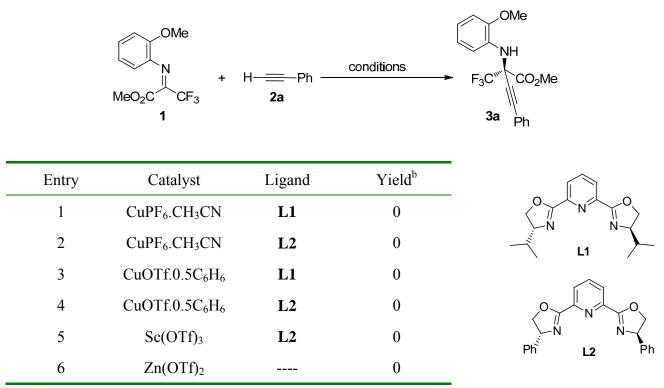
Supporting Information for

Highly Enantioselective Zn(BINOL)-Catalyzed Alkynylation of α-Ketoimine Ester: A New Entry to Optically Active Quaternary α-CF₃ α-Amino Acids

Gaochao Huang,^a Jie Yang,^b and Xingang Zhang^{*, a}


^aKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China, and ^bGraduate School of Southwest Petroleum University Southwest Petroleum University 8 Xindu Avenue, Chengdu 610065, China xgzhang@mail.sioc.ac.cn

List of Contents

1) Screens for addition of phenylacetylene $2a$ to α -ketoimine ester $1a$ with different transition	on metal
catalysts (Table S1)	S04
2) General procedure for addition of phenylacetylene $2a$ to α -ketoimine ester 1 with zinc/	BINOL
catalytic system (Table S2)	S04
3) SED Tests of 3a and 3h (Table S3 and S4)	S06
4) Preparation of α -ketoimine ester 1	S07
5) General procedure for enantioselective addition of terminal alkynes to α -ketoimine	ester 1
	S08
6) Data for compounds 3	S09
7) Gram-scale catalytic asymmetric synthesis of 3a and 3m	S17
8) Preparation of compound 6	S18
9) Preparation of compound 7	S20
10) Copies of ¹ H NMR, ¹⁹ F NMR and ¹³ C NMR spectra of 1	S22
11) Copies of ¹ H NMR, ¹⁹ F NMR, ¹³ C NMR, and HPLC analysis spectra of 3	S24
12) Copies of ¹ H NMR, ¹⁹ F NMR, ¹³ C NMR, and HPLC analysis spectra of 5 and 6	S68
13) Copies of ¹ H NMR, ¹⁹ F NMR, ¹³ C NMR, and HPLC analysis spectra of 7	S71

General information: ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AM300 and AM400 spectrometer. ¹⁹F NMR was recorded on a Bruker AM300 spectrometer (CFCl₃ as outside standard and low field is positive). Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. NMR yield was determined by ¹⁹F NMR using trifluorobenzene as an internal standard before working up the reaction.

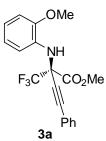
Materials: Me₂Zn (1.2 M in toluene) was purchased from Acros, all alkynes were from Aldrich, and methyl trifluoropyruvate was from Intechem, China. All reagents were weighed and handled in air, and refilled with an inert atmosphere of N₂ at room temperature. Toluene and hexane were distilled from sodium and benzophenone immediately before use. CH_2Cl_2 and $CHCl_3$ were distilled from CaH₂. The BINOL type ligands **4a**, ¹ **4c-g**, ¹ **4h-j**² were prepared according to literatures.

Table S1. Screens for Addition of Phenylacetylene **2a** to α -Ketoimine Ester **1** with Different Transition Metal Catalysts.^{*a*}

^{*a*}Reaction conditions: **1** (0.3 mmol), **2a** (0.6 mmol), catalyst (10 mol%), **L** (10 mol%) PMP-NH₂ (0.1 equiv) in CH₂Cl₂ at room temperature. ^{*b*}Part of **1** was decomposed and some uncertain products were observed. N.R., no reaction.

