 5 (ESI)ESI25
¹ H NMR and ¹³ C NMR spectra of the products (ESI)ESI29
Acid-base titration of 5 followed by ¹ H NMR spectroscopy (ESI)ESI34
Thermal gravimetric analysis (ESI)ESI35
Computational details for mechanistic studies (ESI)ESI35
XYZ coordinates and energies (ESI)ESI37
References (ESI)ESI75

General experimental methods (ESI)

General: Chemicals were purchased from Acros, Aldrich, Fluka, and TCI and used as received. CH₂Cl₂ was freshly distilled from CaH₂ under nitrogen atmosphere. Column chromatography (CC) and plug filtrations were carried out with SiO₂ 60 (particle size 0.040–0.063 mm, 230–400 mesh; Aldrich). Compound 1,¹ was prepared according to literature procedure. Melting points (M.p.) were measured in open capillaries with a Büchi melting point B540 apparatus and are uncorrected. "Decomp" refers to decomposition. ¹H NMR and ¹³C NMR spectra were measured on Bruker DRX 400 MHz, Bruker AV 400 MHz or Bruker Avance II 600 MHz instruments at 25 °C. Residual solvent signals in the ¹H and ¹³C NMR spectra were used as an internal reference. Chemical shifts (δ) are reported in ppm downfield from SiMe₄, with the residual solvent signal as an internal reference. Coupling constants (J) are given in Hz. The apparent resonance multiplicity is described as s (singlet), d (doublet), dd (doublet of doublet) and m (multiplet). Infrared spectra (IR) were recorded on a Perkin-Elmer BX FT-IR spectrometer; signal designations: s (strong), m (medium) and w (weak). Selected absorption bands are reported in wavenumbers (cm⁻¹). UV/Vis spectra were recorded on a Varian CARY-500 spectrophotometer. The spectra were measured in a quartz cuvette of 1 cm at 298 K. The absorption maxima (λ_{max}) are reported in nm with the extinction coefficient (ε) in dm³ mol⁻¹ cm⁻¹ in brackets. Shoulders are indicated as sh. High-resolution (HR) ESI-TOF spectra were measured on a Bruker maXis ESI-Q-TOF spectrometer. HR FT-ICR-MALDI spectra were measured on a IonSpec Ultima Fourier transform (FT) instrument with 3-hydroxypicolinic acid (3-HPA). The most important signals are reported in m/zunits with M as the molecular ion. Liquid chromatography/mass spectrometry (LC/MS) was performed on an Ultimate 3000 series LC instrument combined with an

MSQ Plus mass spectrometer from Dionex, using a Zorbax Eclipse Plus *C18* column $(30 \times 3 \text{ mm}; 3.5 \mu\text{m} \text{ pore size})$ from Agilent. The preparative HPLC separation was carried out using a Merck Hitachi L-7150 pump, equipped with a Merck Hitachi D-7000 interface and a Merck Hitachi L-7614 degasser. For detection, a Merck Hitachi L-7400 UV detector (254 nm) was used. The column used was Hibar, LiChrospher RP-18, 250x25mm with a flow rate of 12 mL/min.

Electrochemistry: The electrochemical experiments were carried out at 20 °C in CH_2Cl_2 (except for **5** in CH_3CN) containing 0.1 M *n*-Bu₄NPF₆ in a classical threeelectrode cell by cyclic voltammetry (CV) and rotating-disk voltammetry (RDV). CH_2Cl_2 was purchased in spectroscopic grade from Merck, dried over molecular sieves (4 Å), and stored under Ar prior to use. *n*-Bu₄NPF₆ was purchased in electrochemical grade from Fluka and used as received. The working electrode was a glassy carbon disk electrode (3 mm in a diameter), the auxiliary electrode a Pt wire, and the pseudo-reference electrode a Pt wire. All potentials are referenced to the ferricinium/ferrocene (Fc⁺/Fc) couple, used as an internal standard, and uncorrected from ohmic drop. The cell was connected to an Autolab PGSTAT 30 potentiostat (Eco Chemie, The Netherlands) driven by a GPSE software running on a personal computer.

Solvent screening on selectivity between [2+2] and [4+2] cycloaddition reactions (ESI)

Table 1 (ESI). Solvent screening of the regioselective [2+2] and [4+2] cycloaddition reactions. The yields were determined by both LC-MS and ¹H NMR except for entry 3 (only LC-MS).

Entry	Conditions	Yield [%]			
Lifting		3	4	5	6
1	CH ₂ Cl ₂ , 25 °C, 15 h	69	29	0	0
2	THF, 25 °C, 24 h	62	32	4	0
3	1,4-Dioxane, 25 °C, 24 h	78	19	2	0
4	Toluene, 100 °C, 15 h	90	10	0	0
5	CH ₃ CN, 25 °C, 15 h	31	22	47	0
6	DMF, 25 °C, 15 h	16	25	46	0

Fig. 1 (ESI). LC-MS profile for entry 1 in Table 1 (ESI).

Fig. 2 (ESI). NMe₂ signals in the ¹H NMR spectrum (300 MHz, 298 K) in CD₂Cl₂ for entry 1 in Table 1 (ESI).

Synthetic procedures and characterisation of the products (ESI)

Cycloaddition of 2 to 1: a) A solution of **1** (88 mg, 0.3 mmol) in toluene (25 mL) was heated under nitrogen atmosphere to 100 $^{\circ}$ C, treated with **2** (38 mg, 0.27 mmol) and stirred for 15 h. After evaporation, reverse-phase HPLC (H₂O/CH₃CN 1:1) gave *E*/*Z*-**3** (101 mg, 86%) and **4** (13 mg, 11%).

b) A solution of **1** (125 mg, 0.42 mmol) in CH_2Cl_2 (25 mL) under nitrogen atmosphere was treated with **2** (55 mg, 0.38 mmol) and stirred at 25 °C for 15 h. After evaporation, reverse-phase HPLC (H₂O/CH₃CN 1:1) gave *E/Z*-**3** (100 mg, 60%) and **4** (40 mg, 24%).

c) A solution of **1** (74 mg, 0.25 mmol) in CH₃CN (20 mL) under nitrogen atmosphere was treated with **2** (32 mg, 0.22 mmol), stirred at 25 $^{\circ}$ C for 15 h when

LC-MS revealed a mixture E/Z-**3**/**4**/**5** 31:22:47. After evaporation, a suspension of the residue in CHCl₃/hexane 1:1 was filtered through a sintered funnel. The solid was washed with CHCl₃ to afford analytically pure **5** (41.5 mg, 42%).

(E/Z)-2,4-Bis[4-(dimethylamino)phenyl]hexa-1,3,5-triene-1,1,3,6,6-

pentacarbonitrile (E/Z-3):

Deep-green solid. $v_{max}(neat)/cm^{-1}$ 2213 (w), 1602 (s), 1488 (m), 1437 (m), 1379 (m), 1344 (m), 1206 (m), 1167 (m), 943 (w), 821 (w); $\delta_{\rm H}(400 \text{ MHz}; \text{CDCl}_3; 298 \text{ K};$ *E*/*Z* ca. 1:1) 3.04 (s, 3 H; 0.5 NMe₂), 3.12 (s, 3 H; 0.5 NMe₂), 3.17 (s, 6 H; NMe₂), 6.60 (d, J = 9.0 Hz, 1 H), 6.76–6.73 (m, 3 H), 7.06 (d, J = 9.0 Hz, 1 H), 7.45 (d, J =9.1 Hz, 1 H), 7.49 (s, 0.5 H; 0.5 H–C(5)), 7.67 (d, J = 9.2 Hz, 1 H), 7.82 (d, J = 9.2Hz, 1 H), 8.22 ppm (s, 0.5 H; 0.5 H–C(5)); $\delta_{C}(100 \text{ MHz}; \text{CDCl}_{3}; 298 \text{ K}; E/Z \text{ ca. 1:1})$ 39.97/40.12/40.19/40.26 (2 NMe₂), 75.20/76.14 (C(1)), 93.54/95.56 (C(6)), 108.89/108.98/109.35/109.62/111.55/112.27/112.37/114.19/114.31/114.89/115.44/ 116.59 (C(3),5 C≡N), 112.00/112.02/112.10/112.35 (C(3',5',3'',5'')), 118.45/118.57/119.60/120.55 (C(1',1'')),131.15/132.28/132.70/133.18 (C(2',6',2'',6'')),152.95/153.54/154.08/154.37/154.53/155.57 (C(2,4',4'')),157.09/158.47 (C(5)), 161.39/161.57 ppm (C(4)); HR-MALDI-MS (negative mode): m/z (%): 445.1986 (13), 444.1925 (62), 443.1867 (100, $[M]^-$, calcd for C₂₇H₂₁N₇⁻: 443.1858), 417.1829 (26), 416.1770 (26, $[M - \text{HCN}]^-$, calcd for $C_{26}H_{20}N_6^-$: 416.1749).

3,5-Bis[4-(dimethylamino)phenyl]cyclohexa-2,5-diene-1,1,2,4,4-

pentacarbonitrile (4):

Light brown solid. M.p. > 259 °C (decomp); $\nu_{max}(neat)/cm^{-1}$ 2917 (w), 2860 (w), 2811 (w), 2218 (w), 2158 (w), 1605 (s), 1526 (s), 1484 (w), 1444 (w), 1372 (m), 1293 (w), 1271 (w), 1218 (w), 1198 (m), 1173 (m), 1124 (w), 1064 (w), 946 (w), 817 (m), 789 (w); $\delta_{H}(600 \text{ MHz}; \text{CD}_2\text{Cl}_2; 298 \text{ K})$ 3.05 (s, 6 H; NMe₂), 3.11 (s, 6 H; NMe₂), 6.32 (s, 1 H; H–C(5)), 6.78 (d, J = 9.1 Hz, 2 H) and 6.83 (d, J = 9.2 Hz, 2 H) (H– C(2',6',2'',6'')), 7.54 (d, J = 9.2 Hz, 2 H) and 7.72 ppm (d, J = 9.2 Hz, 2 H) (H– C(3',5',3'',5'')); $\delta_{C}(150 \text{ MHz}; \text{CD}_2\text{Cl}_2; 298 \text{ K})$ 35.93 (C(1)), 40.19 (2 NMe₂), 40.32 (C(4)), 100.55 (C(2)), 110.73 (C($C \equiv N_2$), 111.49 (C($C \equiv N_2$), 111.91/112.07 (C(3',5',3'',5'')), 113.41 (C(6)), 114.50 (C $\equiv N$), 117.85/119.66 (C(1',1'')), 129.11/130.82 (C(2',6',2'',6'')), 136.31 (C(5)), 149.04 (C(3)), 152.63/153.77 ppm (C(4',4'')); HR-MALDI-MS (negative mode): m/z (%): 444.1883 (19), 443.1842 (50, [M]⁻, calcd for C₂₇H₂₁N₇⁻: 443.1858), 417.1788 (33), 416.1733 (100, [M - HCN]⁻, calcd for C₂₆H₂₀N₆⁻: 416.1749).

Dicyano{2,3,3-tricyano-5-[4-(dimethylamino)phenyl]-9 (dimethyliminio)spiro[5.5]undeca-1,4,7,10-tetraen-1-yl}methanide (5):

Maroon solid. M.p. > 213 °C (decomp); λ_{max} (CH₃CN)/nm 362 (ϵ /dm³ mol⁻¹ cm⁻¹ 13 237), 461 (727); $v_{max}(neat)/cm^{-1}$ 3058 (w), 2923 (w), 2819 (w), 2197 (m), 2178 (s), 2161 (m), 1650 (s), 1606 (s), 1519 (s), 1445 (w), 1360 (m), 1226 (w), 1197 (m), 819 (m); $\delta_{\rm H}$ (400 MHz; CD₃CN; 298 K; assignments based on NOE experiments) 2.90 (s, 6 H; Me₂N–C(4')), 3.37 (s, 6 H; Me₂N⁺=C(9)), 6.20 (s, 1 H; irradiation at 6.85 ppm \rightarrow NOE of 8 %; H–C(4)), 6.56 (d, J = 8.9 Hz, 2 H; irradiation at 2.90 ppm \rightarrow NOE of 10 %; irradiation at 6.85 ppm \rightarrow NOE of 4 %; H–C(3',5')), 6.85 (d, J = 8.9 Hz, 2 H; irradiation at 6.56 ppm \rightarrow NOE of 5 %; irradiation at 7.14 ppm \rightarrow NOE of 2 %; H–C(2',6')), 7.01 (d, J = 10.2 Hz, 2 H; irradiation at 3.37 ppm \rightarrow NOE of 8 %; irradiation at 7.14 ppm \rightarrow NOE of 3 %; H–C(8,10)), 7.14 ppm (d, J = 10.2 Hz, 2 H; irradiation at 6.85 ppm \rightarrow NOE of 4 %; irradiation at 7.01 ppm \rightarrow NOE of 9 %; H– C(7,11)); $\delta_{\rm C}(150 \text{ MHz}; \text{CD}_3\text{CN}; 298 \text{ K}; \text{ assignments based on comparison with}$ related structures in refs.²) 36.39 ($C^{-}(CN)_2$), 39.43 (NMe₂), 43.47 (N⁺Me₂), 43.88 (C(6)), 51.45 (C(3)), 70.49 (C(2)), 110.48 (C(3',5')), 113.96 (C(1)), 117.66 $(C(C=N)_2)$, 119.58 (C=N), 121.71 (C(8,10)), 122.57 (C(1')), 130.30 (C(2',6')), 140.43 (C(4)), 148.68 (C(5)), 150.75 (C(4')), 152.24 (C(7,11)), 162.57 ppm (C(9)), signal for $(C^{-}(C=N)_2)$ hidden by the CD₃CN signal; HR-MALDI-MS (negative mode): m/z (%): 444.1888 (41), 443.1845 (100, $[M]^-$, calcd for C₂₇H₂₁N₇⁻: 443.1858), 417.1804 (27), 416.1740 (57, $[M - \text{HCN}]^-$, calcd for C₂₆H₂₀N₆⁻: 416.1749).

5-(Dicyanomethylene)-2,4-bis[(4-dimethylamino)phenyl]cyclopenta-1,3-diene-

1,3-dicarbonitrile (6).

A solution of *E*/*Z*-**3** 1:1 (104 mg, 0.23 mmol) in MeCN/H₂O 1:1 (20 mL) was treated with (NH₄)₂Ce(NO₃)₆ (CAN) (64 mg, 0.12 mmol) and stirred at room temperature for 12 h when LC-MS showed complete conversion. The mixture was extracted with CH_2Cl_2 (3 × 50 mL). The combined organic layers were dried over Na_2SO_4 and evaporated to afford 6 (88 mg, 90%) as a maroon metallic solid. An analytical sample was obtained by recrystallisation in CH₂Cl₂/hexane. M.p. > 400 $^{\circ}$ C; λ_{max} (CH₂Cl₂)/nm 782 (ε /dm³ mol⁻¹ cm⁻¹ 27 522); v_{max} (neat)/cm⁻¹ 2924 (w), 2210 (w), 1596 (s), 1486 (m), 1427 (m), 1371 (s), 1356 (s), 1218 (m), 1197 (m), 1170 (m), 1091 (w), 944 (w), 823 (w); $\delta_{\rm H}(600 \text{ MHz}; \text{CD}_2\text{Cl}_2; 298 \text{ K})$: 3.14 (s, 6 H; NMe₂), 3.25 (s, 6 H; NMe₂), 6.84 (d, J = 9.0 Hz, 2 H; H–C(3'',5'')), 6.90 (d, J = 9.4 Hz, 2 H; H– C(3',5'), 7.45 (d, J = 9.1 Hz, 2 H; H–C(2'',6'')), 8.26 ppm (d, J = 9.4 Hz, 2 H; H– C(2',6'); $\delta_{C}(150 \text{ MHz}; CD_{2}Cl_{2}; 298 \text{ K}) 40.64 \text{ (br., NMe}_{2}), 40.99 \text{ (NMe}_{2}), 80.01$ $(C(C \equiv N)_2)$, 87.88 (C(1)), 108.48 (C(3)), 112.54 (br., C(3'',5'')), 113.32/114.05 $(C(C \equiv N)_2)$, 113.61 (C(3',5')), 116.17 $(C \equiv N)$, 116.72 $(C \equiv N)$, 117.18 (br., C(1'')), 119.29 (br., C(1')), 132.97/134.18 (C(2',6',2'',6'')), 153.79 (br., C(4'')), 155.68 (C(4')), 157.48/159.13 (C(2,4)), 160.70 ppm (C(5)); HR-MALDI-MS (negative mode): m/z (%): 418.1857 (17), 417.1824 (79), 416.1754 (100, $[M]^-$, calcd for C₂₆H₂₀N₆⁻: 416.1749).

4,4"-Bis(dimethylamino)-[1,1':3',1"-terphenyl]-2',4',5'-tricarbonitrile (7).

