Highly efficient desymmetrisation of a chromiumtricarbonyl dibromonaphthalene complex by asymmetric Suzuki-Miyaura coupling

Xavier Urbaneja, Audrey Mercier, Céline Besnard and E. Peter Kündig*

Department of Organic Chemistry, University of Geneva 30 Quai Ernest Ansermet, 1211, Geneva 4, Switzerland E-mail : <u>Peter.Kundig@unige.ch</u>

CONTENTS:

- 1. General remarks
- 2. Representative procedure for the asymmetric Suzuki-Miyaura coupling
- 3. Monitoring experiment
- 4. Competition experiment
- 5. $[Pd(\eta^3-allyl)(1,2-\eta-Ph-L^*-\kappa P)][SbF_6]$ (7)
- 6. Spectroscopic and HPLC data
- 7. References

1. General remarks

All reactions and manipulations were carried out under an inert atmosphere of argon or nitrogen. Solvents were purified on Al₂O₃ drying columns using a Solvtek system (unless otherwise noted) and further degassed by three successive "freeze-pump-thaw" cycles. ¹H- and ¹³C-NMR spectra were recorded on a AMX-500 Bruker Avance spectrometer in the solvent indicated. ¹H- and ¹³C-NMR chemical shifts (δ) are quoted in parts per million (ppm) relative to the TMS scale (C₆D₆: $\delta_C \equiv 128.0$ ppm; residual C₆D₅H: $\delta_H \equiv 7.15$ ppm; CDCl₃: $\delta_C \equiv 77.05$ ppm; residual CHCl₃: $\delta_H \equiv 7.26$ ppm; CD₂Cl₂: $\delta_C \equiv 53.9$ ppm; residual CHDCl₂: $\delta_H \equiv 5.32$ ppm). Coupling constants *J* are quoted in Hz. Infrared spectra were recorded on a Perkin–Elmer Spectrum One spectrophotometer using a diamond ATR Golden Gate sampler. Electron impact (EI) HRMS mass spectra were obtained using a *Finningan MAT 95* operating at 70eV. Electrospray ionization (ESI) HRMS analyses were measured on a VG analytical 7070E instrument. Optical rotations were measured on a Perkin Elmer 241 polarimeter using a quartz cell (*l* = 10 cm) with a Na high-pressure lamp ($\lambda = 589$ nm). Analytical HPLC was performed using an Alligent 1100 series with a JASCO PU–980 pump and Aligent 1100 Series detection system.

Commercially available chemicals were used as received unless otherwise stated: toluene purum (VWR), PhB(OH)₂ (Acros), p-MePhB(OH)₂ (Acros), p-MeOPhB(OH)₂ (Acros), $p-CF_3PhB(OH)_2$ (Aldrich), (*cis*-propenyl)B(OH)₂ (Aldrich), (transcyclohexylvinyl)B(OH)₂ (Aldrich), n-BuB(OH)₂ (Acros), KF (Aldrich, dried under vacuum), (t-Bu)₃P (Acros, stored in glove-box), NaBH₃CN (Acros), LiBH₄ (Acros, stored in glove-box), DABCO (Fluka, sublimed under vacuum and stored in glove-box). $Pd(dba)_2^{1}$ and $[(t-Bu)_3PH][BF_4]^2$ were prepared according to reported procedures. $[Cr(CO)_3(5,8-dibromonaphthalene)]$ (1), ³ $[Cr(5-bromonaphthalene)(CO)_3]$ ((S)-3), ⁴ $[Cr((5-phenyl)naphthalene)(CO)_3]$ ((S)-8a) ⁵ and phosphoramidite ligand L*⁶ were synthesised using our protocols. LiBH₄ solution in DME was prepared according to a literature procedure⁷ and titrated before use by injecting an aliquot into a hydrolyzing mixture of glycerine and water and measuring the hydrogen gas evolved.