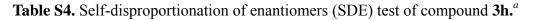
General Procedure for Addition of Phenylacetylene 2a to α -Ketoimine Ester 1 with Zinc/BINOL Catalytic System (Table S2). To a solution of Phenylacetylene 2a (1.7-3.3 equiv) in anhydrous solvent (1.2 mL) was added Me₂Zn (1.2-1.5 equiv, 1.2 M in toluene) under Ar at room temperature. After stirring for 1h, BINOL type ligand 4 (5-10 mol%) was added as a solid in one portion. The reaction mixture was stirred for 2.5 h at room temperature. α -CF₃ ketoimine ester 1 (0.3 mmol) was then added as an oil by a microliter syringe. The reaction mixture was stirred at the same temperature until the starting material was totally consumed, as confirmed by means of TLC. The reaction mixture was quenched with saturated NH₄Cl, and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic extract was dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified using chromatography on silica gel (Petroleum ether /Ethyl acetate = 100:1) to give product **3a**.

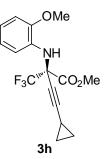
Table S2.	Addition	of	Phenylacetylene	2a	to	α -Ketoimine	Ester	1	with	Zn/BINOL	Catalytic
System ^a											


MeO ₂ C	OMe N + H—≡ CF ₃ 2 1	— Ph	$_{2}$ Zn, L* 4 \rightarrow F	OMe NH 3C ^w CO ₂ Me	(R)-I	Q ^{OH} 4h	Q = Ph Q = TMS
Entry	Me ₂ Zn (equiv)	2a (equiv)	L* 4 (x mol%)	Solvent	Time (h)	Yield $(\%)^b$	$ee(\%)^c$
1	1.5	2.4	4a , 10	toluene	8	78	87
2	1.5	2.7	4a , 10	toluene	8	80	88
3	1.5	3.3	4a , 10	toluene	8	77	87
4	1.3	2.1	4a , 10	toluene	8	89	88
5	1.2	2.0	4a , 10	toluene	8	90	85
6	1.2	2.0	4a , 10	CH_2Cl_2	8	76	87
7	1.2	2.0	4a , 10	CHCl ₃	12	84	62
8	1.2	2.0	4a , 10	Hexane	8	76	82
9	1.2	2.0	4h , 10	toluene	8	91	97
10	1.2	1.7	4h, 5	toluene	24	90	97.3

^{*a*}Recation conditions: **1** (0.3 mmol) in solvent (1.2 mL); ^{*b*}Isolated yield; ^{*c*} Determined by chiral HPLC analysis.

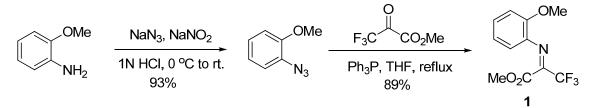
General Procedure for Self-Disproportionation of Enantiomers (SDE) Test of Compounds 3a and 3h. After the enantioselective addition of alkyne 2a or 2h to α -Ketoimine ester 1, the reaction mixture was worked up as mentioned in general procedure. The crude product 3a or 3h was run on silica gel chromatography to give 7 fractions that include all of the product. The 7 fractions were subsequently determined ee values by chiral HPLC analysis separately as shown in Table S3 and S4.


The SDE tests of **3a** and **3h** showed that **3a** has slight SDE effect, but no such effect for **3h**. However, the ee values obtained before and after column chromatography are similar, suggesting that the ee values obtained after purification are not influenced by the SDE effect of **3**.