A solution of 4 (40 mg, 0.09 mmol) in CH₂Cl₂ (10 mL) was treated with SiO₂ (3 g), stirred at room temperature for 2 h and filtered through a pad of Celite. Evaporation gave sufficiently pure 7 (34 mg, 95%) as an orange solid. M.p. 211–213 °C; λ_{max} (CH₂Cl₂)/nm 384 (ε /dm³ mol⁻¹ cm⁻¹ 12 041), 435 (9511, sh); ν_{max} (neat)/cm⁻¹ 2912 (w), 2823 (w), 2222 (w), 2162 (very w), 1607 (s), 1567 (m), 1530 (m), 1515 (s), 1435 (w), 1420 (w), 1370 (s), 1344 (m), 1235 (w), 1199 (s), 1176 (m), 1156 (w), 1065 (w), 946 (w), 813 (m); $\delta_{\rm H}(400 \text{ MHz}; \text{CD}_2\text{Cl}_2; 298 \text{ K})$ 3.06 (s, 6 H; NMe₂), 3.07 (s, 6 H; NMe₂), 6.84 (d, J = 8.9 Hz, 2 H; H–C(3,5)), 6.87 (d, J = 9.0 Hz, 2 H; H– $C(3^{,},5^{,}))$, 7.45 (d, J = 9.0 Hz, 2 H; H–C(2,6)), 7.55 (d, J = 9.0 Hz, 2 H; H– $C(2^{,6'})$, 7.79 ppm (s, 1 H; H–C(6')); $\delta_{C}(100 \text{ MHz}; \text{CDCl}_{3}; 298 \text{ K})$ 40.50 (2 NMe₂), 100.57 (C(4')), 112.12/112.49 (C(3,5,3'',5'')), 113.18 (C=N), 115.60 (C=N), 115.86 (C=N), 117.26 (C(2')), 119.83 (C(5')), 121.29/122.71 (C(1,1'')), 130.67/131.05 (C(2,6,2'',6'')), 132.33 (C(6')), 151.53/152.25/152.38/152.85 ppm (C(4,1',3',4'')); HR-MALDI-MS: *m*/*z* (%): 393.1906 (20), 392.1872 (75), 391.1798 $(100, [M]^+, \text{ calcd for } C_{25}H_{21}N_5^+: 391.1797), 390.1720$ (42), 377.1639 (25, $[M - M_{21}]^+$ $(CH_2)^+$, calcd for $C_{24}H_{19}N_5^+$: 377.1640), 376.1566 (11), 374.1404 (20, $[M - CH_4 - H]^+$, calcd for $C_{24}H_{16}N_5^+$: 374.1406).

X-ray data for compounds 1, 4, 5, 6 and 7 (ESI)

Crystals of compounds 5, 6 and 7 were measured on a Bruker Nonius Kappa-CCD diffractometer with Mo- K_{α} radiation ($\lambda = 0.71073$ Å), compounds 1 and 4 on a Bruker Kappa Apex II Duo equipped with a Cu microfocus tube ($\lambda = 1.54178$ Å) at 100 K. The structures were solved by direct methods with SHELXS-97^[3] and refined by full-matrix least-squares analysis (SHELXL-97),^[4] using an isotropic extinction correction. All non-hydrogen atoms were refined anisotropically; hydrogen atoms were refined isotropically for compounds 1 and 5. Hydrogen positions for compounds 4, 6 and 7 are based on stereochemical considerations and included in the final structure factor calculation. CCDC 802217 (1), CCDC 801746 (4), CCDC 801743 (5), CCDC 801744 (6) and CCDC 801745 (7) contain the supplementary crystallographic data (excluding structure factors) for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ. UK (fax: +44(1223)-336-033;e-mail: deposit@ccdc.cam.ac.uk), or via www.ccdc.cam.ac. uk/data request/cif

X-ray crystal structure of 1: Crystal data for $C_{17}H_{10}N_6$, $M_r = 298.3$, tetragonal space group $P4_3$, $D_{calcd} = 1.310 \text{ Mg m}^{-3}$, Z = 4, a = 11.5737 (3) Å, b = 11.5737 (3) Å, c = 11.5001(5) Å, V = 1540.43 (10) Å³; $\mu = 0.084 \text{ mm}^{-1}$. A dark green crystal (cubic dimensions ca. $0.15 \times 0.16 \times 0.16$ mm) was obtained from CH_2Cl_2 /hexane solution at 25 °C. Numbers of measured and unique reflections were 10808 and 8470, respectively ($R_{int} = 0.0153$). The tricyanovinyl moiety is disordered and refined over two positions. Final R(F) = 0.057, wR(F2) = 0.153 for 828 parameters and 8470 reflections with $I > 2\sigma(I)$ and $1.76 < \theta < 26.46^\circ$ (corresponding R values based on all 8470 reflections are 0.056 and 0.154, respectively).

X-ray crystal structure of 4: Crystal data for C₂₇H₂₁N₇, $M_r = 443.514$, monoclinic space group $P2_1/c$, $D_{calcd} = 1.337$ Mg m⁻³, Z = 4, a = 23.1039(7) Å, b = 6.0941(2) Å, c = 15.7821(5) Å, $\beta = 92.218(2)^\circ$, V = 2204.0(1) Å³; $\mu = 0.663$ mm⁻¹. A brownish red crystal (linear dimensions ca. $0.12 \times 0.04 \times 0.01$ mm) was obtained from CH₂Cl₂/hexane solution at 25 °C. Numbers of measured and unique reflections were 8349 and 2263, respectively ($R_{int} = 0.036$). Final R(F) = 0.034, wR(F2) = 0.106for 391 parameters and 1873 reflections with $I > 2\sigma(I)$ and $1.91 < \theta < 50.31^\circ$ (corresponding R values based on all 2263 reflections are 0.096 and 0.101, respectively).

X-ray crystal structure of 5: Crystal data for $C_{27}H_{21}N_7$, $M_r = 443.514$, orthorhombic space group *P*bca, $D_{calcd} = 1.336$ Mg m⁻³, Z = 8, a = 11.2924(4) Å, b = 15.4265(7) Å, c = 25.3239(11) Å, V = 4411.5(3) Å³; $\mu = 0.084$ mm⁻¹. A brownish red crystal (linear dimensions ca. $0.33 \times 0.18 \times 0.03$ mm) was obtained from CH₃CN/THF solution at 25 °C. Numbers of measured and unique reflections were 7442 and 3818, respectively ($R_{int} = 0.093$). Final R(F) = 0.069, wR(F2) = 0.177 for 391 parameters and 3026 reflections with $I > 2\sigma(I)$ and 2.75 $< \theta < 24.71^{\circ}$ (corresponding R values based on all 3818 reflections are 0.092 and 0.188, respectively).

X-ray crystal structure of 6. 0.5 CHCl₃: Crystal data for 2 ($C_{26}H_{20}N_6$)·CHCl₃, $M_r = 868.312$, Triclinic, space group $P\overline{1}$, $D_{calcd} = 1.201$ g cm⁻³, Z = 1, a = 9.1282(3)Å, b = 11.1896(3) Å, c = 12.4251(4) Å, $\alpha = 102.417(1)^\circ$, $\beta = 90.498(1)^\circ$, $\gamma = 103.968$ (1)°, V = 1200.32(6) Å³; $\mu = 0.242$ mm⁻¹. A metallic maroon crystal (linear dimensions ca. $0.27 \times 0.24 \times 0.21$ mm) was obtained from CHCl₃/hexane solution at 25 °C. Numbers of measured and unique reflections were 9624 and 5472, respectively ($R_{int} = 0.045$). Structure contains one disordered CHCl₃ molecule close to an inversion centre in the unit cell. Final R(F) = 0.071, wR(F2) = 0.221 for 328 parameters and 4453 reflections with $I > 2\sigma(I)$ and $2.91 < \theta < 27.48^{\circ}$ (corresponding R values based on all 5472 reflections are 0.087 and 0.232, respectively).

X-ray crystal structure of 7. 0.25 $C_2H_4Cl_2$: Crystal data for 2 ($C_{25}H_{21}N_5$)·0.5 $C_2H_4Cl_2$, $M_r = 832.436$, Triclinic, space group $P\overline{1}$, $D_{calcd} = 1.292$ Mg m⁻³, Z = 2, a = 9.8044(6) Å, b = 12.8651(10) Å, c = 18.011(2) Å, $\alpha = 93.245(5)^\circ$, $\beta = 91.748(5)^\circ$, $\gamma = 109.113(3)^\circ$, V = 2140.3(3) Å³; $\mu = 0.139$ mm⁻¹. A dark red crystal (linear dimensions ca. 0.24 × 0.075 × 0.009 mm) was obtained from CH₂ClCH₂Cl/THF solution at 25 °C. Numbers of measured and unique reflections were 11481 and 7214, respectively ($R_{int} = 0.037$). Final R(F) = 0.074, wR(F2) = 0.21 for 570 parameters and 5920 reflections with $I > 2\sigma(I)$ and 2.75 < θ < 24.71° (corresponding R values based on all 7214 reflections are 0.092 and 0.220, respectively).

Fig. 3 (ESI). ORTEP plot of **1**, arbitrary numbering, H-atoms are omitted for enhanced clarity. Atomic displacement parameters are drawn at 50% probability level. Selected bond lengths (Å), and torsional angle [°]: C1–C2: 1.416(3), C2–C3: 1.359(3), C3–C4: 1.421(3), C4–C5: 1.425(3), C5–C6: 1.355(4), C6–C1: 1.417(3), C1–C9: 1.424(3), C10–C9–C13–C15: 107.8(4), C2–C1–C9–C10: –9.3(5).

Fig. 4 (ESI). a) ORTEP plot of **4**, arbitrary numbering, H-atoms are omitted for clarity. Atomic displacement parameters are drawn at 50% probability level. Selected bond lengths (Å), angles (°), and torsional angles (°): C3–C13: 1.487(3), C13–C18: 1.395(3), C18–C17: 1.378(3), C17–C16: 1.407(3), C16–C15: 1.407(3), C15–C14: 1.375(3), C14–C13: 1.383(3), C5–C26: 1.482(3), C26–C27: 1.390(3), C27–C28: 1.380(3), C28–C29: 1.403(3), C29–C30: 1.398(3), C30–C31: 1.377(3), C31–C26: 1.401(3), C3–C2–C1: 124.98(19), C3–C4–C5: 115.19(18), C2–C1–C6: 112.56(18), C2–C3–C13–C18 (θ_1): –74.87(18), C6–C5–C26–C31(θ_{II}): –32.45(18). b) Arrangement of neighbouring molecules in the crystal packing of **4** (distances given in Å).

Fig 5 (ESI). a) ORTEP plot of **5**, arbitrary numbering, H-atoms are omitted for clarity. Atomic displacement parameters are drawn at 50% probability level. Selected bond lengths (Å), angles (°), and torsional angles (°): C1–C2: 1.570(4), C2–C3: 1.313(4), C3–C4: 1.519(4), C4–C5: 1.532(4), C5–C6: 1.368(4), C6–C1: 1.536(4), C2–C15: 1.491(4), C15–C16: 1.388(4), C16–C17: 1.392(5), C17–C18: 1.404(5), C18–C19: 1.403(5), C19–C20: 1.382(4), C20–C15: 1.399(4), C3–C4–C5: 113.2(2), C5–C6–C1: 120.8(3), C6–C1–C2: 112.4(2), C11–C1–C7: 110.6(2), C10–C9–C8: 117.1(3), C11–C1–C2: 107.1(2), C30–C6–C1–C11: –46.4(3), C3–

C2–C15–C16 (θ): –98.3(4). b) Arrangement of neighbouring molecules in the crystal packing of 5. The crystal packing of 5 show that adjacent molecules of each of these species interact *via* various orthogonal dipolar interactions, such as CN···CN, CN···N⁺ and π ··· π interactions (distances given in A). The electron-rich DMA ring and the electron-deficient cyclohexa-2,5-diene-1-dimethylimminium ring are aligned in a parallel-displaced π - π stacking mode with short intramolecular C^{··}C contacts of 3.12 (C₁₁^{··}C₂₀) and 3.21 Å (C₈^{··}C₁₆). The cyclohexadiene ring adopts a flat boat conformation, and the *C*=N⁺ moiety deviates 16^o out of the plane to point towards the DMA ring and most probably engage in stabilising cation- π interactions.

Fig. 6 (ESI). a) ORTEP plot of **6**, arbitrary numbering, H-atoms are omitted for clarity. Atomic displacement parameters are drawn at 50% probability level. Selected bond lengths (Å), angles (°), and torsional angles (°): C1–C6: 1.378(6), C6–C8: 1.435(6), C6–C7: 1.435(6), C1–C5: 1.434(5), C5–C4: 1.408(6), C4–C24: 1.423(6), C24–C25: 1.431(5), C25–C26: 1.362(6), C26–C27: 1.424(6), C27–C28: 1.436(6), C28–C29: 1.365(6), C29–C24: 1.425(6), C27–N30: 1.339(5), C2–C11: 1.463(6), C11–C12: 1.405(6), C12–C13: 1.378(6), C13–C14: 1.418(6), C14–C15: 1.409(6), C15–C16: 1.376(6), C16–C11: 1.398(6), C8–C6–C7: 112.9(4), C2–C1–C5: 106.6(4), C5–C4–C3: 105.3(3), C3–C4–C24–C29 (θ_1): –13.6(4), C3–C2–C11–C12 (θ_{II}): 59.3(5). b) Arrangement of neighbouring molecules in the crystal packing of **6** show that adjacent molecules interact *via* week CN···HC_{arom} interactions.

Fig. 7 (ESI). a) ORTEP plot of 7, arbitrary numbering, H-atoms are omitted for clarity. Atomic displacement parameters are drawn at 50% probability level. Selected bond lengths (Å), angles (°), and torsional angles (°): C1–C13: 1.481(4), C13–C14: 1.402(4), C14–C15: 1.379(4), C15–C16: 1.415(4), C16–C17: 1.414(4), C17–C18: 1.382(4), C18–C13: 1.398(4), C16–N21: 1.371(4), C5–C22: 1.472(4), C22–C23: 1.402(4), C23–C24: 1.377(4), C24–C25: 1.404(4), C25–C26: 1.412(4), C26–C27: 1.387(4), C27–C22: 1.387(4), C7–N10: 1.155(4), C8–N11: 1.149(4), C2–C1–C6: 117.3(2), C4–C5–C6: 116.6(2), C3–C4–C5: 121.7(3), C2–C1–C13–C18 (θ_1): 46.4(4), C6–C5–C22–C27 (θ_{II}): –33.6(4). b) Arrangement of neighbouring molecules in the crystal packing of 7 show that adjacent molecules interact *via* week CN…HC_{arom} interactions.

Quinoid character of compounds 1, 4, 5, 6 and 7 (ESI)

1: $\delta r = 0.063$ Å, $\theta = -9.3^{\circ}$. 4: $\delta r_{\rm I} = 0.022$ Å, $\theta = -74.9^{\circ}$; $\delta r_{\rm II} = 0.02$ Å, $\theta = -32.5^{\circ}$. 5: $\delta r = 0.012$ Å, $\theta = -98.3^{\circ}$. 6: $\delta r_{\rm I} = 0.065$ Å, $\theta = -13.6^{\circ}$; $\delta r_{\rm II} = 0.031$ Å, $\theta = 59.3^{\circ}$. 7: $\delta r_{\rm I} = 0.027$ Å, $\theta = 46.4^{\circ}$; $\delta r_{\rm II} = 0.019$ Å, $\theta = -33.6^{\circ}$.

UV/Vis spectroscopic data (ESI)

Fig. 8 (ESI). UV/Vis absorption spectra of **5** in CH₃CN at 298 K recorded a) neat, b) after acidification with trifluoroacetic acid (TFA) and c) after neutralisation with Et₃N. Four equivalents of TFA in CH₃CN were required due to the low acidity of TFA in this solvent ($pK_a = 12.7$).⁵ The protonation occurring at the DMA group was evidenced by strong downfield shifts for the NMe₂ and the H–C(3',5') signals. The NMR pattern of **5** was completely restored upon addition of Et₃N evidencing a reversible protonation.

Fig. 9 (ESI). UV/Vis absorption spectra of **6** in CH_2Cl_2 at 298 K recorded a) neat, b) after acidification with TFA and c) after neutralisation with Et_3N .

Fig. 10 (ESI). UV/Vis absorption spectra of 6 in CH₂Cl₂ at 298 K recorded a) neat,b) after basification with Et₃N and c) after neutralisation with TFA.

Fig. 11 (ESI). UV/Vis absorption spectra of 7 in CH₂Cl₂ at 298 K recorded a) neat,b) after acidification with TFA and c) after neutralisation with Et₃N.

Electrochemistry (ESI)

Table 2 (ESI). Electrochemical data of chromophores **5**, **6** and **7** observed by cyclic voltammetry (CV) (scan rate $v = 0.1 \text{ V s}^{-1}$) and rotating disk voltammetry (RDV) in CH₂Cl₂ (in the presence of 0.1 M *n*Bu₄NPF₆). All potentials are given *vs*. ferricinium/ferrocene (Fc⁺/Fc) couple used as internal standard.

	Cyclic Voltammetry			Rotating-Disk Volta	ammetry
	E°	$\Delta E_{ m p}$	E_{p}	$E_{1/2}$	Slope
	$[V]^a$	$[mV]^b$	\mathbf{V}^{c}	$[V]^d$	$[mV]^e$
5			+0.81	+0.78 (1e ⁻)	60
	+0.53	70		+0.53 (1e ⁻)	60
	-1.21	60		-1.23 (1e ⁻)	60
5 ^f			+0.78	+0.79 (1e ⁻)	75
	+0.53	70		+0.54 (1e ⁻)	60
	-1.22	70		-1.23 (1e ⁻)	60

Suppler	nentary	Material	(ESI)	for Cher	mical Commu	nications
This	journal is	s (c) The	e Roya	I Society	of Chemistry	/ 2011

6			+0.90	g	
	+0.67	60		+0.67 (1e ⁻)	60
	-0.45	60		-0.47 (1e ⁻)	60
			-0.96	-0.97 (1e ⁻)	80
7				g	
			+0.67	$\pm 0.67 (1e^{-})$	
				0.07 (10)	
	-1.71	75		-1.72 (1e ⁻)	60
	-1.71	75	-2.43	$-1.72 (1e^{-1})$ $-2.50 (1e^{-1})$	60 40

^{*a*} $E^{o} = (E_{pc} + E_{pa})/2$, where E_{pc} and E_{pa} correspond to the cathodic and anodic peak potentials, respectively. ^{*b*} $\Delta E_{p} = E_{pa} - E_{pc}$. ^{*c*} E_{p} = Irreversible peak potential. ^{*d*} $E_{1/2}$ = Half-wave potential. ^{*e*} Slope = Slope of the linearised plot of *E* versus log [*I*/(*I*_{lim} - *I*)], where *I*_{lim} is the limiting current and *I* the current. ^{*f*} in CH₃CN. ^{*g*} Poorly resolved second oxidation due to strong electrode inhibition.