2. Representative procedure for the asymmetric Suzuki-Miyaura coupling

A Schlenk containing $Pd(dba)_2$ (3.0 mg, 0.005 mmol, 5 mol%) and phosphoramidite ligand L* (4.4 mg, 0.006 mmol, 6 mol%) was purged by three successive vacuum/Ar sequences and refilled with Ar. Degassed toluene (3 mL) was added and the solution was stirred for 45 min at room temperature. Then, the solution was cooled to 10 °C and stirred for an additional 20 min before adding complex 1 (42.8 mg, 0.101 mmol, 1 eq.), boronic acid 6 (0.502 mmol, 5 eq.) and KF (21.7 mg, 0.369 mmol, 3.5 eq.). The reaction mixture was stirred at 10 °C for the amount of time indicated. The solution was filtered through silica gel under N₂ atmosphere, washed with toluene until no color remained and concentrated under vacuum The conversion was assessed by ¹H NMR spectroscopy and the enantioselectivity by HPLC.

Pure samples of compounds **4a-g** and **5a-g** were obtained after flash chromatography on silica gel (cyclohexane/toluene 3:1) or alternatively by preparative HPLC (Chiralcel OD, hexane:*i*PrOH 99:1; 3 mL.min⁻¹; $\lambda = 355$ nm).

Coupling with PhB(OH)₂ 6a:

4a: ¹H NMR (500 MHz, C₆D₆): δ 7.25-7.18 (m, 5H), 7.01 (d, J = 7.5 Hz, 1H), 6.43 (d, J = 7.5 Hz, 1H), 6.06 (d, J = 6.9 Hz, 1H), 5.48 (d, J = 6.9 Hz, 1H), 4.53 (t, J = 6.4 Hz, 1H), 4.48 (t, J = 6.4 Hz, 1H). ¹³C NMR (125 MHz, C₆D₆): δ 231.4, 140.5, 138.1, 130.9, 129.8, 128.6, 128.4, 122.9, 106.6, 103.4, 91.9, 91.7, 89.4, 87.8. IR (v_{max}/cm⁻¹): 1946, 1850, 1358, 1159, 849, 621. HRMS: m/z (EI) calcd. for C₁₉H₁₁BrCrO₃ [M]⁺: 417.9297, found: 417.9294. HPLC (Chiralcel OD-H; hexane:*i*PrOH 95:5; 1 mL.min⁻¹; $\lambda = 355$ nm): t_{R1} = 10.8 min, t_{R2} = 11.6 min.

5a: ¹H NMR (500 MHz, C₆D₆): δ 7.32-7.19 (m, 10H), 6.88 (s, 2H), 5.76 (dd, J = 5.2, 2.8 Hz, 2H), 4.55 (dd, J = 5.2, 2.8 Hz, 2H). ¹³C NMR (125 MHz, C₆D₆): δ 232.2, 140.6, 138.8, 130.6, 130.2, 130.0, 128.5, 105.3, 92.2, 89.2. IR (v_{max}/cm⁻¹): 1963, 1889, 1267, 751, 728. HRMS: m/z (EI) calcd. for C₂₅H₁₆CrO₃ [M]⁺: 416.0505, found: 416.0497. HPLC (Chiralcel OD-H; hexane:*i*PrOH 95:5; 1 mL.min⁻¹; $\lambda = 355$ nm): t_R = 9.5 min.

Coupling with *p*-MePhB(OH)₂ 6b:

4b: ¹H NMR (500 MHz, C₆D₆): δ 7.20-7.15 (m, 2H), 7.04 (br d, J = 7.5 Hz, 1H + 2H), 6.49 (d, J = 7.5 Hz, 1H), 6.08 (dd, J = 6.8, 1.2 Hz, 1H), 5.58 (dd, J = 6.8, 1.2 Hz, 1H), 4.55 (ddd, J = 6.8, 6.0, 1.2 Hz, 1H), 4.50 (ddd, J = 6.8, 6.0, 1.2 Hz, 1H), 2.16 (s, 3H). ¹³C NMR (125 MHz, C₆D₆): δ 231.5, 140.7, 138.2, 135.2, 131.0, 129.7, 129.6, 128.6, 122.7, 106.7, 104.0, 92.1, 92.1, 89.8, 88.3, 21.1. IR (v_{max} /cm⁻¹): 3108, 3023, 2921, 1944, 1885, 1844, 1468, 1360, 816, 662, 623, 511. HRMS: m/z (EI) calcd. for C₂₀H₁₃BrCrO₃ [M]⁺: 431.9453, found: 431.9450. HPLC (Chiralcel OD-H; hexane:*i*PrOH 95:5; 1 mL. min⁻¹; λ = 355 nm): t_{R1} = 8.5 min, t_{R2} = 9.4 min.