 Table S3. Self-disproportionation of enantiomers (SDE) test of compound 3a.^a

Fraction	Mass / mg	Mass%	$\% ee^b$
A1	12.8	8.8	99.8
B2	18.9	13.1	97.2
C3	21.0	14.5	97.6
D4	23.7	16.4	97.7
E5	20.4	14.1	97.7
F6	15.0	10.4	97.9
G7	32.9	22.7	97.9
SUM (A1-G7)	144.7	100	97.9 ^c

^aSilica gel chromatography eluent: petroleum ether/ethyl acetate = 100/1. ^bDetermined by chiral HPLC analysis after column chromatography (AD-H, flow 0.7mL/min, Hexane/i-PrOH = 98:2, 214 nm, t_R = 7.783 min (major) and t_R = 10.077 min (minor)). 98.3% ee was obtained before column chromatography for compound **3a**. ^c average ee value based on calculation.



Fraction	Mass / mg	Mass%	$\% ee^b$
A1	2.0	2.2	98.71
B2	6.7	7.2	98.29
C3	7.7	8.3	98.09
D4	17.1	18.4	98.04
E5	25.1	27.1	98.40
F6	16.8	18.1	98.98
G7	17.3	18.7	98.42
SUM (A1-G7)	92.7	100	98.4 ^{<i>c</i>}

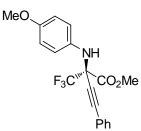
^{*a*}Silica gel chromatography eluent: petroleum ether/ethyl acetate = 200/1. ^{*b*}Determined by chiral HPLC analysis after column chromatography (PC-1, flow 0.7mL/min, Hexane/i-PrOH = 98:2, 214 nm, t_R = 7.485 min (major) and t_R = 8.052 min (minor)). 98.5% ee was obtained before column chromatography for compound **3h**. ^{*c*}Average ee value based on calculation.

Preparation of α-Ketoimine Ester 1.

Methyl 3,3,3-trifluoro-2-(2-methoxyphenylimino)propanoate (1).^{3, 4} To a solution of 2-methoxyaniline (3.3 mL, 30 mmol) in 1N HCl (30 mL) was added NaNO₂ (2.08 g, 30 mmol) at 0 $^{\circ}$ C. After stirring for 2 h at same temperature, the reaction mixture was warmed to room temperature. NaN₃ (2.34 g, 36 mmol) was added. The reaction mixture stirred until the starting

material was consumed. The reaction mixture was diluted with ethyl acetate, washed with brine. dried over Na₂SO₄, filtered, The organic layer was and concentrated to give 1-azido-2-methoxybenzene 4.185 g (93% yield) as a brown oil, which was used for next step. To a solution of 1-azido-2-methoxybenzene (4.18 g, 28 mmol) in THF was added dropwise of a solution of Ph₃P (7.31 g, 28 mmol) in THF (100 mL) at room temperature. The resulting mixture was then heated to reflux and stirred for 2 h. The reaction mixture was cooled to room temperature. Methyl trifluoropyruvate (1.87 mL, 16.7 mmol) was added. The reaction mixture was then heated to reflux and stirred until the starting material was consumed. The reaction was then cooled to room temperature and concentrated. The residue was extracted with petroleum ether several times. The combined organic layers were concentrated. The residue was purified with silica gel by flash chromatography (Petroleum ether /Ethyl Acetate = 80:1) to give 1 (3.90 g, 89% yield) as a brown oil. ¹H NMR (300 MHz, CDCl₃) δ 7.17 (td, J = 8.7, 2.4, 1H), 6.99-6.94 (m, 2H), 6.92-6.87 (m, 2H), 3.71 (s, 3H), 3.67 (s, 3H); 19 F NMR (282 MHz, CDCl₃) δ -69.6 (s, 3F). IR (thin film): v_{max} 2858, 1747, 1593 cm⁻¹. MS (EI): *m/z* (%) 261 (M⁺), 202 (100), 133, 77. HRMS: Calculated for C₁₁H₁₀NO₃F₃ (M⁺): 261.0613; Found: 261.0612.