Fig. 14 (ESI). Cyclic voltammetry of 5 (top), 6 (middle) and 7 (bottom) in the presence of ferrocene (for 6 and 7) in CH_2Cl_2 and in the presence of 0.1 M nBu_4NPF_6 and at a scan rate of 0.1 V/s.

Discussion of the electrochemical data for chromophores 5 and 7

Similar cyclic voltammograms were observed for zwitterion **5** in both CH₃CN and CH₂Cl₂, with only one reversible one-electron (1e⁻) reduction and two 1e⁻ oxidations. The first oxidation at +0.53 V is reversible whereas the second oxidation ($E_p = +0.78$ V) is irreversible at any scan rate. It is noteworthy that the optical band gap (1.71 eV) from the end absorption at ca. 725 nm and the electrochemical gap (1.74 eV) are well correlated. Tricyanobenzene 7 shows a single reversible $1e^-$ reduction at -1.71 V as well as an irreversible reduction close to the electrolyte discharge at $E_p = -2.43$ V and a first unresolved irreversible oxidation at 0.67 V. However, RDV shows two wellresolved $1e^-$ reductions and one oxidation as well as an unresolved second oxidation peak due to strong electrode inhibition.

Summary table of the optical and electrochemical data (ESI)

Table 3 (ESI). Optical and electrochemical (CV) data of **5** in CH_3CN and of **6** and **7** in CH_2Cl_2 at 298 K.

	λ_{\max} , nm	$\lambda_{ m end}$	$\Delta(E_{\rm ox,1}-E_{\rm red,1})$	E^{o}	EA^{c}
	$(\log \varepsilon]$	$[nm (eV)]^a$	[V]	$[V]^b$	[eV]
5	461 (2.69),	725 (1 71)	1 74	+0.78, ^d $+0.53$,	3 58
3	365 (4.1)	723 (1.71)	1./4	-1.22	5.50
6	792 (1 1)	1100 (1 12)	1 1 2	+0.90, ^d +0.67,	1 25
0	782 (4.4)	1100 (1.13)	1.12	$-0.45, -0.96^d$	4.55
_	435 (3.98),	500 (0.00)	2 20	^e , +0.67, ^d	2 00
7	386 (4.1)	520 (2.38)	2.38	-1.71, -2.43	3.09

^{*a*}Optical gap; ${}^{b}E^{o} = (E_{pc} + E_{pa})/2$; ${}^{c}EA = E_{red}$ (V vs Fc⁺/Fc) + 4.8 eV; 6 dIrreversible peak potential; e Due to electrode inhibition, the second oxidation could not be determined.

Theoretical calculations for 5 (ESI)

Calculations were performed using the Gaussian 09 program package.⁷ Molecular properties in the electronic ground state were computed at the B3LYP/6-31G* level of theory. TD calculations for **5** were performed at the CAM-B3LYP/6-31G* level of theory.

Fig. 15 (ESI). Optimised structure of **5**, calculated at the B3LYP/6-31G*(d) level of theory.

Fig. 16 (ESI). Selected molecular orbital plots of **5**, calculated at the B3LYP/6-31G* level.

 Table 4 (ESI).
 Selected data of vertical electronic transitions of 5, calculated at the

 CAM-B3LYP/6-31G* level.^{[a][b][c]}

State	λ [nm] (eV)	f	Composition of band and CI coefficiencies
1	881 (1.41)	0.0094	H→L, 0.70
2	439 (2.82)	0.0043	H −1 \rightarrow L, 0.70
3	358 (3.46)	0.0823	$H\rightarrow L+1, 0.69$
4	320 (3.87)	0.0727	H–3→L, 0.14; H→L+2, 0.53; H→L+3, 0.16;
			H→L+4, 0.16
5	308 (4.03)	0.0540	H–8→L, 0.11; H–3→L, –0.16; H–2→L, 0.53;
			H→L+2, 0.34

[a] Calculations were carried out for the lowest 20 excited states, and only energies above 300 nm are shown. [b] f = oscillator strength; CI = configuration interaction; H = HOMO; L = LUMO. [c] Based on the calculated oscillation strengths (f), we assign state 3 (358 nm, 3.46 eV) to be associated with the absorption experimentally observed at 461 nm (2.69 eV). A shift of 0.77 eV is large, but not uncommon for TD-

DFT calculations, especially when charge-transfer states are involved, and when calculations were performed in the gas-phase and compared to experimental values measured in polar solvents.

Atomic Type	Coordinates [Å]			
• •	Х	у	Z	
Ν	-0.043064	4.274476	0.472748	
Ν	5.880931	-0.717681	-0.449952	
Ν	-2.19531	-4.940205	-0.593579	
Ν	-2.254415	-2.814255	3.227213	
Ν	-5.16263	-2.172362	-0.042591	
Ν	-4.756592	0.089067	-2.740845	
Ν	-2.769951	3.257411	-0.539622	
С	-0.712335	0.107391	0.092683	
С	0.205711	-1.13173	0.243347	
С	-0.304591	-2.340569	0.495034	
С	-1.789053	-2.630019	0.625688	
С	-2.663231	-1.517406	0.037113	
С	-2.179219	-0.26861	-0.282741	
С	-0.760374	0.839302	1.407593	
С	-0.47424	2.148427	1.545977	
С	-0.103647	2.950335	0.389547	
С	0.167741	2.269961	-0.856474	
С	-0.150813	0.967511	-1.006333	
С	-0.479154	4.985272	1.686059	
С	0.085825	5.090612	-0.747113	
С	1.674485	-0.975658	0.064848	
С	2.443284	-0.032507	0.766816	
С	3.82049	0.050832	0.612095	
С	4.513353	-0.808669	-0.274978	
С	3.739791	-1.761479	-0.979042	
С	2.364084	-1.835126	-0.807798	
С	6.574174	-1.724496	-1.238802	
С	-2.051795	-3.925878	-0.049507	
С	-2.077751	-2.773046	2.080318	
С	-4.042913	-1.847346	-0.05332	
С	-2.959024	0.721543	-0.990075	
С	-3.969189	0.348852	-1.918823	
С	-2.858593	2.10648	-0.748604	
Н	0.35309	-3.19023	0.64646	
Н	-1.092333	0.259936	2.265164	
Н	-0.59637	2.618626	2.51242	

Table 5 (ESI). Cartesian coordinates from the optimised structure of 5.

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2011

Н	0.538336	2.828092	-1.705169
Н	-0.009933	0.481928	-1.966501
Н	0.011654	4.581023	2.572604
Н	-1.566647	4.90698	1.787736
Н	-0.199238	6.03387	1.594756
Н	1.005663	4.846917	-1.283256
Н	0.124161	6.141012	-0.463067
Н	-0.787719	4.914764	-1.383688
Н	1.965161	0.632232	1.479316
Н	4.36274	0.780905	1.200989
Н	4.211644	-2.45005	-1.669183
Н	1.804133	-2.572103	-1.377131
Н	6.208734	-1.73853	-2.273006
Н	6.460767	-2.737016	-0.822899
Н	7.638272	-1.484782	-1.267989
С	6.660218	0.167064	0.399999
Н	6.326547	1.207315	0.299028
Н	6.602229	-0.108367	1.464417
Н	7.706935	0.126074	0.094345

¹H and ¹³C NMR spectra of the products (ESI)

Fig. 17 (ESI). 400 MHz ¹H NMR spectrum of **3** recorded at 298 K in CDCl₃.

Fig. 18 (ESI). 100 MHz ¹³C NMR spectrum of 3 recorded at 298 K in CDCl₃.

Fig. 19 (ESI). 600 MHz ¹H NMR spectrum of 4 recorded at 298 K in CD₂Cl₂.

Fig. 20 (ESI). 150 MHz 13 C NMR spectrum of 4 recorded at 298 K in CD₂Cl₂.

Fig. 21 (ESI). 400 MHz ¹H NMR spectrum of 5 recorded at 298 K in CD₃CN.

Fig. 23 (ESI). 400 MHz 1 H NMR spectrum of 6 recorded at 298 K in CD₂Cl₂.

Fig. 24 (ESI). 100 MHz 13 C NMR spectrum of **6** recorded at 298 K in CD₂Cl₂.

Fig 25 (ESI). 400 MHz ¹H NMR spectrum of 7 recorded at 298 K in CD₂Cl₂.

Fig. 26 (ESI). 100 MHz ¹³C NMR spectrum of 7 recorded at 298 K in CD₂Cl₂.

Acid-base titration of 5 followed by ¹H NMR spectroscopy (ESI)

Fig. 27 (ESI). ¹H NMR spectra of **5** in CD₃CN at 298 K recorded (a) neat, (b) after acidification with TFA and (c) after neutralisation with Et_3N .

Thermal gravimetric analysis (ESI)

Compound	M.p. [°C] ^[a]	$T_{\rm d} \left[{}^{\rm o} {\rm C} \right]^{\left[{}^{\rm b} \right]}$	$T_{95\%} [^{\circ}C]^{[c]}$
5	> 213 (decomp)	530	230
6	> 400	495	201
7	211–213	360	200

Table 6 (ESI). Thermal gravimetric analysis of chromophores 5 to 7.

^[a] Temperature at which melting or appearance change occurred (as observed by naked eye on a Büchi B-540 melting point apparatus). ^[b] Decomposition temperature determined by derivative thermogravimetry. ^[c] Temperature at which 5% weight loss occurred upon heating.

Computational details for mechanistic studies (ESI)

All calculations were performed with the Gaussian09 suite of programs.⁷ Geometry optimisations in the gas-phase were performed at B3LYP/6-31G(d).⁸ Optimisations in solvent were done with: CPCM (toluene or MeCN), B3LYP/6-31G(d). Frequency calculations were performed on all gas-phase and solution-phase optimised geometries to verify the nature of all the stationary points as either minima or transition states.

Summary

Path leading to 3 (pathway a, ΔG^{\ddagger} are with respect to the preceding intermediate

	gas-phase	toluene	MeCN
ΔG^{\ddagger} (in kJ/mol)	59.4	44.4	49.0

E-Z isomerisation

	gas-phase	toluene	MeCN
ΔG (in kJ/mol)	-10.9	-7.1	-2.5
ΔG^{\ddagger} (in kJ/mol)	33.9	46.9	69.0

Path leading to 4 ($[4+2]$ cycloaddition after E/Z isomerisation)					
	gas-phase	toluene	MeCN		
ΔG^{\ddagger} (in kJ/mol)	16.7	31.8	20.5		

Path leading to 5 ([4+2] cycloaddition from <i>E</i> , pathway c)				
	gas-phase	toluene	MeCN	
ΔG^{\neq} (in kJ/mol)	84.1	64.4	49.4	

<u>Toluene</u>

Fig. 28 (ESI). Reaction energy profile for the pathways leading to **3**, **4**, **5** in toluene (Energies in kJ/mol).

Fig. 29 (ESI). Reaction energy profile for the pathways leading to **3**, **4**, **5** in MeCN (Energies in kJ/mol).

XYZ coordinates and energies (ESI)

Initial bimolecular reaction of 1 and 2 to form the zwitterionic intermediate, optimised in gas-phase [at B3LYP/6-31G(d)] or solvent [at CPCM B3LYP/6-31G(d)]

1 optimised in gas-phase

С	-2.175800	-1.461517	0.632068
С	-1.972658	-0.538533	-0.353487
С	-1.551601	-1.334484	1.916465
С	-3.022481	-2.603053	0.448501
Ν	-3.694781	-3.542302	0.317222
Ν	-1.060409	-1.259440	2.967445
С	-1.063600	0.647690	-0.169512
С	-1.696526	1.871215	-0.055710
С	-1.017780	3.128064	-0.007611
Ν	-0.501552	4.171239	0.024279
С	-3.124193	1.952977	0.006168
Ν	-4.285428	2.018495	0.064260
С	0.363017	0.385247	-0.143902

С	0.888009	-0.780738	-0.754179	
С	1.294210	1.251232	0.479801	
С	2.239800	-1.053908	-0.772373	
Η	0.221936	-1.478171	-1.252845	
С	2.646172	0.980988	0.483368	
Н	0.950545	2.135258	1.001581	
С	3.171285	-0.177551	-0.152375	
Н	2.580699	-1.952350	-1.271087	
Н	3.305922	1.668087	0.997910	
Ν	4.511755	-0.441508	-0.158151	
С	5.020295	-1.651494	-0.793454	
Η	4.784684	-1.673007	-1.865194	
Η	6.104601	-1.682629	-0.685214	
Η	4.605361	-2.555166	-0.328865	
С	5.445452	0.475412	0.486316	
Η	6.460925	0.101565	0.353845	
Η	5.391385	1.478134	0.044505	
Η	5.250781	0.559865	1.563286	
С	-2.604871	-0.693143	-1.625305	
Ν	-3.068046	-0.802487	-2.687425	
Zero	-point correction	on= 0.233360		
Thermal correction to Energy= 0.255745				
Thermal correction to Enthalpy= 0.256689				
Thermal correction to Gibbs Free Energy= 0.179141				
Sum of electronic and thermal Energies= -981.934344				
Sum of electronic and thermal Enthalpies= -981.933400				

Sum of electronic and thermal Free Energies= -982.010948

1 optimised in toluene

-2.106624	-1.533109	0.580852
-1.991666	-0.524502	-0.333334
-1.380446	-1.523164	1.816969
-2.974570	-2.654280	0.371090
-3.667858	-3.574188	0.216555
-0.817999	-1.552219	2.833669
-1.074560	0.649570	-0.133558
-1.698619	1.880415	0.008966
-1.011491	3.131638	0.036343
-0.496612	4.176376	0.045844
-3.120303	1.978615	0.122207
-4.277699	2.065401	0.222401
0.346282	0.385892	-0.121913
0.874414	-0.758749	-0.775296
1.279000	1.238312	0.523645
2.226037	-1.020176	-0.814974
0.209008	-1.443116	-1.291882
2.630820	0.977983	0.508558
0.932631	2.097610	1.083900
3.159254	-0.155975	-0.174233
	$\begin{array}{c} -2.106624\\ -1.991666\\ -1.380446\\ -2.974570\\ -3.667858\\ -0.817999\\ -1.074560\\ -1.698619\\ -1.011491\\ -0.496612\\ -3.120303\\ -4.277699\\ 0.346282\\ 0.874414\\ 1.279000\\ 2.226037\\ 0.209008\\ 2.630820\\ 0.932631\\ 3.159254\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Ц	2 560108	1 808/22	1 246547
п	2.309108	-1.090423	-1.540547
Η	3.290625	1.647745	1.045029
Ν	4.496110	-0.407636	-0.202000
С	5.010980	-1.590895	-0.886815
Η	4.763685	-1.573502	-1.955204
Η	6.095829	-1.614241	-0.788945
Η	4.607401	-2.512448	-0.450163
С	5.433086	0.496536	0.461179
Η	6.448244	0.133062	0.304864
Η	5.365145	1.510893	0.050726
Η	5.248271	0.543765	1.541352
С	-2.750406	-0.577490	-1.544316
Ν	-3.326954	-0.607029	-2.554375
Zare	noint compation	m = 0.222272	

Zero-point correction= 0.233372 Thermal correction to Energy= 0.255723

Thermal correction to Enthalpy= 0.256667

Thermal correction to Gibbs Free Energy= 0.178981 Sum of electronic and thermal Energies= -981.946599

Sum of electronic and thermal Enthalpies – 981.945655

Sum of electronic and thermal Free Energies= -982.023341

1 optimised in MeCN

С	-2.035053	-1.600065	0.527856
С	-2.007731	-0.520966	-0.311299
С	-1.217214	-1.683185	1.702159
С	-2.915299	-2.709012	0.303201
Ν	-3.623395	-3.615040	0.135222
Ν	-0.593774	-1.799299	2.676098
С	-1.087953	0.645161	-0.108238
С	-1.704612	1.884674	0.054194
С	-1.012387	3.131271	0.039995
Ν	-0.501840	4.178583	0.011729
С	-3.116520	1.999397	0.228795
Ν	-4.267457	2.109880	0.377545
С	0.327734	0.385932	-0.108785
С	0.864786	-0.738415	-0.796953
С	1.257818	1.231789	0.555415
С	2.216269	-0.984340	-0.849984
Η	0.204166	-1.412400	-1.332154
С	2.609494	0.984126	0.530795
Η	0.903934	2.068388	1.145046
С	3.146346	-0.127801	-0.188065
Η	2.565783	-1.843338	-1.407635
Η	3.265872	1.640696	1.087065
Ν	4.479508	-0.365553	-0.227342
С	5.006165	-1.519891	-0.956787
Η	4.743882	-1.469108	-2.019575
Η	6.091735	-1.527197	-0.871909