5b: ¹H NMR (500 MHz, C₆D₆): δ 7.40-7.10 (m, 4H), 7.09 (d, J = 8.0 Hz, 4H), 6.96 (s, 2H), 5.88 (dd, J = 5.2, 2.9 Hz, 2H), 4.61 (dd, J = 5.2, 2.9 Hz, 2H), 2.19 (s, 6H). ¹³C NMR (125 MHz, C₆D₆): δ 232.4, 140.6, 137.9, 136.0, 130.0, 128.4, 128.3, 105.6, 92.2, 89.4, 21.1. IR (v_{max}/cm⁻¹): 1962, 1887, 1265, 751, 705. HRMS: m/z (EI) calcd. for C₂₇H₂₀CrO₃ [M]⁺: 444.0818, found: 444.0812. HPLC (Chiralcel OD-H; hexane:*i*PrOH 95:5; 1 mL.min⁻¹; $\lambda = 355$ nm): t_R = 7.0 min.

Coupling with *p*-MeOPhB(OH)₂ 6c:

4c: ¹H NMR (500 MHz, C₆D₆): δ 7.21-7.17 (m, 2H), 7.05 (d, J = 7.5 Hz, 1H), 6.83 (d, J = 8.6 Hz, 2H), 6.50 (d, J = 7.5 Hz, 1H), 6.10 (d, J = 6.6 Hz, 1H), 5.60 (d, J = 6.6 Hz, 1H), 4.57 (t, J = 6.1 Hz, 1H), 4.53 (t, J = 6.1 Hz, 1H), 3.34 (s, 3H). ¹³C NMR (125 MHz, C₆D₆): δ 231.5, 160.2, 140.5, 131.0, 130.9, 128.6, 122.5, 114.5, 106.8, 104.0, 92.2, 92.1, 89.8, 88.3, 54.9. IR (ν_{max}/cm^{-1}): 1953, 1856, 1607, 1508, 1246, 1028, 828, 622. HRMS: m/z (EI) calcd. for C₂₀H₁₃BrCrO₄ [M]⁺: 447.9402, found: 447.9393. HPLC (Pirkle Covalent; hexane:*i*PrOH 95:5; 1 mL.min⁻¹; $\lambda = 355$ nm): t_{R1} = 8.9 min, t_{R2} = 9.9 min.

5c: ¹H NMR (500 MHz, C₆D₆): δ 7.40-7.27 (m, 4H), 6.99 (s, 2H), 6.88 (d, J = 8.7 Hz, 4H), 5.91 (dd, J = 5.2, 2.9 Hz, 2H), 4.95 (dd, J = 5.2, 2.9 Hz, 2H), 3.37 (s, 6H). ¹³C NMR (125 MHz, C₆D₆): δ 232.5, 160.1, 140.3, 131.2, 131.0, 128.4, 114.5, 105.8, 92.3, 89.5, 54.9. IR (ν_{max} /cm⁻¹): 1962, 1882, 1273, 1251, 759, 720. HRMS: *m/z* (EI) calcd. for

 $C_{27}H_{20}CrO_5 [M]^+$: 476.0716, found: 476.0712. HPLC (Pirkle Covalent; hexane:*i*PrOH 95:5; 1 mL.min⁻¹; $\lambda = 355$ nm): t_R = 13.1 min.