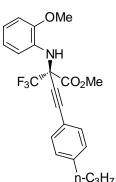
MeO Methyl 3,3,3-trifluoro-2-(4-methoxyphenylimino)propanoate (1').⁵ The preparation of 1' is same with 1. ¹H NMR (300 MHz, CDCl₃) δ 7.01 (d, J = 6.9, 2H), 6.90 (d, J = 6.9, 2H), 3.82 (s, 3H), 3.78 (s, 3H); ¹⁹F NMR (282 MHz, CDCl₃) δ -69.5 (s, 3F).


General Procedure for Enantioselective Addition of Terminal Alkynes to α -Ketoimine Esters 1. To a solution of terminal alkyne 2 (1.7 equiv) in anhydrous toluene (1.2 mL) was added Me₂Zn (300 μ L, 1.2 M in toluene) under Ar at room temperature. After stirring for 1h, BINOL type ligand **4h** (6.5 mg, 5 mol%) was added as a solid in one portion. The reaction mixture was stirred for 2.5 h at room temperature. α -Fluoroalkyl ketoimine ester 1 (0.3 mmol) was then added as an oil with a microliter syringe. The reaction mixture was stirred at the same temperature until the starting material was totally consumed, as confirmed by means of TLC. The reaction mixture was quenched with saturated NH₄Cl, and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic extract was dried over anhydrous sodium sulfate, and the solvent was removed in vacuo. The residue was purified using chromatography on silica gel to give product 3.

Note: For α -CF₃ α -amino acids **3**, two ee values were provided for each compound, which were determined before and after silica gel column chromatography.

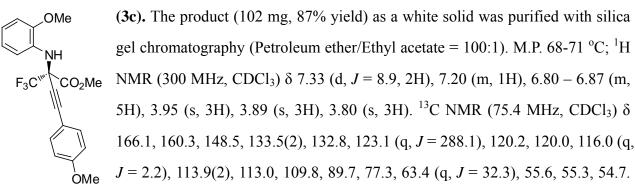
General Procedure for Synthesis of Racemic 3.

To a solution of terminal alkyne 2 (1.7 equiv) in anhydrous toluene (1.2 mL) was added Me₂Zn (300 μ L, 1.2 M in toluene) under Ar at room temperature. After stirring for 1h, racemic BINOL **4h** (6.5 mg, 5 mol%) was added as a solid in one portion. The reaction mixture was stirred for 2.5 h at room temperature. α -CF₃ ketoimine ester **1** (0.3 mmol) was then added as an oil by a microliter syringe. The reaction mixture was stirred at the same temperature until the starting material was totally consumed, as confirmed by means of TLC. The reaction mixture was quenched with saturated NH₄Cl, and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic extract was dried over anhydrous sodium sulfate, and the solvent was removed in vacuo. The residue was purified using chromatography on silica gel to give products **3**.

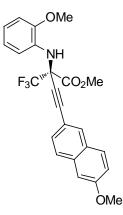

(R)-Methyl 2-(4-methoxyphenylamino)-4-phenyl-2-(trifluoromethyl)but-3-ynoate (3a'). 2.0

equiv of phenylacetylene was used. The product (98 mg, 90% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 100:1). ¹H NMR (300 MHz, CDCl₃) δ 7.39 – 7.23 (m, 5H), 7.06 (d, J = 9.0, 2H), 6.80 (d, J = 9.0, 2H), 3.94 (s, 3H), 3.77 (s, 3H). ¹³C NMR (75.4 MHz, CDCl₃) δ = 166.4, 155.5, 136.1, 131.9(2), 129.3,

128.3(2), 122.9(2), 122.8 (q, J = 287.1), 121.0, 113.9(2), 90.3, 78.6, 65.3 (q, J = 30.9), 55.4, 54.7.¹⁹F NMR (282 MHz, CDCl₃) δ -75.3 (s, 3F). IR (thin film): v_{max} 3354, 2241, 1755, 1574 cm⁻¹. LRMS (EI): *m/z* (%) 363 (M⁺), 304 (100), 234, 122. HRMS (EI) Calcd for C₁₉H₁₆F₃NO₃: 363.1082. Found: 363.1081. $\left[\alpha\right]^{27}_{D} = -21$ (c 0.55, CHCl₃) for a 95.7% ee sample. Enantiomeric purity was determined by chiral HPLC analysis (AD-H, flow 0.7mL/min, Hexane:i-PrOH=95:5, 214nm, $t_R =$ 11.627 min (major) and $t_R = 11.727$ min (minor)): 96.1% ee (before silica gel column chromatography), 95.7% ee (after silica gel column chromatography).