Η	4.620962	-2.459223	-0.543957
С	5.414422	0.523777	0.463551
Η	6.429347	0.163441	0.303130
Η	5.346018	1.546776	0.077063
Η	5.221681	0.541060	1.542345
С	-2.886476	-0.496189	-1.441042
Ν	-3.571916	-0.463808	-2.380147

Thermal correction to Energy= 0.255743

Thermal correction to Enthalpy= 0.256687

Thermal correction to Gibbs Free Energy= 0.180138

Sum of electronic and thermal Energies= -981.957220

Sum of electronic and thermal Enthalpies= -981.956276

Sum of electronic and thermal Free Energies= -982.032825

2 optimised in gas-phase

С	-0.206088	1.209025	-0.000090
С	1.181202	1.202832	-0.000028
С	1.911496	0.000016	-0.000045
С	1.181214	-1.202815	-0.000101
С	-0.206071	-1.209025	-0.000173
С	-0.942543	-0.000001	-0.000225
Η	-0.720555	2.162579	0.000002
Η	1.718131	2.146873	0.000068
Η	1.718164	-2.146845	-0.000081
Н	-0.720532	-2.162581	-0.000205
С	3.338443	0.000014	0.000006
С	4.549656	-0.000004	0.000074
Н	5.615473	-0.000127	0.001252
Ν	-2.325167	-0.000007	-0.000432
С	-3.052488	-1.256078	0.000329
Н	-4.124228	-1.050363	0.000266
Н	-2.825082	-1.862764	-0.888121
Н	-2.824971	-1.861866	0.889382
С	-3.052483	1.256066	0.000182
Н	-2.825535	1.861687	0.889502
Н	-2.824499	1.862916	-0.888000
Η	-4.124224	1.050358	-0.000626
Zero	o-point correction	n= 0.182669	

Thermal correction to Energy= 0.192844 Thermal correction to Enthalpy= 0.193788 Thermal correction to Gibbs Free Energy= 0.147155 Sum of electronic and thermal Energies= -442.169223 Sum of electronic and thermal Enthalpies= -442.168278 Sum of electronic and thermal Free Energies= -442.214911

2 optimised in toluene

С	-0.206334	1.210150	-0.000096
С	1.180832	1.203742	0.000003
С	1.911664	0.000000	-0.000001
С	1.180832	-1.203741	-0.000085
С	-0.206334	-1.210149	-0.000187
С	-0.944552	0.000001	-0.000253
Н	-0.720428	2.163726	-0.000029
Н	1.716207	2.148819	0.000114
Н	1.716206	-2.148818	-0.000053
Н	-0.720429	-2.163725	-0.000230
С	3.339034	0.000000	0.000107
С	4.551263	0.000000	0.000194
Н	5.617919	-0.000002	0.000244
Ν	-2.323487	0.000000	-0.000496
С	-3.052967	-1.257473	0.000379
Н	-4.123824	-1.050105	0.000142
Н	-2.824993	-1.863227	-0.887881
Н	-2.825114	-1.862060	0.889485
С	-3.052970	1.257471	0.000109
Н	-2.825482	1.862075	0.889303
Н	-2.824634	1.863210	-0.888063
Н	-4.123826	1.050101	-0.000578
Zerc	-noint correctio	n = 0.182593	

Zero-point correction= 0.182593

Thermal correction to Energy=0.192779

Thermal correction to Enthalpy= 0.193723

Thermal correction to Gibbs Free Energy= 0.147031

Sum of electronic and thermal Energies= -442.173057

Sum of electronic and thermal Enthalpies= -442.172113

Sum of electronic and thermal Free Energies= -442.218805

2 optimised in MeCN

С	-0.206554	1.211148	0.000051
С	1.180361	1.204519	0.000127
С	1.911890	0.000005	-0.000009
С	1.180360	-1.204513	-0.000195
С	-0.206552	-1.211143	-0.000274
С	-0.946380	0.000004	-0.000213
Н	-0.720507	2.164677	0.000239
Н	1.714430	2.150528	0.000325
Н	1.714434	-2.150519	-0.000266
Н	-0.720510	-2.164669	-0.000411
С	3.339458	0.000000	0.000072
С	4.552558	-0.000006	0.000134
Н	5.619890	-0.000007	0.000193
Ν	-2.321884	-0.000002	-0.000424
С	-3.053237	-1.258581	0.000506

Η	-4.123343	-1.049825	0.000371
Η	-2.824954	-1.863298	-0.887804
Η	-2.824926	-1.862103	0.889637
С	-3.053248	1.258572	-0.000072
Η	-2.825474	1.862242	0.889105
Η	-2.824439	1.863146	-0.888336
Η	-4.123352	1.049808	-0.000850

Thermal correction to Energy= 0.192716

Thermal correction to Enthalpy= 0.193661

Thermal correction to Gibbs Free Energy= 0.146891

Sum of electronic and thermal Energies= -442.176175

Sum of electronic and thermal Enthalpies= -442.175230

Sum of electronic and thermal Free Energies= -442.222000

TS optimised in gas-phase

С	2.215946	-0.264437	-1.354359
С	-0.171571	-0.720214	-0.121026
С	-0.572810	0.529295	0.499719
С	0.968057	-0.225719	-1.538250
Η	0.323703	0.167335	-2.308941
С	3.523710	-0.333873	-0.930152
С	4.399100	-1.366460	-1.380900
С	4.050190	0.643985	-0.030136
С	5.706178	-1.421982	-0.966102
Η	4.015327	-2.117671	-2.063707
С	5.359117	0.593626	0.378954
Η	3.388251	1.413964	0.352851
С	6.234396	-0.440640	-0.071361
Η	6.336087	-2.224562	-1.328061
Η	5.712769	1.343813	1.074498
Ν	7.528788	-0.495485	0.344751
С	8.055872	0.513205	1.261995
Η	7.533729	0.491062	2.226425
Η	9.112443	0.314088	1.440234
Η	7.964771	1.520120	0.838742
С	8.401299	-1.585029	-0.085518
Η	8.528754	-1.588727	-1.174916
Η	9.382789	-1.456657	0.370405
Η	8.005182	-2.559967	0.223504
С	-1.149654	-1.504693	-0.871641
С	0.663027	-1.604243	0.689125
Ν	1.328721	-2.311663	1.324304
Ν	-1.827910	-2.179224	-1.530088
С	-1.790549	1.254451	0.168196
С	-1.738824	2.627601	-0.084706
С	-2.898462	3.462051	-0.097356
Ν	-3.816252	4.180625	-0.109368

С	-0.514638	3.296815	-0.391134
Ν	0.468843	3.845668	-0.692355
С	-3.064052	0.525021	0.164524
С	-3.324682	-0.460392	1.138951
С	-4.075648	0.775310	-0.783774
С	-4.522015	-1.151428	1.176301
Η	-2.574388	-0.667104	1.896699
С	-5.270313	0.079226	-0.771752
Η	-3.908008	1.507146	-1.566959
С	-5.535556	-0.904551	0.215726
Η	-4.673238	-1.886479	1.957160
Η	-6.000802	0.292284	-1.542321
Ν	-6.726245	-1.590955	0.239896
С	-7.732979	-1.345425	-0.781217
Η	-8.612824	-1.954653	-0.569482
Η	-8.045717	-0.293588	-0.789616
Η	-7.372017	-1.603900	-1.786973
С	-6.936877	-2.652088	1.212375
Η	-6.196534	-3.457384	1.107056
Η	-6.884461	-2.271807	2.241137
Η	-7.928764	-3.081380	1.064478
С	0.429969	1.143282	1.291773
Ν	1.278850	1.599305	1.952611
7.000	- maint annuation	-0.417659	

Thermal correction to Energy=0.451548

Thermal correction to Enthalpy= 0.452492

Thermal correction to Gibbs Free Energy= 0.347402

Sum of electronic and thermal Energies= -1424.078394

Sum of electronic and thermal Enthalpies= -1424.077450

Sum of electronic and thermal Free Energies= -1424.182540

TS optimised in toluene

2.253890	-0.213613	-1.348805
-0.164424	-0.609255	-0.018697
-0.607795	0.655090	0.518152
1.013202	-0.151342	-1.541217
0.336299	0.217130	-2.293874
3.561640	-0.316779	-0.933004
4.391209	-1.404197	-1.345349
4.137555	0.679064	-0.083126
5.698612	-1.492178	-0.942776
3.971020	-2.169310	-1.989953
5.445356	0.595884	0.318685
3.513186	1.496648	0.262442
6.277055	-0.492575	-0.096116
6.292673	-2.333438	-1.275315
5.839038	1.363664	0.971931
7.568353	-0.577686	0.304139
	$\begin{array}{c} 2.253890\\ -0.164424\\ -0.607795\\ 1.013202\\ 0.336299\\ 3.561640\\ 4.391209\\ 4.137555\\ 5.698612\\ 3.971020\\ 5.445356\\ 3.513186\\ 6.277055\\ 6.292673\\ 5.839038\\ 7.568353\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

С	8.149096	0.450060	1.170427
Η	7.629629	0.496583	2.134336
Η	9.194688	0.207810	1.355354
Η	8.102823	1.437008	0.697120
С	8.402887	-1.708302	-0.105083
Η	8.505117	-1.751079	-1.195406
Η	9.395639	-1.590716	0.326981
Η	7.984012	-2.657639	0.247470
С	-1.079225	-1.473442	-0.750815
С	0.732056	-1.396549	0.814666
Ν	1.450975	-2.025284	1.474706
Ν	-1.705870	-2.219126	-1.383884
С	-1.858361	1.305234	0.164666
С	-1.888943	2.679775	-0.100671
С	-3.097438	3.439362	-0.106849
Ν	-4.055464	4.104323	-0.106377
С	-0.715473	3.430187	-0.408606
Ν	0.221385	4.059267	-0.703048
С	-3.087969	0.509611	0.150205
С	-3.326310	-0.463664	1.144868
С	-4.087818	0.688874	-0.828780
С	-4.490721	-1.207727	1.172743
Η	-2.588444	-0.614635	1.927466
С	-5.247078	-0.063400	-0.828865
Η	-3.932149	1.405114	-1.629097
С	-5.491875	-1.035013	0.179587
Η	-4.628882	-1.925997	1.971317
Η	-5.965911	0.093335	-1.623415
Ν	-6.644093	-1.775347	0.191649
С	-7.648679	-1.589007	-0.847472
Η	-8.498104	-2.241116	-0.642984
Η	-8.012923	-0.554429	-0.871065
Η	-7.257086	-1.838931	-1.842808
С	-6.842744	-2.805899	1.202500
Η	-6.060418	-3.574900	1.156071
Η	-6.847737	-2.381407	2.214717
Н	-7.805257	-3.289513	1.034689
С	0.362441	1.347417	1.288896
Ν	1.177843	1.871013	1.941249
Zer	o-point correction	n = 0.417548	

Zero-point correction= 0.417548 Thermal correction to Energy= 0.451504 Thermal correction to Enthalpy= 0.452448 Thermal correction to Gibbs Free Energy= 0.347233 Sum of electronic and thermal Energies= -1424.098030 Sum of electronic and thermal Enthalpies= -1424.097086 Sum of electronic and thermal Free Energies= -1424.202301

TS optimised in MeCN

С	2.316029	-0.043676	-1.213510
С	-0.133867	-0.331853	0.245250
С	-0.733639	0.913515	0.638287
С	1.080702	0.091631	-1.374708
Η	0.368147	0.451343	-2.096355
С	3 632934	-0 234367	-0 864423
Č	4 331714	-1 429088	-1 226832
Č	4 357041	0 772501	-0 150157
Č	5 649344	-1 606980	-0 900363
H	3 800060	-2 203324	-1 770067
C	5 675534	0.601549	0 176380
Н	3 840881	1 682187	0 138457
C	6 376108	-0 596186	-0 187344
Н	6 141350	-2 526048	-1 189881
Н	6 186154	1 385487	0 719845
N	7 675745	-0 766991	0.131377
$\hat{\mathbf{C}}$	8 409975	0.700791	0.151577
н	7 956892	0.455680	1 841671
H	9 434730	-0.063250	1.013635
н	2.434750 8.430041	1 208302	0.296627
C	8 382066	-1 995781	-0.290027
с ц	8.382300	-1.995761	-0.242717
н Ц	0 /1//28	-2.131403	-1.329231
н Ц	7 021548	-1.920339	0.097820
Γ	0.887501	-2.072272	0.224300
C	-0.887301	-1.300331	-0.440001 1 1 4 5 4 4 1
U N	1 638312	1 365/02	1.143441
IN N	1.030312	-1.303492	1.007097
IN C	-1.30/144	-2.234617	-1.027087
C	-2.021043	1.392400	0.109333
C	-2.10/030	2.742003	-0.180044
U N	-3.408397	2 022707	-0.270000
IN C	-4.409339	3.922707	-0.343430
C N	-1.093177	1 228011	-0.472014
IN C	-0.227474	0.468081	-0.747400
C	-3.131788	0.400901	0.122313
C	-3.302070	-0.472721	0.028302
C	-4.090108	1 226680	-0.920392
С U	-4.44/039	-1.320080	1.133130
Γ	-2.072773	-0.303700	1.994373
С Ц	-3.171920	-0.309130	-0.900410
Γ	-3.932000	1.1/0034	-1.739494
С Ц	-3.390740	-1.309278	0.080920
н Ц	-4.3/4/00	-2.009/94	1.703340
П N	-3.643708	-0.330703	-1.000003
	-0.43/331 7 120560	-2.100003	1.0003031
с ц	-/.420300 8 206710	-2.100903 2 810770	-1.029/04
н Ц	-0.200/10	-2.040//0	-0.040202
н Ц	-/.000304	-1.117102	-1.100034
11	-0.242000	-2.343047	-1.774430

С	-6.640567	-3.139628	1.132498	
Н	-5.778216	-3.813165	1.209800	
Н	-6.787901	-2.653305	2.105076	
Н	-7.523133	-3.740594	0.915344	
С	0.091676	1.766501	1.418431	
Ν	0.769704	2.434793	2.095078	
Zero	-point correction	n= 0.417650		
Thermal correction to Energy= 0.451518				
Thermal correction to Enthalpy= 0.452462				
Thermal correction to Gibbs Free Energy= 0.347723				
Sum of electronic and thermal Energies= -1424.115239				
Sum of electronic and thermal Enthalpies= -1424.114295				
Sum of electronic and thermal Free Energies= -1424.219035				

<u>E/Z isomerisation</u> optimised in gas-phase [at B3LYP/6-31G(d)] or solvent [at CPCM B3LYP/6-31G(d)]

E-isomer optimised in gas-phase

С	-2.24760500	-0.31258800	1.20125600
С	0.13283600	-0.58311000	0.30914300
С	0.55402500	0.73520500	-0.29807200
С	-0.98468700	-0.22577800	1.42958400
Н	-0.54301800	0.18910400	2.33003500
С	-3.54510500	-0.38664200	0.80729500
С	-4.38892200	-1.47658400	1.21236200
С	-4.12387300	0.63906700	-0.02068100
С	-5.70036700	-1.53595200	0.83093000
Н	-3.96631200	-2.25989400	1.83317000
С	-5.44130300	0.58376600	-0.38555600
Н	-3.48222000	1.43805900	-0.38028000
С	-6.27942600	-0.50293400	0.02127500
Н	-6.30305900	-2.37500500	1.15395400
Η	-5.83539400	1.36630900	-1.02106000
Ν	-7.57918600	-0.56147800	-0.35568600
С	-8.16705700	0.50370800	-1.17112100
Η	-7.69494600	0.55626600	-2.15923400
Η	-9.22887700	0.30121000	-1.30712300
Η	-8.06410500	1.47669000	-0.67914500
С	-8.41434500	-1.70550200	0.01303200
Η	-8.52080900	-1.78617200	1.10112500
Н	-9.40633700	-1.57426400	-0.41770400
Н	-7.99492200	-2.64220000	-0.37125900
С	1.15967600	-1.33437900	1.06266700
С	-0.46679500	-1.50605700	-0.67772800
Ν	-0.94787800	-2.21796500	-1.45753200
Ν	1.82855200	-1.99069300	1.74722300
С	1.82631000	1.36397600	-0.10438600

С	1.92390800	2.75863100	0.04739400		
С	3.14713300	3.46857100	-0.13760100		
Ν	4.12546600	4.08649700	-0.28575000		
С	0.80994600	3.55951500	0.43446800		
Ν	-0.07991900	4.21848900	0.80224700		
С	3.04781300	0.54006100	-0.13496400		
С	3.20482400	-0.47034000	-1.10296300		
С	4.10567500	0.73441300	0.77179800		
С	4.34936100	-1.24756200	-1.16749500		
Н	2.41827400	-0.62906000	-1.83582700		
С	5.24777900	-0.04598600	0.73270700		
Η	4.01668500	1.49374100	1.54222500		
С	5.40829400	-1.06025400	-0.24508600		
Η	4.42241300	-2.00133600	-1.94195800		
Н	6.01970200	0.12963700	1.47182400		
Ν	6.54979200	-1.82975000	-0.29795200		
С	7.59201600	-1.65735000	0.70073400		
Η	8.41899200	-2.33241900	0.47498200		
Η	7.98456200	-0.63246000	0.69616100		
Η	7.23490400	-1.88177700	1.71653500		
С	6.64461500	-2.92537000	-1.24834100		
Η	5.86015500	-3.67955900	-1.08970600		
Η	6.56776200	-2.56718300	-2.28347000		
Η	7.61361500	-3.41415800	-1.13584100		
С	-0.51267200	1.39865400	-0.94303700		
Ν	-1.44102500	1.86195700	-1.48441900		
Zero	Zero-point correction= 0.419331				
Thermal correction to Energy= 0.453229					
Thermal correction to Enthalpy= 0.454174					