Coupling with *p*-CF₃PhB(OH)₂ 6d:

4d: ¹H NMR (500 MHz, C₆D₆): δ 7.37 (d, J = 8.1 Hz, 2H), 7.32-7-17 (m, 2H), 7.00 (d, J = 7.5 Hz, 1H), 6.25 (d, J = 7.5 Hz, 1H), 6.05 (dd, J = 6.6, 1.0 Hz, 1H), 5.14 (dd, J = 6.6, 1.0 Hz, 1H), 4.53 (2td, J = 5.9, 1.3 Hz, 2H). ¹³C NMR (125 MHz, C₆D₆): δ 231.1, 141.6, 138.6, 130.6, 130.5 (q, ² J_{C-F} = 32.4 Hz), 130.1, 128.7, 123.8, 125.9, 125.7 (q, ¹ J_{C-F} = 271.7 Hz), 106.0, 103.4, 92.3, 92.0, 89.7, 87.2. HRMS: m/z (EI) calcd. for C₂₀H₁₀F₃BrCrO₃ [M]⁺: 485.9170, found: 485.9165. HPLC (Chiralpak AD; hexane:*i*PrOH 99:1; 1 mL.min⁻¹; λ = 355 nm): t_{R1} = 12.3 min, t_{R2} = 14.1 min.

5d: ¹H NMR (500 MHz, C₆D₆): δ 7.43 (d, J = 8.1 Hz, 4H), 7.32-7.17 (m, 4H), 6.69 (s, 2H), 5.41 (dd, J = 5.2, 2.9 Hz, 2H), 4.59 (dd, J = 5.2, 2.9 Hz, 2H). ¹³C NMR (125 MHz, C₆D₆): δ 231.7, 142.0, 139.7, 130.6 (q, ²*J*_{C-*F*} = 32.4 Hz), 130.3, 128.1, 125.9 (br), 124.8 (q, ¹*J*_{C-*F*} = 271.7 Hz), 104.5, 92.3, 88.3. IR (v_{max}/cm⁻¹): 1966, 1893, 1324, 1220, 752, 710. HRMS: *m*/*z* (EI) calcd. for C₂₇H₁₄F₆CrO₃ [M]⁺: 552.0252, found: 552.0245. HPLC (Chiralpak AD; hexane:*i*PrOH 99:1; 1 mL.min⁻¹; λ = 355 nm): t_R = 10.3 min.

Coupling with (*cis*-propenyl)B(OH)₂ 6e:

4e: ¹H NMR (500 MHz, C₆D₆): δ 7.01 (d, J = 7.5 Hz, 1H), 6.42 (d, J = 7.5 Hz, 1H), 6.22 (d, J = 11.4 Hz, 1H), 6.02 (d, J = 6.7 Hz, 1H), 5.75 (dq, J = 11.4, 7.0 Hz, 1H), 5.42 (d, J = 6.5 Hz, 1H), 4.57 (2t, J = 6.5 Hz, 2H), 1.48 (dd, J = 7.0, 1.5 Hz, 3H). ¹³C NMR (125 MHz, C₆D₆): δ 231.4, 135.3, 131.2, 130.9, 128.0, 125.2, 121.8, 106.0, 104.4, 92.1, 91.8, 89.6, 87.1, 14.5. IR (v_{max} /cm⁻¹): 1945, 1850, 1345, 1238, 854, 660, 621, 508. HRMS: m/z (EI) calcd. for C₁₆H₁₁BrCrO₃ [M]⁺: 381.9297, found: 381.9294. HPLC (Chiralpak AS-H; gradient hexane:*i*PrOH from 99:1 to 90:10; 1 mL.min⁻¹; λ = 355 nm): t_{R1} = 14.4 min, t_{R2} = 15.8 min.

5e: ¹H NMR (500 MHz, C₆D₆): δ 6.86 (s, 2H), 6.44 (dd, J = 11.4, 1.1 Hz, 2H), 5.82 (dq, J = 11.4, 7.0 Hz, 2H), 5.67 (dd, J = 5.1, 2.9 Hz, 2H), 4.69 (dd, J = 5.2, 2.9 Hz, 2H), 1.59

(dd, J = 7.0, 1.4 Hz, 6H). ¹³C NMR (125 MHz, C₆D₆): δ 232.3, 134.4, 130.5, 127.7, 125.9, 105.2, 91.9, 88.1, 14.6. IR (ν_{max} /cm⁻¹): 1963, 1889, 502, 465. HRMS: m/z (EI) calcd. for C₁₉H₁₆CrO₃ [M]⁺: 344.0505, found: 344.0500. HPLC (Chiralpak AS-H; gradient hexane:*i*PrOH from 99:1 to 90:10; 1 mL.min⁻¹; $\lambda = 355$ nm): t_R = 10.8 min.