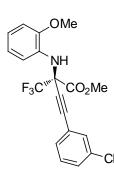

2-(2-methoxyphenylamino)-4-(4-propylphenyl)-2-(trifluoromethyl)but-3-ynoate (R)-Methyl

(3b). The product (112 mg, 92% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 100:1). ¹H NMR (300 MHz, CDCl₃) δ 7.31 (d, J = 8.2, 2H), 7.20 (t, J = 3.8, 1H), 7.11 (d, J = 8.2, 2H), 6.83 -6.87 (m, 3H), 3.95 (s, 3H), 3.89 (s, 3H), 2.56 (t, J = 7.2, 2H), 1.61 (m, 2H), 0.91 (t, J = 7.3, 3H); ¹³C NMR (75.4 MHz, CDCl₃) δ 166.0, 148.4, 144.4, 132.7, 131.8(2), 128.4(2), 123.0 (q, J = 288.2), 120.3, 120.0, 118.1, 115.9 (q, J= 2.0), 109.7, 89.9, 77.9, 63.3 (q, J = 32.2), 55.6, 54.7, 37.9, 24.3, 13.6; ¹⁹F NMR (282 MHz, CDCl₃)


δ -74.9 (s, 3F). IR (thin film): v_{max} 3372, 2237, 1759, 1603 cm⁻¹. LRMS (EI): *m/z* (%) 405 (M⁺), 346 (100), 336. HRMS (EI) Calcd for $C_{22}H_{22}F_{3}NO_{3}$: 405.1552. Found: 405.1549. $[\alpha]^{24}D = -1.8$ (c 1.5, CHCl₃) for a 97.5% ee sample. Enantiomeric purity was determined by chiral HPLC analysis (AD-H, flow 0.7mL/min, Hexane/i-PrOH = 95:5, 214 nm, $t_R = 6.73$ min (major) and $t_R = 9.23$ min(minor)).

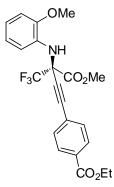
(R)-Methyl 4-(4-methoxyphenyl)-2-(2-methoxyphenylamino)-2-(trifluoromethyl)but-3-ynoate

¹⁹F NMR (282 MHz, CDCl₃) δ -74.9 (s, 3F). IR (thin film): v_{max} 3369, 2235, 1758, 1605, 1511 cm⁻¹. LRMS (EI): m/z (%) 393 (M⁺), 334 (100), 324. HRMS (EI) Calcd for C₂₀H₁₈F₃NO₄: 393.1188. Found: 393.1190. [α]²⁰_D = 0.6 (*c* 1.5, CHCl₃) for a 95.9% ee sample. Enantiomeric purity was determined by chiral HPLC analysis (AD-H, flow 0.7mL/min, Hexane/i-PrOH = 98:2, 214 nm, t_R = 11.477 min (major) and t_R = 18.827 min (minor)): 98.5% ee (before silica gel column chromatography), 95.9% ee (after silica gel column chromatography).

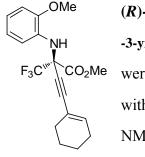

(R)-Methyl 4-(6-methoxynaphthalen-2-yl)-2-(2-methoxyphenylamino)-2-(trifluoromethyl)but-3-ynoate (3d).