Thermal correction to Gibbs Free Energy= 0.349556 Sum of electronic and thermal Energies= -1424.079366 Sum of electronic and thermal Enthalpies= -1424.078422 Sum of electronic and thermal Free Energies= -1424.183039

E-isomer optimised in toluene

С	-2.310800	-0.295298	1.174333
С	0.114751	-0.447726	0.468367
С	0.555190	0.904476	-0.103998
С	-1.061446	-0.168015	1.479968
Н	-0.735914	0.241206	2.433141
С	-3.591829	-0.389858	0.774980
С	-4.392057	-1.554946	1.072940
С	-4.211246	0.687881	0.034367
С	-5.691793	-1.632766	0.677426
Η	-3.937391	-2.371555	1.623504
С	-5.514820	0.609443	-0.351521
Η	-3.601290	1.546011	-0.230721
С	-6.311095	-0.550280	-0.046976

Н	-6.263637	-2.518723	0.919037	
Η	-5.943283	1.427134	-0.915434	
Ν	-7.593286	-0.626875	-0.432786	
С	-8.233439	0.487174	-1.147441	
Н	-7.766551	0.643435	-2.125339	
Н	-9.284985	0.250300	-1.297657	
Н	-8.166190	1.410307	-0.564698	
С	-8.394190	-1.829698	-0.164521	
Η	-8.517095	-1.985429	0.912198	
Η	-9.378672	-1.703007	-0.610763	
Η	-7.926082	-2.714585	-0.605831	
С	1.125926	-1.167789	1.277818	
С	-0.354908	-1.371260	-0.593316	
Ν	-0.732788	-2.062950	-1.445216	
Ν	1.774643	-1.795438	2.006928	
С	1.872346	1.429590	-0.052334	
С	2.105327	2.824921	-0.009706	
С	3.354915	3.398075	-0.377827	
Ν	4.360113	3.909416	-0.681857	
С	1.114404	3.753929	0.410212	
Ν	0.329538	4.529456	0.793876	
С	3.030457	0.516200	-0.103919	
С	3.080096	-0.534078	-1.040516	
С	4.139504	0.673947	0.747823	
С	4.169643	-1.386727	-1.124882	
Η	2.258890	-0.661736	-1.740640	
С	5.227338	-0.180173	0.690697	
Η	4.133384	1.467414	1.488849	
С	5.277111	-1.241281	-0.251224	
Η	4.165307	-2.164340	-1.878791	
Η	6.045473	-0.025643	1.383304	
Ν	6.356361	-2.090751	-0.314097	
С	7.505848	-1.878488	0.553131	
Η	8.253149	-2.646246	0.349544	
Η	7.970328	-0.896894	0.385527	
Η	7.229753	-1.948227	1.613519	
С	6.395778	-3.148540	-1.312475	
Η	5.549612	-3.839118	-1.200641	
Η	6.375943	-2.748829	-2.336256	
Η	7.315651	-3.721486	-1.190033	
С	-0.518359	1.631829	-0.660792	
Ν	-1.447772	2.153822	-1.146203	
Zer	o-point correction	n= 0.419930		
Thermal correction to Energy= 0.453727				

Thermal correction to Enthalpy= 0.454671

Thermal correction to Gibbs Free Energy= 0.350361

Sum of electronic and thermal Energies= -1424.104921

Sum of electronic and thermal Enthalpies= -1424.103977

Sum of electronic and thermal Free Energies= -1424.208287

E-isomer optimised in MeCN

С	-2.379303	-0.076050	1.111518
Ċ	0.077753	-0.161730	0.537330
Č	0 641999	1 175907	0.005061
Č	-1 146286	0 144337	1 445444
H	-0.898807	0.631940	2 386724
C	-3 647835	-0 259547	0 732432
C	-4 375566	-1 467286	1 072182
C	-4 340705	0 760860	-0.033826
C	-5 664886	-1 636197	0.686888
Н	-3 869275	-2 234020	1 647982
C	-5 632012	0 591486	-0.412976
Н	-3 794133	1 657182	-0 307907
C	-6 354699	-0.614281	-0.070906
Н	-6 184439	-2 542560	0.965773
Н	-6 116469	1 364143	-0.994232
N	-7 621380	-0 781235	-0 445251
$\hat{\mathbf{C}}$	-8 352056	0.761255	-1 161528
Н	-7 951117	0.407069	-2 171533
Н	-9 399360	-0.005965	-1 231629
Н	-8 285421	1 223759	-0.617601
C	-8 343717	-2 033828	-0.161077
н	-8 529028	-2 136155	0.912446
Н	-9 297730	-2 010980	-0.682727
Н	-7 773583	-2.010900	-0 518623
C	1 007344	-0.917448	1 411169
C	-0 334112	-1.053292	-0 577548
N	-0.554112	-1.709815	-0.377348
N	1 606039	-1 547591	2 179713
C	2 006010	1.577568	-0.044770
C	2.000010	2 882219	-0.080432
C	3 717525	3 251014	-0 561068
N	4 757724	3 603505	-0.963547
C	1.626509	3 963777	0.354015
N	1.020509	4 873448	0 739924
C	3 046404	0 474314	-0.101586
C	2 963522	-0 582505	-1 028298
C	4 177480	0.508874	0 736091
C	3 942766	-1 560582	-1 112245
Н	2 131223	-0.618339	-1 725233
C	5 155215	-0 470394	0.681099
Н	4 273684	1 306643	1 466849
C	5.067486	-1 543950	-0 246358
Н	3 838939	-2.336733	-1 860363
Н	5 993152	-0 408003	1 364525
N	6.029704	-2.520150	-0 303364
C	7.210464	-2.438012	0.546854
Ĥ	7.853041	-3.295661	0 347155
Н	7,789314	-1.524565	0.354358
Н	6 943018	-2.454879	1 611309

С	5.922588	-3.596802	-1.278965
Η	4.988308	-4.158327	-1.153400
Η	5.960145	-3.221853	-2.311156
Η	6.752786	-4.289154	-1.138523
С	-0.363764	2.047029	-0.469871
Ν	-1.225380	2,710857	-0.904157

Thermal correction to Energy= 0.454174

Thermal correction to Enthalpy= 0.455118

Thermal correction to Gibbs Free Energy= 0.350646

Sum of electronic and thermal Energies= -1424.131756

Sum of electronic and thermal Enthalpies= -1424.130812

Sum of electronic and thermal Free Energies= -1424.235285

Z-isomer optimised in gas-phase

С	-2.58973300	1.39058100	-0.30409300
С	-0.34403200	1.65443200	0.83245100
С	0.70353500	0.75897800	0.19626500
С	-1.48296400	2.03662300	-0.23978200
Н	-1.15533400	2.81097100	-0.93647200
С	-3.69108700	0.59215100	-0.31143900
С	-4.93863200	1.03214800	0.24332400
С	-3.63403900	-0.73172500	-0.86755000
С	-6.04159400	0.22270400	0.23617100
Н	-4.99613000	2.02772300	0.67107200
С	-4.74056200	-1.53682500	-0.88079400
Н	-2.68072000	-1.09982900	-1.23373200
С	-5.98503200	-1.09279800	-0.32980400
Н	-6.96491300	0.59010200	0.66505000
Н	-4.65160400	-2.53605000	-1.28699700
Ν	-7.07544100	-1.89738500	-0.33101500
С	-7.01316200	-3.23496300	-0.92313400
Н	-6.30496700	-3.87661300	-0.38575400
Н	-8.00033000	-3.69289100	-0.86990600
Η	-6.71514500	-3.18554100	-1.97604700
С	-8.32776500	-1.45889100	0.28662500
Н	-8.73643200	-0.57839600	-0.22296300
Н	-9.05900900	-2.26345200	0.21673400
Η	-8.18312900	-1.21815100	1.34584900
С	0.18363800	2.90385500	1.41620500
С	-0.99888900	0.94034200	1.95435900
Ν	-1.52943000	0.38414400	2.82336900
Ν	0.53112000	3.87933300	1.93840200
С	2.02457900	1.12489400	-0.20781600
С	2.34983600	2.41402300	-0.68191900
С	3.67641300	2.93412700	-0.68816900
Ν	4.74762000	3.39562900	-0.70278000
С	1.35221700	3.23385400	-1.26825100
Ν	0.50194000	3.84012800	-1.79514800

С	3.06718300	0.08591900	-0.13158400
С	3.11257100	-0.82014900	0.94530800
С	4.05677300	-0.04606800	-1.12450100
С	4.08833400	-1.79812600	1.03686500
Н	2.38029900	-0.73455600	1.74226500
С	5.03259000	-1.02548200	-1.05385600
Н	4.04710800	0.62032700	-1.98072900
С	5.07902200	-1.93434400	0.03290100
Н	4.08765900	-2.45222500	1.90012500
Н	5.76205700	-1.08922000	-1.85192100
Ν	6.04711900	-2.91182600	0.10810300
С	7.10787100	-2.96517400	-0.88493200
Н	7.78098800	-3.78985300	-0.64536100
Н	6.70865300	-3.13873500	-1.89331700
Н	7.69772500	-2.03786100	-0.90781000
С	6.09087500	-3.80662900	1.25242300
Н	6.27499600	-3.26883800	2.19410200
Н	5.15246200	-4.36621600	1.35872800
Н	6.89635400	-4.52913800	1.11184300
С	0.22026700	-0.54734300	-0.05664500
Ν	-0.29290800	-1.56834200	-0.31043500
Zero	-point correction=	0.419661	
Thermal correction to Energy= 0.453330			
Thermal correction to Enthalpy= 0.454274			
Thermal correction to Gibbs Free Energy= 0.351224			
Sum of electronic and thermal Energies= -1424.085113			
Sum of electronic and thermal Enthalpies= -1424.084168			
Sum of electronic and thermal Free Energies= -1424.187218			

Z-isomer optimised in toluene

С	-2.589985	1.293550	-0.307383
С	-0.363708	1.647973	0.811791
С	0.722967	0.734739	0.235756
С	-1.476782	1.942649	-0.268478
Н	-1.172967	2.665626	-1.026138
С	-3.704420	0.533191	-0.314889
С	-4.948660	1.012731	0.233037
С	-3.679455	-0.800681	-0.866345
С	-6.066986	0.234106	0.225966
Η	-4.981264	2.012890	0.651732
С	-4.799913	-1.576223	-0.877950
Н	-2.736640	-1.187795	-1.238735
С	-6.040478	-1.092687	-0.332667
Н	-6.984431	0.626949	0.643481
Н	-4.739343	-2.578459	-1.280628
Ν	-7.141787	-1.861555	-0.334949
С	-7.122089	-3.204072	-0.931321
Н	-6.457178	-3.871729	-0.373065

Н	-8.129473	-3.615542	-0.905188
Н	-6.794531	-3.160198	-1.974012
С	-8.392249	-1.390053	0.274759
Н	-8.783254	-0.516876	-0.257964
Н	-9.131731	-2.187036	0.222680
Η	-8.237812	-1.130241	1.326365
С	0.141381	2.931063	1.348365
С	-0.995720	0.973909	1.974623
Ν	-1.499459	0.447158	2.877014
Ν	0.467053	3.929991	1.838916
С	2.024025	1.108438	-0.189797
С	2.341552	2.398085	-0.690887
С	3.662652	2.925206	-0.679509
Ν	4.730489	3.397794	-0.673250
С	1.356610	3.206276	-1.308590
Ν	0.525562	3.822233	-1.856537
С	3.084500	0.086115	-0.120970
С	3.188396	-0.783474	0.982344
С	4.035671	-0.063666	-1.149083
С	4.182035	-1.744336	1.064859
Н	2.488647	-0.680508	1.806177
С	5.027946	-1.027634	-1.089528
Н	3.977897	0.573666	-2.025858
С	5.134122	-1.900552	0.024486
Н	4.228010	-2.369729	1.947895
Н	5.722346	-1.110451	-1.916550
Ν	6.117970	-2.857852	0.092186
С	7.117833	-2.956007	-0.961204
Н	7.819312	-3.753733	-0.714361
Н	6.662790	-3.192992	-1.932418
Н	7.686870	-2.022882	-1.070536
С	6.200196	-3.741238	1.245718
Н	6.391886	-3.186947	2.175152
Н	5.275169	-4.317523	1.377788
Н	7.018063	-4.447269	1.097694
С	0.274681	-0.598134	0.077856
Ν	-0.200840	-1.655608	-0.086130
Zero-p	oint correction=	0.420001	
Thermal correction to Energy= 0.453695			
Thermal correction to Enthalpy= 0.454639			
Thermal correction to Gibbs Free Energy= 0.351072			
Sum of electronic and thermal Energies= -1424.108389			
Sum of electronic and thermal Enthalpies= -1424.107445			
Sum of	f electronic and	thermal Free Energ	ies= -1424.211012

Z-isomer optimised in MeCN

С	-2.628394	1.031888	-0.284579
С	-0.388661	1.433421	0.801086

С	0.787014	0.582114	0.276161
С	-1.487971	1.644596	-0.284051
Н	-1.197579	2.311199	-1.094659
С	-3.796194	0.375112	-0.288195
С	-4.993824	0.967318	0.272665
C	-3.902525	-0.952063	-0.861626
С	-6.177343	0.302413	0.257178
H	-4.928685	1.960009	0.704165
С	-5.088161	-1.612838	-0.883607
H	-3.008072	-1.413919	-1.265196
C	-6.280988	-1.015717	-0.326996
H	-7.053843	0.776285	0.677556
Н	-5.130636	-2.605394	-1.310798
N	-7 445360	-1 664410	-0 349705
C	-7 568767	-2.984467	-0 991209
H	-6 997818	-3 736985	-0 439009
Н	-8 617399	-3 272856	-0.995726
Н	-7 215345	-2.942562	-2.024153
C	-8 651913	-1 084689	0 264808
н	-8 965659	-0 186432	-0 275218
Н	-9 453149	-1 818874	0.279210
Н	-8 466615	-0.835664	1 312521
C	0.032467	2 753211	1 330128
C	-0.982323	0 740897	1.975036
N	-1 442161	0.740027	2 893279
N	0 296449	3 775557	1 809523
$\hat{\mathbf{C}}$	2 043782	1 040528	-0 166040
C	2.045762	2 353117	-0.671602
C	3 582200	2.933117	-0 639748
N	4 624010	3 471606	-0.611577
$\hat{\mathbf{C}}$	1 289063	3 128213	-1 300237
N	0.464321	3 744963	-1 858210
$\hat{\mathbf{C}}$	3 178251	0.095456	-0 120661
C	3 412794	-0 716612	1 006406
C	4 076960	-0.026821	-1 198654
C	4 480633	-1 597029	1.063934
н	2 757170	-0.630760	1 868046
C	5 140015	-0.914033	-1 166823
н	3 919019	0 568544	-2 093087
C	5 379943	-1 728987	-0.027858
н	4 627449	-2 178679	1 965673
H	5 785822	-0.983098	-2 033474
N	6.435039	-2 603750	0.015410
$\hat{\mathbf{C}}$	7 367692	-2.603730	_1 101392
н	8 142764	-3 413688	-0.866792
Н	6 868070	-3 003670	-2 025416
Н	7 854818	-1 718769	-1 292550
C	6 652281	-3 434781	1 192972
й	6 849197	-2 829556	2 088561
Н	5 786012	-4 076323	1 398108

Η	7.515797	-4.077062	1.021263
С	0.475524	-0.798066	0.220627
Ν	0.135706	-1.916272	0.154683
Zero	-point correction	n = 0.420115	

Thermal correction to Energy= 0.453946

Thermal correction to Entralpy 0.455940 Thermal correction to Enthalpy= 0.454890

Thermal correction to Gibbs Free Energy= 0.349819

Sum of electronic and thermal Energies= -1424.132129

Sum of electronic and thermal Enthalpies= -1424.131185

Sum of electronic and thermal Free Energies= -1424.236256

E/*Z*-isom TS in gas-phase

С	-2.55063100	1.25660000	0.77614400
С	-0.06532600	0.75990400	1.09576900
С	0.64530600	0.75431300	-0.23136000
С	-1.37472700	1.72445500	1.00436700
Η	-1.10568300	2.77664000	1.03051500
С	-3.70484500	0.59186500	0.46476000
С	-4.71399200	0.33730400	1.44774100
С	-3.95598400	0.14200400	-0.87361600
С	-5.87814700	-0.31217500	1.12226300
Н	-4.54467700	0.66699000	2.46772900
С	-5.12822400	-0.49473600	-1.19746400
Н	-3.18823000	0.29045000	-1.62626100
С	-6.13127600	-0.74687900	-0.21461300
Н	-6.61153100	-0.48812600	1.89917700
Н	-5.27066500	-0.82755500	-2.21780900
Ν	-7.29127900	-1.38851400	-0.53862800
С	-7.53484000	-1.82733700	-1.90956700
Н	-6.79424100	-2.56965700	-2.23303700
Н	-8.52294900	-2.28401400	-1.96719100
Н	-7.50850400	-0.98299200	-2.60879900
С	-8.28983100	-1.67564900	0.48607500
Н	-8.67827200	-0.75420700	0.93772400
Н	-9.12503500	-2.20790800	0.03077100
Н	-7.87706200	-2.30637800	1.28326500
С	0.78899400	1.27746800	2.18228400
С	-0.51420100	-0.59609400	1.47607100
Ν	-0.86190500	-1.67211200	1.73846000
Ν	1.42502500	1.70648400	3.05220900
С	2.05473500	1.23981900	-0.40882200
С	2.19958300	2.59694200	-0.65034900
С	3.41925600	3.28985700	-0.92838700
Ν	4.38307100	3.89671500	-1.17380900
С	1.04965600	3.44942200	-0.64201700
Ν	0.13822000	4.17571000	-0.61263000
С	3.12074200	0.24983300	-0.31932600
С	2.79884900	-1.12978200	-0.28874700