Coupling with (trans-cyclohexylvinyl)B(OH)₂ 6f:

4f: ¹H NMR (500 MHz, C₆D₆): δ 7.07 (d, J = 7.7 Hz, 1H), 6.59 (d, J = 7.7 Hz, 1H), 6.43 (d, J = 15.6 Hz, 1H), 6.06 (dd, J = 6.7, 1.0 Hz, 1H), 5.90 (dd, J = 15.6, 7.0 Hz, 1H), 5.55 (d, J = 6.5 Hz, 1H), 4.61 (2td, J = 6.3, 1.3 Hz, 2H), 2.08-1.98 (m, 1H), 1.80-1.65 (m, 4H), 1.27-1.22 (m, 2H), 1.17-1.08 (m, 4H). ¹³C NMR (125 MHz, C₆D₆): δ 231.5, 143.4, 137.5, 131.5, 125.2, 122.5, 121.4, 104.7, 104.4, 92.1, 91.8, 89.7, 86.4, 41.8, 32.9, 32.9, 26.3, 26.2, 26.2. IR (v_{max}/cm^{-1}): 2921, 2850, 1940, 1869, 1448, 960, 660, 624, 511. HRMS: m/z (EI) calcd. for C₂₁H₁₉BrCrO₃ [M]⁺: 449.9923, found: 449.9919. HPLC (Chiralcel OD-H; hexane:*i*PrOH 95:5; 1 mL.min⁻¹; λ = 355 nm): t_{R1} = 7.4 min, t_{R2} = 8.7 min.

5f: ¹H NMR (500 MHz, C₆D₆): δ 7.10 (s, 2H), 6.64 (d, J = 15.6 Hz, 2H), 6.05 (dd, J = 15.6, 7.0 Hz, 2H), 5.83 (dd, J = 4.9, 2.8 Hz, 2H), 4.78 (dd, J = 4.9, 2.8 Hz, 2H), 2.06-2.14 (m, 2H), 1.85-1.60 (m, 10H), 1.30-1.13 (m, 10H). ¹³C NMR (125 MHz, C₆D₆): δ 232.5, 142.4, 136.4, 125.5, 123.3, 104.1, 91.8, 87.5, 41.8, 33.1, 33.0, 26.4, 26.3, 26.3. IR (ν_{max}/cm^{-1}): 2920, 2849, 1952, 1868, 1446, 961, 621. HRMS: m/z (EI) calcd. for C₂₉H₃₂CrO₃ [M]⁺: 480.1757, found: 480.1754. HPLC (Chiralcel OD-H; hexane:*i*PrOH 95:5; 1 mL.min⁻¹; $\lambda = 355$ nm): t_R = 5.7 min.

Coupling with *n*-BuB(OH)₂ 6g:

4g: ¹H NMR (500 MHz, C₆D₆): δ 7.04 (d, J = 7.6 Hz, 1H), 6.29 (d, J = 7.6 Hz, 1H), 6.08 (dd, J = 6.5, 1.6 Hz, 1H), 5.33 (dd, J = 6.5, 1.6 Hz, 1H), 4.61 (2td, J = 6.5, 1.6 Hz, 2H), 2.50-2.34 (m, 2H), 1.39-1.28 (m, 2H), 1.24-1.15 (m, 2H), 0.85 (t, J = 7.3 Hz, 3H). ¹³C NMR (125 MHz, C₆D₆): δ 231.6, 139.8, 131.2, 127.0, 120.9, 106.0, 104.5, 92.0, 91.9, 90.1, 86.1, 32.1, 31.1, 22.8, 14.0. IR (ν_{max} /cm⁻¹): 2954, 2932, 2870, 1950, 1857, 1359, 1226, 835, 620, 501. HRMS: m/z (EI) calcd. for C₁₇H₁₅BrCrO₃ [M]⁺: 397.9610, found:

397.9610. HPLC (Chiralcel OD-H; gradient hexane:*i*PrOH from 99:1 to 90:10; 1 mL.min⁻¹; $\lambda = 355$ nm): t_{R1} = 13.6 min, t_{R2} = 15.5 min.