The product (120 mg, 91% yield) as a white solid was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 50:1). M.P. 83-86 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.85 (s, 1H), 7.65 (t, *J* = 8.3, 2H), 7.37 (dd, *J* = 8.5, 1.3, 1H), 7.25 (m, 1H), 7.15 (dd, *J* = 9.0, 2.4, 1H), 7.08 (d, *J* = 1.9, 1H), 6.88 (m, 3H), 5.78 (br, 1H), 3.97 (s, 3H), 3.91 (s, 3H), 3.90 (s, 3H). ¹³C NMR (75.4 MHz, CDCl3) δ 166.0, 158.6, 148.5, 134.6, 132.7, 132.2, 129.4, 128.6, 128.0, 126.8, 123.1 (q, *J* = 288.4), 120.3, 120.1, 119.6, 116.0, 115.7,

110.0, 105.6, 90.2, 78.1, 63.4 (q, J = 32.0), 55.6, 55.3, 54.8. ¹⁹F NMR (282 MHz, CDCl₃) δ -74.8 (s, 3F). IR (thin film): v_{max} 3387, 2231, 1763, 1627, 1603 cm⁻¹. LRMS (EI): m/z (%) 443 (M⁺), 384 (100), 338. HRMS (EI) Calcd for C₂₄H₂₀F₃NO₄: 443.1344. Found: 443.1347. $[\alpha]^{24}_{D} = 13.2$ (c 2.20, CHCl₃) for a 95.8% ee sample. Enantiomeric purity was determined by chiral HPLC analysis (AD-H, flow 0.7 mL/min, Hexane/i-PrOH = 98:2, 214 nm, t_R = 15.177 min (major) and t_R = 22. 727min (minor)): 96.0% ee (before silica gel chromatography), 95.8% ee (after silica gel column chromatography).


(*R*)-Methyl 4-(3-chlorophenyl)-2-(2-methoxyphenylamino)-2-(trifluoromethyl)but-3-ynoate

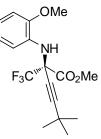
(3e). The product (108 mg, 90% yield) as a white solid was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 100:1). M.P. 27-29 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.37-7.32 (m, 2H), 7.28-7.22 (m, 2H), 7.14 (m, 1H), 6.89 – 6.84 (m, 3H), 3.96 (s, 3H), 3.89 (s, 3H). ¹³C NMR (75.4 MHz, CDCl₃) δ 165.6, 148.5, 134.1, 132.5, 131.7, 130.1, 129.7, 129.6, 122.9 (q, *J* = 288.1), 122.6, 120.4, 120.2, 115.9 (q, *J* = 1.9), 109.8, 88.1, 79.8, 63.4 (q, *J* =


31.7), 55.6, 54.8; ¹⁹F NMR (282 MHz, CDCl₃) δ -74.8 (s, 3F). IR (thin film): v_{max} 3360, 2240, 1759, 1602 cm⁻¹. LRMS (EI): m/z (%) 399 (M⁺), 397 (M⁺), 338 (100), 202. HRMS (EI) Calcd for C₁₉H₁₅ClF₃NO₃: 397.0693. Found: 397.0696. [α]²⁴_D = -3.3 (*c* 3.0, CHCl₃) for a 93.9% ee sample. Enantiomeric purity was determined by chiral HPLC analysis (AD-H, flow 0.7mL/min, Hexane/i-PrOH = 98:2, 214 nm, t_R = 7.127 min (major) and t_R = 7.877 min (minor)): 94.6% ee (before silica gel column chromatography), 93.9% ee (after silica gel column chromatography).