С	4.49910600	0.56950300	-0.23143800
С	3.76306500	-2.11473100	-0.20666500
Η	1.76104000	-1.43812900	-0.33907700
С	5.47241500	-0.40461500	-0.13832600
Н	4.82418100	1.60054000	-0.21161800
С	5.14040600	-1.78525600	-0.13293200
Η	3.44373100	-3.14950000	-0.19497000
Η	6.50578700	-0.09016600	-0.05841100
Ν	6.10699400	-2.75363100	-0.05198800
С	7.51182500	-2.38264700	0.04750800
Н	8.11933100	-3.28800600	0.07573300
Η	7.83179200	-1.78665600	-0.81669900
Η	7.71776000	-1.80447700	0.95850700
С	5.73189500	-4.15992100	-0.00732100
Н	5.10915400	-4.38724400	0.86837400
Η	5.17890800	-4.45746500	-0.90772900
Н	6.63457000	-4.76926300	0.05083300
С	-0.06786500	0.27524500	-1.32949400
Ν	-0.70228000	-0.11481500	-2.23879300

Zero-point correction= 0.418905

Thermal correction to Energy= 0.452150 Thermal correction to Enthalpy= 0.453094 Thermal correction to Gibbs Free Energy= 0.350839 Sum of electronic and thermal Energies= -1424.068794 Sum of electronic and thermal Enthalpies= -1424.067850 Sum of electronic and thermal Free Energies= -1424.170104

E/*Z*-isom TS in toluene

С	-2.554515	1.189521	0.780305
С	-0.072220	0.720976	1.107450
С	0.639721	0.711256	-0.213949
С	-1.384780	1.669473	1.013831
Η	-1.136525	2.726722	1.017803
С	-3.712877	0.554485	0.465635
С	-4.735143	0.321437	1.448754
С	-3.962117	0.103723	-0.878813
С	-5.905342	-0.302724	1.119090
Н	-4.564257	0.653667	2.467367
С	-5.138237	-0.510628	-1.208582
Н	-3.182914	0.237706	-1.622664
С	-6.156154	-0.739788	-0.225242
Η	-6.649925	-0.460886	1.888280
Н	-5.283428	-0.845669	-2.227178
Ν	-7.313132	-1.356386	-0.551012
С	-7.564307	-1.795595	-1.926789
Н	-6.834783	-2.550694	-2.239906
Η	-8.559228	-2.234624	-1.981496
Н	-7.521330	-0.951247	-2.622787
С	-8.335445	-1.616819	0.466147

Supplementary Material (ESI) for Chemical Communication	ns
This journal is (c) The Royal Society of Chemistry 2011	

-8.708450	-0.682229	0.899334
-9.171596	-2.137402	0.001951
-7.939920	-2.247311	1.269811
0.775188	1.254178	2.193777
-0.511321	-0.635188	1.512474
-0.850292	-1.713268	1.779121
1.409275	1.689549	3.061692
2.042366	1.216109	-0.391811
2.166159	2.578360	-0.642582
3.367006	3.300645	-0.925100
4.309927	3.938306	-1.176434
1.002078	3.409579	-0.653124
0.091302	4.138508	-0.648813
3.130665	0.254610	-0.303623
2.839100	-1.133007	-0.256596
4.505850	0.601075	-0.239601
3.823097	-2.097778	-0.185144
1.805645	-1.457075	-0.287108
5.500313	-0.350841	-0.154545
4.811832	1.638119	-0.229838
5.196883	-1.740411	-0.136681
3.526088	-3.138930	-0.162305
6.528235	-0.015793	-0.091818
6.181710	-2.684959	-0.067389
7.583093	-2.285427	-0.004110
8.207378	-3.178603	0.022316
7.870881	-1.694139	-0.882211
7.794917	-1.692727	0.895218
5.838650	-4.101720	-0.023476
5.232324	-4.343118	0.859070
5.281486	-4.407111	-0.918072
6.755392	-4.689767	0.022167
-0.067469	0.214346	-1.304770
-0.703542	-0.192888	-2.207946
	$\begin{array}{c} -8.708450\\ -9.171596\\ -7.939920\\ 0.775188\\ -0.511321\\ -0.850292\\ 1.409275\\ 2.042366\\ 2.166159\\ 3.367006\\ 4.309927\\ 1.002078\\ 0.091302\\ 3.130665\\ 2.839100\\ 4.505850\\ 3.823097\\ 1.805645\\ 5.500313\\ 4.811832\\ 5.196883\\ 3.526088\\ 6.528235\\ 6.181710\\ 7.583093\\ 8.207378\\ 7.870881\\ 7.794917\\ 5.838650\\ 5.232324\\ 5.281486\\ 6.755392\\ -0.067469\\ -0.703542\end{array}$	-8.708450 -0.682229 -9.171596 -2.137402 -7.939920 -2.247311 0.775188 1.254178 -0.511321 -0.635188 -0.850292 -1.713268 1.409275 1.689549 2.042366 1.216109 2.166159 2.578360 3.367006 3.300645 4.309927 3.938306 1.002078 3.409579 0.091302 4.138508 3.130665 0.254610 2.839100 -1.133007 4.505850 0.601075 3.823097 -2.097778 1.805645 -1.457075 5.500313 -0.350841 4.811832 1.638119 5.196883 -1.740411 3.526088 -3.138930 6.528235 -0.015793 6.181710 -2.684959 7.583093 -2.285427 8.207378 -3.178603 7.870881 -1.694139 7.794917 -1.692727 5.838650 -4.101720 5.232324 -4.343118 5.281486 -4.407111 6.755392 -4.689767 -0.067469 0.214346 -0.703542 -0.192888

Thermal correction to Energy= 0.452119 Thermal correction to Enthalpy= 0.453064

Thermal correction to Gibbs Free Energy= 0.350502 Sum of electronic and thermal Energies= -1424.088855 Sum of electronic and thermal Enthalpies= -1424.087910 Sum of electronic and thermal Free Energies= -1424.190472

E/*Z*-isom TS in MeCN

С	-2.55658900	1.07399800	0.73776100
С	-0.07156300	0.72712000	1.06259900
С	0.66275300	0.76913200	-0.26004800
С	-1.39480300	1.58992200	0.96779200
Н	-1.21731300	2.66233000	0.96979100
С	-3.72537800	0.47412300	0.44652300

С	-4.71440100	0.20814100	1.46644600
Ċ	-4.03976600	0.09105000	-0.91311900
С	-5.90391000	-0.37507500	1.15778500
Η	-4.49427500	0.49026600	2.49033600
С	-5.23475500	-0.48133100	-1.22242900
Η	-3.28896100	0.25390300	-1.67978300
С	-6.22111900	-0.73813500	-0.20216700
Н	-6.62387700	-0.55122000	1.94551500
Н	-5.43261000	-0.76570200	-2.24714100
Ν	-7.39490700	-1.30268000	-0.50695200
С	-7.74464000	-1.61867700	-1.90040100
Η	-7.10822700	-2.42019900	-2.28883700
Η	-8.78138600	-1.94674700	-1.93494700
Η	-7.64039300	-0.73381700	-2.53335700
С	-8.37606800	-1.62755300	0.53967300
Η	-8.77873000	-0.71578600	0.99222700
Η	-9.19450800	-2.18608600	0.09038300
Η	-7.92018300	-2.24720200	1.31600100
С	0.74751500	1.29149300	2.15867100
С	-0.42084200	-0.66493800	1.45715700
Ν	-0.67354800	-1.77432200	1.69162600
Ν	1.36422400	1.74652800	3.02891700
С	2.08381600	1.23559100	-0.38190500
С	2.23697400	2.60896900	-0.58018900
С	3.44847400	3.33382400	-0.79684600
Ν	4.39902400	3.98071400	-0.99407100
С	1.08211000	3.45177700	-0.60166800
Ν	0.19334600	4.20876500	-0.61432000
С	3.15296700	0.25839400	-0.30027200
С	2.83600200	-1.12625700	-0.26859400
С	4.53770300	0.57524100	-0.23191200
С	3.79898000	-2.11050000	-0.20243300
Η	1.79564000	-1.42616400	-0.30680800
С	5.51284200	-0.39495500	-0.15225400
Н	4.86551400	1.60565000	-0.21651000
С	5.18210700	-1.78131500	-0.14516200
Н	3.48264900	-3.14600400	-0.18990400
H	6.54/48800	-0.08200000	-0.08773100
N	6.14403700	-2.74213500	-0.07907100
C	7.55566400	-2.37295700	-0.00399000
H	8.15841700	-3.27951900	0.03757000
H	7.86493300	-1.79560100	-0.88353200
H	7.76717900	-1.7/904200	0.89352600
C	5.//448100	-4.15535000	-0.06525600
H	5.16155400	-4.40103400	0.810/0500
H	5.21530200	-4.42948100	-0.96/86100
H C	0.0217(100	-4./59/8800	-0.02924200
U	-0.021/0100	0.51104500	-1.3/629200
IN	-0.62919000	-0.068/8/00	-2.31430300

Thermal correction to Energy= 0.452631 Thermal correction to Enthalpy= 0.453575 Thermal correction to Gibbs Free Energy= 0.351131 Sum of electronic and thermal Energies= -1424.107542 Sum of electronic and thermal Enthalpies= -1424.106598 Sum of electronic and thermal Free Energies= -1424.209042

<u>Pathway leading to 3</u>, crucial points on the potential energy surface, optimised in gas-phase [at B3LYP/6-31G(d)] or solvent [at CPCM B3LYP/6-31G(d)]

Intermediate prior to TS (in gas-phase)

С	1.406792	-1.982744	1.770922
С	2.738083	-1.523126	1.192360
С	1.823527	-1.029688	-0.084925
С	0.637907	-1.593745	0.733836
С	3.385192	-0.430717	1.930043
С	3.689871	-2.608685	0.928104
Ν	4.402608	-3.510497	0.768935
Ν	3.838556	0.436464	2.554703
С	1.897099	0.471798	-0.428864
С	3.045967	0.951153	-1.010215
С	4.178173	0.128173	-1.319478
Ν	5.126844	-0.504577	-1.552232
С	3.250795	2.344223	-1.285854
Ν	3.470041	3.461040	-1.527370
С	0.756182	1.356052	-0.163024
С	0.277189	2.225462	-1.164129
С	0.128717	1.419736	1.097795
С	-0.769365	3.100115	-0.931506
Η	0.719101	2.196901	-2.154973
С	-0.900585	2.309034	1.351498
Η	0.484847	0.798058	1.911101
С	-1.388491	3.176727	0.341361
Η	-1.104710	3.731707	-1.744608
Н	-1.319965	2.340423	2.349411
Ν	-2.418303	4.053982	0.584610
С	-2.817512	5.009456	-0.438443
Η	-3.181383	4.502075	-1.341360
Η	-3.628935	5.628077	-0.052902
Н	-1.989710	5.671704	-0.727468
С	-2.994464	4.152395	1.917264
Н	-3.809139	4.877600	1.901653
Н	-3.407665	3.190050	2.244889
Н	-2.257897	4.481526	2.664231
Н	1.230963	-2.510399	2.700315
С	-0.761331	-1.741679	0.387385
С	-1.262741	-1.399260	-0.881218
С	-1.670419	-2.284531	1.316648

С	-2.594464	-1.589821	-1.211379		
Η	-0.598816	-0.987355	-1.634014		
С	-3.004082	-2.476321	1.004343		
Η	-1.322258	-2.565026	2.307481		
С	-3.510683	-2.131339	-0.276039		
Η	-2.923370	-1.320781	-2.207313		
Η	-3.658303	-2.902600	1.754848		
Ν	-4.837561	-2.313856	-0.593858		
С	-5.305554	-2.040919	-1.944272		
Η	-4.805201	-2.672428	-2.692423		
Η	-6.377597	-2.235604	-1.997538		
Η	-5.140991	-0.991209	-2.219111		
С	-5.732120	-2.962495	0.352348		
Η	-6.735913	-3.000237	-0.073091		
Η	-5.419278	-3.991387	0.582215		
Η	-5.789387	-2.404346	1.295653		
С	2.033761	-1.830447	-1.297108		
Ν	2.105094	-2.472495	-2.262174		
Zero	Zero-point correction= 0.420959				
TT1	- 1	Г 0.4 <i>5</i> .4	200		

Thermal correction to Energy= 0.454298 Thermal correction to Enthalpy= 0.455242 Thermal correction to Gibbs Free Energy= 0.353317 Sum of electronic and thermal Energies= -1424.128829 Sum of electronic and thermal Enthalpies= -1424.127885 Sum of electronic and thermal Free Energies= -1424.229809

Intermediate prior to TS (in toluene)

С	-0.428102	-1.719736	-2.040762
С	-1.791152	-2.038080	-1.451541
С	-1.086114	-1.612166	-0.011933
С	0.189645	-1.439187	-0.876522
С	-2.906951	-1.190118	-1.891010
С	-2.170770	-3.453243	-1.554489
Ν	-2.429942	-4.578199	-1.672829
Ν	-3.762631	-0.506043	-2.274390
С	-1.787865	-0.389667	0.614772
С	-2.956168	-0.600609	1.317165
С	-3.634133	-1.860573	1.385699
Ν	-4.229943	-2.859759	1.431286
С	-3.611575	0.446714	2.044559
Ν	-4.167095	1.245576	2.683297
С	-1.332978	0.974755	0.341941
С	-0.016471	1.424182	0.580628
С	-2.257556	1.930286	-0.142399
С	0.353145	2.738924	0.365419
Н	0.721256	0.749975	0.994479
С	-1.893703	3.239286	-0.391429
Н	-3.270751	1.621150	-0.376030
С	-0.571963	3.692990	-0.137428

Η	1.368219	3.033194	0.601231
Η	-2.638012	3.914366	-0.794477
Ν	-0.205640	4.990397	-0.369842
С	1.155871	5.430675	-0.092267
Η	1.888434	4.856102	-0.672862
Η	1.254365	6.480468	-0.368950
Η	1.406792	5.332340	0.972414
С	-1.191095	5.959371	-0.835287
Η	-0.708984	6.930156	-0.951011
Η	-1.611040	5.670334	-1.807063
Η	-2.017901	6.070202	-0.121866
Η	-0.110437	-1.815865	-3.071162
С	1.575445	-1.216236	-0.508989
С	2.046640	-1.368207	0.809536
С	2.523908	-0.891516	-1.500170
С	3.385372	-1.203168	1.127073
Η	1.361819	-1.642629	1.606032
С	3.862908	-0.719307	-1.198644
Η	2.200420	-0.759384	-2.529211
С	4.339854	-0.868702	0.131678
Η	3.693417	-1.344834	2.155409
Η	4.547034	-0.465480	-1.998857
Ν	5.665692	-0.694962	0.439575
С	6.132604	-0.901342	1.803997
Η	5.961166	-1.931723	2.144507
Η	7.203656	-0.702321	1.848469
Η	5.632959	-0.221276	2.505533
С	6.632346	-0.416407	-0.613948
Η	7.622403	-0.308953	-0.170038
Η	6.675637	-1.226485	-1.354831
Η	6.395249	0.516869	-1.140800
С	-0.953810	-2.731687	0.926130
Ν	-0.758966	-3.605525	1.665532

Zero-point correction= 0.421180 Thermal correction to Energy= 0.454412 Thermal correction to Enthalpy= 0.455356 Thermal correction to Gibbs Free Energy= 0.353901 Sum of electronic and thermal Energies= -1424.142284 Sum of electronic and thermal Enthalpies= -1424.141339 Sum of electronic and thermal Free Energies= -1424.242795

Intermediate prior to TS (in MeCN)

С	-0.141403	-1.648448	-2.088158
С	-1.444889	-2.164764	-1.506966
С	-0.796882	-1.698055	-0.054481
С	0.443149	-1.333320	-0.913117
С	-2.675180	-1.472043	-1.914941
С	-1.634729	-3.615745	-1.645035

Ν	-1.749941	-4.762989	-1.777371
Ν	-3.629771	-0.918170	-2.273939
С	-1.673081	-0.621555	0.620006
С	-2.758417	-1.057070	1.369560
С	-3.233002	-2.405475	1.384390
Ν	-3.672557	-3.484709	1.388865
С	-3.519005	-0.179129	2.205142
Ν	-4.148719	0.471177	2.938372
С	-1.489450	0.794051	0.351791
С	-0.239063	1.458553	0.394468
С	-2.622432	1.596438	0.048671
С	-0.126067	2.815437	0.176320
Н	0.655550	0.915178	0.662868
С	-2.520858	2.947100	-0.202528
Н	-3.594274	1.126892	-0.056300
С	-1.263644	3.613586	-0.136269
Н	0.852727	3.270269	0.259844
Н	-3.415612	3.491946	-0.475333
Ν	-1.153485	4.949065	-0.368563
С	0.155379	5.598657	-0.344630
H	0.834108	5.154467	-1.082305
Н	0.032175	6.653689	-0.586249
Н	0.620731	5.525347	0.645851
С	-2.340079	5.748183	-0.666818
H	-2.047396	6.792222	-0.771535
Н	-2.815036	5.428290	-1.602623
Н	-3.078320	5.678859	0.140390
Н	0.176121	-1.665556	-3.122533
С	1.790189	-0.970382	-0.525316
Ċ	2.230933	-0.992694	0.813676
Č	2.738376	-0.622261	-1.511582
Č	3.537425	-0.686339	1.155633
Н	1.545630	-1.263983	1.611201
C	4.044493	-0.309058	-1.186613
H	2,440280	-0.588247	-2.555908
C	4.491713	-0.332433	0.164297
H	3.821454	-0.724552	2,199675
Н	4.727983	-0.042320	-1.982942
Ν	5.784232	-0.027583	0.492912
C	6.213066	-0.054375	1.886351
H	6 090078	-1 052148	2 326795
Н	7.268680	0.211330	1.939330
Н	5 649127	0 662879	2 496668
C	6 741728	0 335743	-0 545451
Ĥ	7,708817	0.533874	-0.083737
Н	6.871946	-0.473478	-1.275375
Н	6.429590	1.239014	-1 085503
Ċ	-0.498624	-2.828254	0 832796
Ň	-0 177221	-3 708516	1 518372
Zore	noint correction	n = 0.421212	1.010072