5g: ¹H NMR (500 MHz, C₆D₆): δ 6.75 (s, 2H), 5.64 (dd, J = 5.1, 2.9 Hz, 2H), 4.78 (dd, J = 5.1, 2.9 Hz, 2H), 2.70-2.62 (m, 2H), 2.59-2.51 (m, 2H), 1.55-1.41 (m, 4H), 1.33-1.22 (m, 4H), 0.88 (t, J = 7.3 Hz, 6H). ¹³C NMR (125 MHz, C₆D₆): δ 232.8, 137.7, 127.1, 105.6, 91.9, 87.7, 32.3, 31.5, 22.9, 14.1. IR (v_{max}/cm⁻¹): 2927, 2959, 2859, 1949, 1866, 1414, 1377, 844, 624, 511. HRMS: m/z (EI) calcd. for C₂₁H₂₄CrO₃ [M]⁺: 376.1131, found: 376.1123. HPLC (Chiralcel OD-H; gradient hexane:*i*PrOH from 99:1 to 90:10; 1 mL.min⁻¹; $\lambda = 355$ nm): t_R = 9.0 min.

3. Monitoring experiment

The asymmetric Suzuki-Miyaura coupling of complex 1 with $PhB(OH)_2$ (5a) was monitored by means of ¹H NMR and chiral HPLC.

Table S1 Monitoring experiment at +10 °C

	Br Cr(CO)-	PhB(Ol Pd(db (S, <i>R</i> , <i>R</i> KF Br	H) ₂ 6a (5 eq.) a) ₂ (5 mol%))-L* (6 mol%) (3.5 eq.) ne, 10 ℃, <i>t</i>	Br, Ph	Ph - cr(CO)	Ph
	1			(S) -4a	5a	
Entry	t/h	$\frac{1}{(\%)^a}$	4a (%) ^{<i>a</i>}	5a $(\%)^a$	$ee 4a$ $(\%)^b$	4a/5a ^a
1	0.5	74	23	3	87	88/12
2	1	50	42	8	87	83/17
3	2	34	53	12	89	81/19
4	4	10	62	28	91	69/31
5	8	2	54	44	95	55/45
6	24	2	35	63	99	36/64

^{*a*} Determined by ¹H NMR. ^{*b*} Determined by chiral HPLC.

4. Competition experiment

A competition experiment between $[Cr(CO)_3(5,8-dibromonaphthalene)]$ (1) and free 1,4dibromonaphthalene was carried out to assess the activation effect of the tricarbonylchromium fragment (Scheme S1). Under standard conditions, the major compound formed was **4a**. The rest of the mixture was composed of unreacted starting materials, bisphenylated complex **5a** and 1-bromo-4-phenylnaphthalene. This result showcases the strong influence of the tricarbonylchromium moiety. Whilst the latter is not directly bound to the dibrominated ring, the reactivity is greatly enhanced compared to the free ligand system.

Scheme S1

5. $[Pd(\eta^{3}-allyl)(1,2-\eta-Ph-L^{*}-\kappa P)][SbF_{6}](7)^{8}$

A CH₂Cl₂ solution (5 mL) of ligand (R,S,S)-L* (138.4 mg, 0.2 mmol) was added dropwise to CH₂Cl₂ solution (5 mL) of [Pd(allyl)Cl]₂ (36.1 mg, 0.1 mmol) over 10 min at room temperature upon stirring. The resulting solution was added to AgSbF₆ (68 mg, 0.2 mmol), and the resulting slurry was stirred for 2 h at room temperature. AgCl was filtered off, and the filter was rinsed with CH₂Cl₂. The resulting clear solution was evaporated, and the white solid was washed with a small amount of diethyl ether (2x10 mL) and pentane (2x10 mL). Evaporation of the solvent gave the product as a pale beige microcrystalline powder (192 mg, 89% yield). Crystals suitable for an X-ray analysis were grown by layering cyclohexane over a dichloromethane solution.

mp 208-210°C (decomp.). $[\alpha]_D = +249$ (c = 0.34 in CHCl₃, 20 °C). ¹H NMR (CD₂Cl₂, 500 MHz, -85 °C): δ 8.30 (d, J = 5.5 Hz, 1H), 8.18 (d, J = 10.0 Hz, 2H), 8.13 (d, J = 8.3 Hz, 2H), 8.07 (t, J = 9.0 Hz, 2H), 7.85 (d, J = 7.6 Hz, 2H), 7.82 (d, J = 7.5 Hz, 2H), 7.73-7.70 (m, 4H), 7.66 (d, J = 7.4 Hz, 2H), 7.63 – 7.45 (m, 22H), 7.38 – 7.30 (m, 18H), 7.15 (t, J = 6.8 Hz, 1H), 7.06 (t, J = 7.3 Hz, 1H), 7.02 (t, J = 7.4 Hz, 1H), 6.85 (t, J = 7.4 Hz, 1H)1H), 5.50 - 5.47 (m, 2H), 5.37 - 5.29 (m, 1H), 5.12 - 5.04 (m, 1H), 4.67 - 4.61 (m, 2H), 3.85 (dd, J = 14.7, 6.7 Hz, 1H), 3.77 (dd, J = 12.0, 6.2 Hz, 1H), 3.66 (t, J = 14.3 Hz, 1H),3.41 (d, J = 6.7 Hz, 1H), 3.31 - 3.25 (m, 2H), 3.17 (dq, J = 7.0, 1.5 Hz, 1H), 2.81 (br s, 1H), 2.81 (br s1H), 2.65 (t, J = 8.5 Hz, 1H), 2.39 (d, J = 12.0 Hz, 1H), 2.22 (t, J = 8.8 Hz, 1H), 2.08 (d, J = 11.8 Hz, 1H), 1.30 - 1.25 (m, 6H), 1.13 (s, 2H), 0.81 (br s, 3H), 0.73 (br s, 3H). ¹³C NMR (CD₂Cl₂, 125 MHz, -85 °C): δ 144.52 (d, J = 15.6 Hz), 143.63 (d, J = 5.0 Hz), 143.54 (d, J = 5.2 Hz), 138.87 (d, J = 2.0 Hz), 138.75 (d, J = 2.3 Hz), 135.73 (d, J = 2.0Hz), 135.69, 135.29, 134.48, 132.74 (d, J = 2.2 Hz), 132.46, 132.32 (d, J = 2.0 Hz), 132.12, 132.05 (d, J = 2.0 Hz), 131.95 (d, J = 6.0 Hz), 131.31 (d, J = 9.3 Hz), 131.11 (d, J = 7.0 Hz), 130.90, 129.99 (d, J = 20.8 Hz), 129.52, 128.68, 128.54, 128.34 (d, J = 9.7Hz), 128.15 (d, J = 4.9 Hz), 127.98 (d, J = 7.2 Hz), 127.54, 127.34 (d, J = 10.4 Hz), 126.64, 126.57, 126.52, 126.46, 126.08 (d, J = 19.4 Hz), 124.45 (d, J = 2.8 Hz), 124.31 (d, J = 2.7 Hz), 122.84 (d, J = 2.7 Hz), 122.72 (d, J = 2.7 Hz), 121.94 (d, J = 9.8 Hz),121.49 (d, J = 10.9 Hz), 111.42, 102.33, 99.14 (d, J = 41.2 Hz), 97.34 (d, J = 42.1 Hz), 55.31, 51.19 (d, J = 3.7 Hz), 50.99 (d, J = 5.7 Hz), 46.75, 22.45, 21.28 (d, J = 3.2 Hz), 20.99 (d, J = 4.3 Hz), 18.90 (d, J = 12.4 Hz), 8.52. ³¹P NMR (CD₂Cl₂, 202 MHz, 25 °C): δ 145.0 (s, 49%), 143.2 (s, 51%). IR (v_{max}/cm⁻¹): 3057, 2975, 1594, 1498, 1406, 1193, 1152, 1134, 1118, 1094, 1068, 1052, 1031, 960, 884, 858, 827, 766, 701, 653. HR-MS (ESI) for $C_{51}H_{43}NO_2PPd$ [M-SbF₆]⁺: calcd 838.2066, found 838.2051. Elemental analysis (%) calcd for C₅₁H₄₃NO₂F₆PPdSb (1075.04): C 56.98, H 4.03, N 1.30; found: C 56.24, H 3.91, N 1.23.