Zero-point correction= 0.421213

Thermal correction to Energy= 0.454357
Thermal correction to Enthalpy= 0.455301
Thermal correction to Gibbs Free Energy= 0.354327
Sum of electronic and thermal Energies= -1424.156156
Sum of electronic and thermal Enthalpies= -1424.155212
Sum of electronic and thermal Free Energies= -1424.256186

TS to 3 (in gas-phase)

С	-0.049324	-0.999306	2.000118
С	0.965387	-2.058612	1.895050
С	0.206099	-1.672365	-0.148356
С	-0.697848	-0.946565	0.805514
С	2.314259	-1.811431	2.306890
С	0.560627	-3.432413	1.957172
Ν	0.212538	-4.540495	2.049355
Ν	3.418752	-1.564099	2.584588
С	1.421672	-1.048842	-0.715082
С	2.310925	-1.791606	-1.483912
С	2.308937	-3.218061	-1.577683
Ν	2.389641	-4.377228	-1.658192
С	3.351982	-1.168892	-2.243544
Ν	4.193882	-0.713290	-2.907305
С	1.725973	0.365635	-0.429881
С	0.781328	1.396713	-0.603438
С	3.017343	0.745566	-0.008509
С	1.102043	2.725062	-0.385282
Н	-0.219221	1.164716	-0.948902
С	3.345742	2.066566	0.237130
Н	3.769520	-0.014879	0.168888
С	2.398848	3.104138	0.047728
Η	0.340959	3.475603	-0.559945
Н	4.346629	2.292127	0.582965
Ν	2.722016	4.418795	0.279922
С	1.737165	5.465526	0.055818
Н	0.846605	5.320999	0.681645
Н	2.175171	6.430405	0.314399
Η	1.414368	5.508441	-0.993967
С	4.077451	4.779352	0.671143
Η	4.137340	5.861108	0.797018
Η	4.360031	4.311513	1.623321
Η	4.813333	4.482239	-0.088142
Н	-0.217150	-0.417393	2.901757
С	-2.007324	-0.409883	0.475281
С	-2.438149	-0.227615	-0.854289
С	-2.922651	-0.075297	1.495126
С	-3.695598	0.266963	-1.154426
Η	-1.778336	-0.485143	-1.677942
С	-4.177716	0.431294	1.213988
Η	-2.648910	-0.241820	2.533195

С	-4.606539	0.621350	-0.126474
Η	-3.973390	0.378582	-2.195004
Η	-4.842857	0.658054	2.038006
Ν	-5.852264	1.123198	-0.415179
С	-6.304662	1.203692	-1.796927
Η	-6.324826	0.217144	-2.280207
Η	-7.315057	1.613568	-1.818693
Η	-5.660870	1.864015	-2.392174
С	-6.783342	1.433315	0.659714
Η	-7.691260	1.861821	0.233506
Η	-7.064110	0.539971	1.235757
Η	-6.358840	2.169219	1.354140
С	-0.408731	-2.754873	-0.857536
Ν	-0.986353	-3.622130	-1.379136
	• , ,•	0.410.000	

Thermal correction to Energy= 0.452675

Thermal correction to Enthalpy= 0.453619

Thermal correction to Gibbs Free Energy= 0.352314

Sum of electronic and thermal Energies= -1424.106855

Sum of electronic and thermal Enthalpies= -1424.105910

Sum of electronic and thermal Free Energies= -1424.207216

TS to 3 (in toluene)

C	0.04022400	0.00020(00	2 00011000
C	-0.04932400	-0.99930600	2.00011800
С	0.96538700	-2.05861200	1.89505000
С	0.20609900	-1.67236500	-0.14835600
С	-0.69784800	-0.94656500	0.80551400
С	2.31425900	-1.81143100	2.30689000
С	0.56062700	-3.43241300	1.95717200
Ν	0.21253800	-4.54049500	2.04935500
Ν	3.41875200	-1.56409900	2.58458800
С	1.42167200	-1.04884200	-0.71508200
С	2.31092500	-1.79160600	-1.48391200
С	2.30893700	-3.21806100	-1.57768300
Ν	2.38964100	-4.37722800	-1.65819200
С	3.35198200	-1.16889200	-2.24354400
Ν	4.19388200	-0.71329000	-2.90730500
С	1.72597300	0.36563500	-0.42988100
С	0.78132800	1.39671300	-0.60343800
С	3.01734300	0.74556600	-0.00850900
С	1.10204300	2.72506200	-0.38528200
Η	-0.21922100	1.16471600	-0.94890200
С	3.34574200	2.06656600	0.23713000
Η	3.76952000	-0.01487900	0.16888800
С	2.39884800	3.10413800	0.04772800
Η	0.34095900	3.47560300	-0.55994500
Η	4.34662900	2.29212700	0.58296500
Ν	2.72201600	4.41879500	0.27992200
С	1.73716500	5.46552600	0.05581800

Н	0.84660500	5.32099900	0.68164500
Η	2.17517100	6.43040500	0.31439900
Η	1.41436800	5.50844100	-0.99396700
С	4.07745100	4.77935200	0.67114300
Η	4.13734000	5.86110800	0.79701800
Η	4.36003100	4.31151300	1.62332100
Η	4.81333300	4.48223900	-0.08814200
Η	-0.21715000	-0.41739300	2.90175700
С	-2.00732400	-0.40988300	0.47528100
С	-2.43814900	-0.22761500	-0.85428900
С	-2.92265100	-0.07529700	1.49512600
С	-3.69559800	0.26696300	-1.15442600
Η	-1.77833600	-0.48514300	-1.67794200
С	-4.17771600	0.43129400	1.21398800
Η	-2.64891000	-0.24182000	2.53319500
С	-4.60653900	0.62135000	-0.12647400
Η	-3.97339000	0.37858200	-2.19500400
Η	-4.84285700	0.65805400	2.03800600
Ν	-5.85226400	1.12319800	-0.41517900
С	-6.30466200	1.20369200	-1.79692700
Η	-6.32482600	0.21714400	-2.28020700
Η	-7.31505700	1.61356800	-1.81869300
Η	-5.66087000	1.86401500	-2.39217400
С	-6.78334200	1.43331500	0.65971400
Η	-7.69126000	1.86182100	0.23350600
Η	-7.06411000	0.53997100	1.23575700
Η	-6.35884000	2.16921900	1.35414000
С	-0.40873100	-2.75487300	-0.85753600
Ν	-0.98635300	-3.62213000	-1.37913600
	• , ,•	0 410 7 47	

Zero-point correction= 0.419747

Thermal correction to Energy= 0.452690 Thermal correction to Enthalpy= 0.453634

Thermal correction to Elithapy 0.155051Thermal correction to Gibbs Free Energy= 0.352677

Sum of electronic and thermal Energies= -1424.124152

Sum of electronic and thermal Enthalpies= -1424.123208

Sum of electronic and thermal Free Energies= -1424.224166

TS to 3 (in MeCN)

С	-0.081263	-1.082116	2.021200
С	0.964951	-2.103790	1.831266
С	0.240457	-1.647498	-0.137132
С	-0.710254	-0.969381	0.818344
С	2.313259	-1.847303	2.251631
С	0.604806	-3.494326	1.845741
Ν	0.295539	-4.617075	1.873600
Ν	3.416453	-1.595952	2.527875
С	1.447084	-0.987098	-0.693889
С	2.369037	-1.739724	-1.433820
С	2.422477	-3.164635	-1.436170

Ν	2.532031	-4.325668	-1.435215
С	3.365456	-1.131097	-2.254379
Ν	4.173494	-0.695441	-2.973508
С	1.719449	0.417261	-0.414794
С	0.728467	1.427089	-0.482982
С	3.034979	0.837895	-0.091707
С	1.024887	2.756391	-0.269471
Η	-0.287870	1.173683	-0.754451
С	3.341798	2.158927	0.154428
Η	3.818739	0.097607	0.024055
С	2.346437	3.173979	0.061354
Н	0.229832	3.484835	-0.364689
Η	4.355193	2.411349	0.439200
Ν	2.642978	4.482078	0.287589
С	1.597514	5.500681	0.217544
Н	0.800765	5.305493	0.945212
Н	2.033936	6.473090	0.442105
Н	1.151627	5.547049	-0.783281
С	4.008978	4.884299	0.616427
Н	4.042099	5.966923	0.732011
Н	4.345837	4.427578	1.555099
Η	4.708437	4.602122	-0.179080
Η	-0.280572	-0.590381	2.967192
С	-2.015625	-0.448343	0.477518
С	-2.427986	-0.243016	-0.858183
С	-2.954991	-0.152643	1.493113
С	-3.688446	0.231579	-1.168388
Η	-1.747020	-0.455525	-1.677739
С	-4.213232	0.332964	1.202341
Η	-2.692260	-0.326498	2.532518
С	-4.626372	0.543865	-0.144889
Н	-3.947846	0.373428	-2.209747
Η	-4.893689	0.536324	2.019487
Ν	-5.868997	1.023987	-0.440116
С	-6.284621	1.188203	-1.829872
Н	-6.244876	0.236873	-2.374487
Н	-7.311758	1.550774	-1.852954
Н	-5.652640	1.914845	-2.355790
С	-6.802431	1.364641	0.629328
Н	-7.709902	1.778015	0.190263
H	-7.078282	0.483037	1.222105
Н	-6.377080	2.116443	1.304943
C	-0.333430	-2.735889	-0.876906
N	-0.850211	-3.633723	-1.409924
Zero	o-point correction	n= 0.419864	

Thermal correction to Energy= 0.452732 Thermal correction to Enthalpy= 0.453677 Thermal correction to Gibbs Free Energy= 0.353496 Sum of electronic and thermal Energies= -1424.140025 Sum of electronic and thermal Enthalpies= -1424.139080 Sum of electronic and thermal Free Energies= -1424.239261

<u>Pathway leading to 4</u>, crucial points on the potential energy surface, optimised in gas-phase [at B3LYP/6-31G(d)] or solvent [at CPCM B3LYP/6-31G(d)]

TS to 4 optimised in gas-phase

С	-0.28793800	3.19201100	-0.49965000
С	1.18132900	2.71575000	-0.59502800
С	1.72458308	1.56126339	-0.33521761
С	-0.13047808	0.78771661	1.46766161
С	-1.20456000	0.96618400	0.52338000
С	-1.37434900	2.13763200	-0.21460400
Η	1.84679900	3.48682900	-0.98812000
С	2.61751408	0.54444739	-0.32538161
С	3.44042308	0.25579739	0.82367739
С	2.79380308	-0.27462461	-1.49995361
С	4.38873208	-0.72098161	0.78170939
Η	3.31256708	0.85161139	1.72076239
С	3.73527608	-1.25815361	-1.53843661
Η	2.16743508	-0.08577361	-2.36494461
С	4.57984008	-1.52013161	-0.40129061
Η	5.00435508	-0.89143861	1.65451839
Η	3.84237608	-1.84664361	-2.43957861
С	-2.14936300	-0.15013500	0.33009700
С	-2.55028700	-0.56167600	-0.95646100
С	-2.68429500	-0.85498400	1.42704400
С	-3.43365700	-1.61110500	-1.14522700
Η	-2.13260200	-0.06595600	-1.82778100
С	-3.58341400	-1.89430500	1.25861900
Η	-2.41040600	-0.56036900	2.43590700
С	-3.99095200	-2.30731800	-0.03877400
Η	-3.68547800	-1.90246000	-2.15743200
Η	-3.97904400	-2.38671600	2.13828500
С	-0.35912900	4.33781300	0.45120400
Ν	-0.46287900	5.25323000	1.15664900
С	-0.54520200	3.76905900	-1.85074100
Ν	-0.70357000	4.21292600	-2.91038500
С	-2.64400200	2.44938800	-0.76662800
Ν	-3.68051300	2.77268300	-1.20043200
С	0.40889692	-0.50009576	1.71824481
Ν	0.92355322	-1.53011915	1.91982483
С	0.29194547	1.79181699	2.37513254
Ν	0.65441015	2.58655256	3.15252659
Ν	5.51408108	-2.47928761	-0.44285961
Ν	-4.88113500	-3.33424100	-0.21471700
С	-5.38705300	-4.07225400	0.93602200

Н	-5.93482500	-3.41701200	1.62533000		
Η	-6.07253100	-4.84569100	0.58959400		
Η	-4.57726000	-4.55834300	1.49634000		
С	-5.26750700	-3.74878000	-1.55755500		
Η	-5.71493600	-2.91903400	-2.11878800		
Η	-4.41131900	-4.12855400	-2.13173400		
Η	-6.00826000	-4.54520800	-1.48527500		
С	5.76752086	-3.23338242	-1.67917748		
Η	6.02019952	-2.55586425	-2.49956296		
Η	6.60814831	-3.90404032	-1.51457544		
Η	4.89269855	-3.82913622	-1.95812089		
С	6.30886073	-2.81225722	0.74842001		
Η	6.92034562	-1.95924877	1.05867799		
Η	5.65896017	-3.11144117	1.57571119		
Η	6.96774919	-3.64407564	0.50876886		
Zero-point correction= 0.419209					
Thermal correction to Energy= 0.452468					

Thermal correction to Enthalpy= 0.453412 Thermal correction to Gibbs Free Energy= 0.350190 Sum of electronic and thermal Energies= -1424.078737 Sum of electronic and thermal Enthalpies= -1424.077793 Sum of electronic and thermal Free Energies= -1424.181014

TS to 4 optimised in toluene

С	-0.28793800	3.19201100	-0.49965000
С	1.18132900	2.71575000	-0.59502800
С	1.73270700	1.56465100	-0.34311300
С	-0.13860200	0.78432900	1.47555700
С	-1.20456000	0.96618400	0.52338000
С	-1.37434900	2.13763200	-0.21460400
Η	1.84679900	3.48682900	-0.98812000
С	2.62563800	0.54783500	-0.33327700
С	3.44854700	0.25918500	0.81578200
С	2.80192700	-0.27123700	-1.50784900
С	4.39685600	-0.71759400	0.77381400
Η	3.32069100	0.85499900	1.71286700
С	3.74340000	-1.25476600	-1.54633200
Η	2.17555900	-0.08238600	-2.37284000
С	4.58796400	-1.51674400	-0.40918600
Η	5.01247900	-0.88805100	1.64662300
Η	3.85050000	-1.84325600	-2.44747400
С	-2.14936300	-0.15013500	0.33009700
С	-2.55028700	-0.56167600	-0.95646100
С	-2.68429500	-0.85498400	1.42704400
С	-3.43365700	-1.61110500	-1.14522700
Η	-2.13260200	-0.06595600	-1.82778100
С	-3.58341400	-1.89430500	1.25861900
Η	-2.41040600	-0.56036900	2.43590700
С	-3.99095200	-2.30731800	-0.03877400

Н	-3.68547800	-1.90246000	-2.15743200
Η	-3.97904400	-2.38671600	2.13828500
С	-0.35912900	4.33781300	0.45120400
Ν	-0.46287900	5.25323000	1.15664900
С	-0.54520200	3.76905900	-1.85074100
Ν	-0.70357000	4.21292600	-2.91038500
С	-2.64400200	2.44938800	-0.76662800
Ν	-3.68051300	2.77268300	-1.20043200
С	0.35468164	-0.51100637	1.77714543
Ν	0.83242241	-1.55010393	2.01900036
С	0.32776747	1.80931566	2.33698871
Ν	0.72545659	2.62202532	3.07771345
Ν	5.52220500	-2.47590000	-0.45075500
Ν	-4.88113500	-3.33424100	-0.21471700
С	-5.38705300	-4.07225400	0.93602200
Н	-5.93482500	-3.41701200	1.62533000
Н	-6.07253100	-4.84569100	0.58959400
Η	-4.57726000	-4.55834300	1.49634000
С	-5.26750700	-3.74878000	-1.55755500
Η	-5.71493600	-2.91903400	-2.11878800
Н	-4.41131900	-4.12855400	-2.13173400
Η	-6.00826000	-4.54520800	-1.48527500
С	5.77564478	-3.22999481	-1.68707288
Η	6.02832343	-2.55247663	-2.50745835
Η	6.61627222	-3.90065270	-1.52247083
Η	4.90082246	-3.82574861	-1.96601628
С	6.31698465	-2.80886960	0.74052462
Н	6.92846953	-1.95586116	1.05078260
Н	5.66708408	-3.10805356	1.56781580
Η	6.97587311	-3.64068803	0.50087346