6. Spectroscopic and HPLC data

#	[min]	туре	[min]	[mAU*s]	[mAU]	%	
1	9.521	vv	0.3410	2210.98047	100.38602	33.3870	
2	10.848	VV	0.3518	151.45158	6.69742	2.2870	
3	11.686	VV	0.3903	3961.29565	157.05586	59.8177	
4	13.510	VV	0.4799	298.55249	9.46755	4.5083	

in]	[min]	[mAU*s]	[mAŬ]	8	
.088 MM	0.2368	303.18427	21.34003	2.7453	I
.868 MM	0.2477	6467.32520	435.12698	58.5619	
.864 MM	0.5364	580.76648	18.04633	5.2589	
.096 MM	0.3707	3692.29248	166.00282	33.4339	
	in] .088 MM .868 MM .864 MM .864 MM .096 MM	in] [min] .088 MM 0.2368 .868 MM 0.2477 .864 MM 0.5364 .096 MM 0.3707	in] [min] [mAU*s] .088 MM 0.2368 303.18427 .868 MM 0.2477 6467.32520 .864 MM 0.5364 580.76648 .096 MM 0.3707 3692.29248	in] [min] [mAU*s] [mAŬ] 	in] [min] [mAU*s] [mAŬ] %

Area Percent Report

Sort	ted By		:	Signal	
Mult	iplier			1.0000	
Dilu	ation		÷	1.0000	
Use	Multiplier	&	Dilution	Factor with	ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

Signal 2: DAD1 B, Sig=355,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.872	MM	0.3013	1667.68970	92.25213	33.3832
2	14.414	MM	0.3409	3105.21851	151.82996	62.1591
3	15.848	MM	0.3512	142.64473	6.76866	2.8554
4	19.366	MM	0.4265	80.04770	3.12813	1.6024

Area Percent Report

Sorted By		Signal	
Multiplier		1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

Signal 2: DAD1 B, Sig=355,16 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	5.743	ММ	0.3076	1235.51282	66.93975	28.3612
2	7.440	MM	0.2970	2629.98584	147.58998	60.3713
3	8.785	MM	0.4576	53.76768	1.95822	1.2342
4	14.119	MM	0.5000	437.08249	14.56855	10.0332

7. References

- ¹ (a) T. Ukai, H. Kawazura, Y. Ishii, J. J. Bonnet and J. A. Ibers, J. Organomet. Chem.,
- 1974, **65**, 253. (b) Y. Takahashi, T. Ito, S. Sakai and Y. Ishii, J. Chem. Soc., Chem. Commun., 1970, 1065.
- ² M. R. Netherton and G. C. Fu, *Org. Lett.*, 2001, **3**, 4295.
- ³ E. P. Kündig, P. D. Chaudhuri, D. House and G. Bernardinelli, *Angew. Chem. Int. Ed.*, 2006, **45**, 1092.
- ⁴ A. Mercier, X. Urbaneja, W. C. Yeo, P. D. Chaudhuri, G. R. Cumming, D. House, G. Bernardinelli and E. P. Kündig, *Chem. Eur. J.*, 2010, **16**, 6285.
- ⁵ G. R. Cumming, G. Bernardinelli and E. P. Kündig, *Chem. Asian J.*, 2006, 1, 459.
- ⁶ A. Mercier, W. C. Yeo, J. Y. Chou, P. D. Chaudhuri, G. Bernardinelli and E. P. Kundig, *Chem. Commun.*, 2009, 5227.
- ⁷ H. C. Brown and N. Ravindran, J. Am. Chem. Soc., 1976, **98**, 1785.
- ⁸I. S. Mikhel, H. Ruegger, P. Butti, F. Camponovo, D. Huber and A. Mezzetti, *Organometallics*, 2008, **27**, 2937.