Zero-point correction= 0.419643 Thermal correction to Energy= 0.452670 Thermal correction to Enthalpy= 0.453614 Thermal correction to Gibbs Free Energy= 0.352587 Sum of electronic and thermal Energies= -1424.103108 Sum of electronic and thermal Enthalpies= -1424.102163 Sum of electronic and thermal Free Energies= -1424.203191

TS to 4 optimised in MeCN

С	-0.287938	3.192011	-0.499650
С	1.181329	2.715750	-0.595028
С	1.732707	1.564651	-0.343113
С	-0.138602	0.784329	1.475557
С	-1.204560	0.966184	0.523380
С	-1.374349	2.137632	-0.214604
Н	1.846799	3.486829	-0.988120
С	2.625638	0.547835	-0.333277
С	3.448547	0.259185	0.815782
С	2.801927	-0.271237	-1.507849

С	4.396856	-0.717594	0.773814	
Н	3.320691	0.854999	1.712867	
С	3.743400	-1.254766	-1.546332	
Н	2.175559	-0.082386	-2.372840	
С	4.587964	-1.516744	-0.409186	
Н	5.012479	-0.888051	1.646623	
Н	3.850500	-1.843256	-2.447474	
С	-2.149363	-0.150135	0.330097	
С	-2.550287	-0.561676	-0.956461	
С	-2.684295	-0.854984	1.427044	
С	-3.433657	-1.611105	-1.145227	
Н	-2.132602	-0.065956	-1.827781	
С	-3.583414	-1.894305	1.258619	
Н	-2.410406	-0.560369	2.435907	
С	-3.990952	-2.307318	-0.038774	
Н	-3.685478	-1.902460	-2.157432	
Н	-3.979044	-2.386716	2.138285	
С	-0.359129	4.337813	0.451204	
Ν	-0.462879	5.253230	1.156649	
С	-0.545202	3.769059	-1.850741	
Ν	-0.703570	4.212926	-2.910385	
С	-2.644002	2.449388	-0.766628	
Ν	-3.680513	2.772683	-1.200432	
С	0.325009	-0.513948	1.809802	
Ν	0.778922	-1.557381	2.077504	
С	0.356388	1.820525	2.307089	
Ν	0.777045	2.642998	3.023966	
Ν	5.522205	-2.475900	-0.450755	
Ν	-4.881135	-3.334241	-0.214717	
С	-5.387053	-4.072254	0.936022	
Η	-5.934825	-3.417012	1.625330	
Н	-6.072531	-4.845691	0.589594	
Н	-4.577260	-4.558343	1.496340	
С	-5.267507	-3.748780	-1.557555	
Н	-5.714936	-2.919034	-2.118788	
Н	-4.411319	-4.128554	-2.131734	
Н	-6.008260	-4.545208	-1.485275	
С	5.733595	-3.271750	-1.668667	
Н	5.955809	-2.622556	-2.520182	
Н	6.580920	-3.935588	-1.510902	
Н	4.850771	-3.877533	-1.896032	
С	6.359114	-2.767053	0.722490	
Н	6.979318	-1.903335	0.981595	
Н	5.739362	-3.038265	1.581934	
Η	7.010933	-3.605999	0.488417	
Zero-point correction= 0.419949				
Thermal correction to Energy= 0.452802				
Thermal correction to Enthalpy= 0.453746				
Thermal correction to Gibbs Free Energy= 0.353507				

Sum of electronic and thermal Energies= -1424.124887

Sum of electronic and thermal Enthalpies= -1424.123943 Sum of electronic and thermal Free Energies= -1424.224182

<u>Pathway leading to 5</u>, crucial points on the potential energy surface, optimised in gas-phase [at B3LYP/6-31G(d)] or solvent [at CPCM B3LYP/6-31G(d)]

TS to 5 optimised in gas-phase

С	0.800509	0.779214	1.556871
С	-0.452229	1.178603	1.990823
С	-1.377252	1.776952	1.097915
С	-0.967546	1.932904	-0.255560
С	0.282754	1.525289	-0.672309
Н	1.501609	0.399945	2.289987
Η	0.569058	1.675622	-1.707914
С	1.205292	0.916788	0.207680
С	0.217803	-1.629144	-0.266250
С	2.607162	0.689063	-0.235587
С	1.346090	-2.252083	-0.148133
С	3.314896	-0.491234	0.067712
С	2.699176	-1.818861	0.521813
Н	1.373452	-3.289051	-0.488530
Ν	-2.615116	2.201362	1.518601
С	-2.968730	2.115513	2.929294
Н	-2.339267	2.759432	3.560247
Н	-4.008445	2.421347	3.056186
Н	-2.874783	1.085143	3.290065
С	-3.431614	3.037287	0.645865
Н	-2.911604	3.959477	0.352951
Н	-3.716565	2.499366	-0.266242
Н	-4.346984	3.312656	1.171705
С	2.456685	-1.884388	1.990435
Ν	2.267532	-1.935666	3.135221
С	3.634470	-2.940290	0.228010
Ν	4.271840	-3.878446	-0.011988
С	4.730814	-0.522779	-0.006728
Ν	5.897484	-0.573975	0.020538
С	3.197695	1.744844	-0.984752
С	4.288940	1.561336	-1.878117
Ν	5.134221	1.444690	-2.674506
С	2.707104	3.079401	-0.907108
Ν	2.324679	4.182053	-0.853720
Н	-1.629526	2.396419	-0.976186
Н	-0.689387	1.074776	3.042336
С	-1.123806	-1.439420	-0.463263
С	-2.057109	-1.741883	0.580259
С	-1.655846	-0.977507	-1.709308

С	-3.410680	-1.639495	0.378157
Н	-1.673854	-2.076367	1.538473
С	-3.008944	-0.897786	-1.919601
Н	-0.967917	-0.721885	-2.508022
С	-3.938024	-1.226279	-0.883937
Н	-4.080023	-1.894681	1.189794
Η	-3.367161	-0.573989	-2.888465
Ν	-5.279726	-1.149386	-1.095191
С	-6.219085	-1.492005	-0.029133
Η	-6.114752	-2.540354	0.276358
Η	-6.070614	-0.854835	0.850553
Η	-7.236509	-1.341056	-0.388767
С	-5.805592	-0.769647	-2.405787
Η	-5.470424	-1.462898	-3.186446
Η	-6.894432	-0.794893	-2.373101
Η	-5.495878	0.245051	-2.683232
Zara	noint correction	n = 0.410120	

Zero-point correction= 0.419139 Thermal correction to Energy= 0.452061 Thermal correction to Enthalpy= 0.453005 Thermal correction to Gibbs Free Energy= 0.352299 Sum of electronic and thermal Energies= -1424.055374 Sum of electronic and thermal Enthalpies= -1424.054430 Sum of electronic and thermal Free Energies= -1424.155137

TS to 5 optimised in toluene

С	0.813236	0.753263	1.553189
С	-0.444799	1.147817	1.977336
С	-1.337899	1.808667	1.095497
С	-0.876451	2.056899	-0.228132
С	0.383003	1.656552	-0.633069
Η	1.487699	0.316766	2.279618
Н	0.700902	1.869303	-1.648612
С	1.261360	0.970306	0.230396
С	0.167534	-1.635319	-0.488599
С	2.656338	0.683820	-0.185280
С	1.332016	-2.204434	-0.457514
С	3.294918	-0.537014	0.110969
С	2.592377	-1.877689	0.403059
Η	1.439749	-3.104302	-1.065428
Ν	-2.590156	2.203568	1.497979
С	-2.989036	2.036812	2.890834
Η	-2.387345	2.652094	3.574932
Η	-4.035408	2.325420	2.998038
Η	-2.894944	0.989677	3.197703
С	-3.379915	3.094994	0.654174
Η	-2.873001	4.053423	0.476447
Η	-3.593319	2.633601	-0.316372
Η	-4.332605	3.296110	1.145451
С	2.207844	-2.055774	1.833319

Ν	1.922282	-2.205376	2.948832
С	3.532820	-2.999167	0.126124
Ν	4.198756	-3.919853	-0.103151
С	4.707772	-0.606392	0.173025
Ν	5.867770	-0.682908	0.299468
С	3.338532	1.724442	-0.879921
С	4.451834	1.492076	-1.730752
Ν	5.330453	1.333259	-2.484277
С	2.942934	3.085970	-0.774838
Ν	2.648292	4.215020	-0.702341
Η	-1.505328	2.583458	-0.934841
Н	-0.716565	0.979086	3.011736
С	-1.163266	-1.407932	-0.598875
С	-2.066734	-2.012869	0.348364
С	-1.740145	-0.637983	-1.669765
С	-3.418977	-1.890538	0.215538
Н	-1.648794	-2.580064	1.173191
С	-3.095074	-0.545189	-1.821609
Η	-1.079840	-0.173067	-2.391788
С	-3.990306	-1.161982	-0.884537
Η	-4.062243	-2.362618	0.946416
Η	-3.489245	0.008362	-2.663650
Ν	-5.325278	-1.066725	-1.033120
С	-6.235442	-1.708386	-0.077091
Η	-6.073538	-2.790767	-0.047715
Η	-6.099094	-1.299053	0.929366
Η	-7.261946	-1.522886	-0.388133
С	-5.903589	-0.329398	-2.162824
Η	-5.600635	-0.773415	-3.116913
Η	-6.989123	-0.370342	-2.092896
Η	-5.595530	0.721002	-2.144382

Zero-point correction= 0.419807

Thermal correction to Energy= 0.452638 Thermal correction to Enthalpy= 0.453582 Thermal correction to Gibbs Free Energy= 0.353674 Sum of electronic and thermal Energies= -1424.087444 Sum of electronic and thermal Enthalpies= -1424.086500 Sum of electronic and thermal Free Energies= -1424.186408

TS to 5 optimised in MeCN

С	0.762528	0.789248	1.478033
С	-0.451537	1.268934	1.909543
С	-1.368501	1.871163	0.993596
С	-0.953417	1.984641	-0.375118
С	0.267109	1.516885	-0.785040
Η	1.453657	0.379292	2.207428
Η	0.550785	1.621483	-1.826919
С	1.148864	0.834731	0.102197
С	0.209055	-1.349120	-0.137465
Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

С	2.569602	0.622619	-0.283122			
С	1.220029	-2.157032	0.059702			
С	3.276910	-0.516205	0.112064			
С	2.658237	-1.866916	0.513225			
Н	1.014359	-3.221201	-0.063965			
Ν	-2.571915	2.333927	1.399232			
C	-2.979614	2.209412	2.800007			
H	-2 340245	2 810042	3 457705			
Н	-4 005925	2 558621	2 902402			
Н	-2.937849	1 164675	3 124504			
C	-3 464186	3 024827	0 463658			
Н	-2.998062	3 935001	0.069925			
н	-3 737116	2 375269	-0 374031			
н	-4 375425	3 305450	0.989451			
C	2 695254	-2 041385	1 995214			
N	2.073234	-2.041303	3 151030			
C	2.722377	2.156255	0.060707			
N N	J.492328 A 122440	-2.955107	-0.009797			
C	4.122440	-5.800857	-0.341303			
U N	4.00010J 5.946997	-0.497309	0.213372			
IN C	3.040007	-0.316039	1.020660			
C	5.205597	1.0/1194	-1.020000			
U N	4.555006	1.400/39	-1.622303			
N C	5.2/515/	1.31/318	-2.3304/1			
	2.751238	3.014091	-0.982271			
N H	2.424093	4.13//84	-0.964358			
H	-1.6033/5	2.45/323	-1.099695			
H	-0.6918/5	1.208272	2.962831			
C	-1.1510/5	-1.265596	-0.355364			
C	-2.06/0/9	-1.450186	0.730193			
C	-1.703167	-1.025907	-1.654468			
C	-3.422808	-1.449634	0.526788			
Н	-1.670985	-1.627054	1.724031			
С	-3.055418	-1.033066	-1.864753			
Н	-1.030287	-0.864389	-2.489987			
С	-3.971369	-1.244541	-0.780365			
Η	-4.078273	-1.618798	1.370848			
Η	-3.429612	-0.873707	-2.867381			
Ν	-5.304555	-1.251319	-0.987426			
С	-6.231825	-1.466369	0.127484			
Н	-6.062620	-2.441630	0.596314			
Η	-6.122531	-0.683987	0.886063			
Η	-7.251733	-1.438781	-0.251746			
С	-5.856258	-1.047460	-2.330628			
Н	-5.509776	-1.824866	-3.019819			
Н	-6.942317	-1.095087	-2.275975			
Н	-5.572503	-0.067207	-2.727774			
Zero	o-point correction	n = 0.420317				
Thermal correction to Energy= 0.452980						
Thermal correction to Enthalpy= 0.453924						
Thermal correction to Gibbs Free Energy= 0.355046						

Sum of electronic and thermal Energies= -1424.119399 Sum of electronic and thermal Enthalpies= -1424.118455 Sum of electronic and thermal Free Energies= -1424.217334

Attack at C4 in 1, optimised in gas-phase [at B3LYP/6-31G(d)]

С	1.921755	-0.987013	-0.743889
С	-1.984661	2.834815	0.277211
С	-1.021716	1.807745	0.315853
С	0.663635	-1.031748	-0.662882
Η	-0.145349	-1.324563	-1.315447
С	3.290198	-0.850451	-0.635970
С	4.113355	-1.969384	-0.310963
С	3.931330	0.405865	-0.857114
С	5.477476	-1.844725	-0.209001
Н	3.643970	-2.932615	-0.137926
С	5.296393	0.528865	-0.760546
Н	3.319418	1.276066	-1.069363
С	6.118821	-0.588660	-0.430742
Н	6.063624	-2.718398	0.046454
Η	5.740198	1.503583	-0.918493
Ν	7.472328	-0.461259	-0.324482
С	8.112510	0.832490	-0.545841
Н	7.777519	1.578283	0.185933
Н	9.191856	0.717210	-0.446543
Н	7.901500	1.213251	-1.552167
С	8.295972	-1.603952	0.058089
Η	8.219733	-2.416826	-0.674823
Η	9.338642	-1.290469	0.108914
Η	8.008048	-1.994279	1.042102
С	-3.341878	2.671914	0.674950
С	-1.630681	4.157775	-0.113544
Ν	-1.368833	5.247253	-0.437097
Ν	-4.457097	2.626698	1.012731
С	-1.276183	0.426501	0.560762
С	-0.181923	-0.476689	0.911792
С	-0.552982	-1.804680	1.404446
Ν	-0.762334	-2.878546	1.794358
С	0.880351	0.045939	1.768435
Ν	1.730579	0.408690	2.470409
С	-2.595829	-0.145911	0.228283
С	-3.144071	0.045188	-1.057077
С	-3.360152	-0.895305	1.142600
С	-4.371085	-0.485777	-1.417227
Н	-2.592257	0.628064	-1.790011
C	-4.595026	-1.420834	0.801975
H	-2.997936	-1.039125	2.155032
С	-5.138339	-1.238537	-0.493922
Н	-4.740007	-0.305355	-2.419399

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Η	-5.150048	-1.962653	1.557550		
Ν	-6.361905	-1.769051	-0.841323		
С	-7.181780	-2.421237	0.168312		
Η	-8.096356	-2.790168	-0.298666		
Η	-6.660548	-3.281246	0.606289		
Η	-7.462728	-1.738621	0.983855		
С	-6.958653	-1.432596	-2.124478		
Η	-7.136457	-0.352436	-2.231889		
Η	-6.321492	-1.758557	-2.956195		
Η	-7.915931	-1.947534	-2.219297		
С	0.320967	2.231770	0.010496		
Ν	1.388372	2.567384	-0.305450		
Zero-point correction= 0.417439					
Thermal correction to Energy=0.451251					

Thermal correction to Energy= 0.451251 Thermal correction to Enthalpy= 0.452195 Thermal correction to Gibbs Free Energy= 0.348380 Sum of electronic and thermal Energies= -1424.073550 Sum of electronic and thermal Enthalpies= -1424.072606 Sum of electronic and thermal Free Energies= -1424.176421

References (ESI)

- 1 P. Reutenauer, M. Kivala, P. D. Jarowski, C. Boudon, J.-P. Gisselbrecht, M. Gross and F. Diederich, *Chem. Commun.*, 2007, 4898–4900.
- 2 (a) S. P. Kolis, J. Gonzalez, L. M. Bright and W. D. Harman, Organometallics, 1996, 15, 245–259; (b) C. Combellas, M. Lequan, R. M. Lequan, J. Simon and A. Thiebault, J. Chem. Soc., Chem. Commun., 1990, 542–543; (c) U. Mazur and K. W. Hipps, J. Phys. Chem., 1982, 86, 2854–2860; (d) H. Yoshida, M. Watanabe, T. Morishita, J. Ohshita and A. Kunai, Chem. Commun., 2007, 1505–1507.
- 3 G. M. Sheldrick, SHELXS-97, Program for X-ray Crystal Structure Determination, University of Göttingen, Germany, 1997.
- 4 G. M. Sheldrick, *SHELXL-97*, Program for X-ray Crystal Structure Refinement, University of Göttingen, Germany, 1997.
- 5 Y. Hayakawa, T. Iwase, E. J. Nurminen, M. Tsukamoto and M. Kataoka, *Tetrahedron*, 2005, **61**, 2203–2209.

- 6 A. K. Agrawal and S. A. Jenekhe, Chem. Mater., 1996, 8, 579–589.
- Full reference 7 (main text) for Gaussian 09: G. W. T. M. J. Frisch, H. B. Schlegel,
 G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc, Wallingford CT, 2009.
- 8 (a) W. Kohn, A. D. Becke and R. G. Parr, J. Phys. Chem., 1996, 100, 12974–12980; (b) A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652.