(R)-Ethyl 4-(4,4,4-trifluoro-3-(methoxycarbonyl)-3-(2-methoxyphenylamino)but-1-ynyl)benzoate (3f). The

product (121 mg, 93% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 100:1). ¹H NMR (300 MHz, CDCl₃) δ 7.98 (d, *J* = 8.3, 2H), 7.44 (d, *J* = 8.3, 2H), 7.15 (m, 1H), 6.89 – 6.84 (m, 3H), 5.76 (br, 1H), 4.37 (q, *J* = 7.1, 2H), 3.97 (s, 3H), 3.89 (s, 3H), 1.39 (t, *J* = 7.1, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 165.6, 148.6, 132.5, 131.8, 130.9, 129.3, 125.4, 122.9 (q, *J* = 288.0), 120.4, 120.2, 116.0 (q, *J* = 2.0), 109.9,

88.7, 81.3, 63.5 (q, J = 32.2), 61.2, 55.6, 54.8, 14.2. ¹⁹F NMR (282 MHz, CDCl₃) δ -74.7 (s, 3F). IR (thin film): v_{max} 3370, 2240, 1759, 1721, 1604 cm⁻¹. LRMS (EI): m/z (%) 435 (M⁺), 376 (100), 202. HRMS(EI) Calcd for C₂₀H₂₀F₃NO₅: 435.1294. Found: 435.1296. [α]²⁵_D = 7.1 (*c* 2.9, CHCl₃) for a 91.9% ee sample. Enantiomeric purity was determined by chiral HPLC analysis (AD-H, flow 0.7mL/min, Hexane/i-PrOH = 98:2, 214 nm, t_R = 13.627 min (major) and t_R = 20.617 min (minor)): 91.9% ee (before silica gel column chromatography), 91.9% ee (after silica gel column chromatography).


(**R**)-Methyl 4-cyclohexenyl-2-(2-methoxyphenylamino)-2-(trifluoromethyl)but -3-ynoate (3g). 2.5 equiv of 1-ethynylcyclohex-1-ene and 1.2 equiv of Me₂Zn were used. The product (101 mg, 91% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 200:1). ¹H NMR (300 MHz, CDCl₃) § 7.12 (m, 1H), 6.86 – 6.83 (m, 3H), 6.16 (m, 1H), 5.70 (br, 1H), 3.92 (s, 3H), 3.87 (s, 3H), 2.06 (m, 4H), 1.58 (m, 4H). ¹³C NMR $(75.4 \text{ MHz}, \text{CDCl}_3) \delta 166.1, 148.3, 137.8, 132.7, 123.0 (q, J = 288.2), 120.2, 119.8, 119.1, 115.9,$ 110.0, 91.4, 75.8, 63.2 (q, J = 32.0), 55.6, 54.6, 28.2, 25.6, 21.9, 21.2. ¹⁹F NMR (282 MHz, CDCl₃) δ -75.0 (s, 3F). IR (thin film): v_{max} 3373, 2226, 1757, 1603 cm⁻¹. LRMS (EI): m/z (%) 367 (M⁺), 308 (100), 298. HRMS (EI) Calcd for $C_{19}H_{20}F_3NO_3$: 367.1395. Found: 367.1390. $[\alpha]^{24}_D = -12.4$ (c 1.10, CHCl₃) for a 99.6% ee sample. Enantiomeric purity was determined by chiral HPLC analysis (OD-H, flow 0.4mL/min, Hexane/i-PrOH = 100:1, 254 nm, $t_R = 13.113$ min (major) and $t_R = 14.627$

column chromatography).

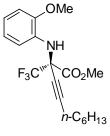
(**R**)-Methyl 4-cyclopropyl-2-(2-methoxyphenylamino)-2-(trifluoromethyl)but-3-ynoate OMe (3h). The product (89 mg, 91% yield) as a white solid was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 200:1). M.P. 55-57 °C; ¹H CO₂Me NMR (300 MHz, CDCl₃) δ 7.06 (t, J = 3.6 Hz, 1H), 6.85 – 6.81 (m, 3H), 5.61 (s, 1H), 3.90 (s, 3H), 3.86 (s, 3H), 1.26 (m, 1H), 0.83 - 0.73 (m, 2H), 0.72 - 0.58 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 166.2, 148.4, 132.8, 123.0 (q, J = 288.0), 120.1, 119.9, 116.0 (q, J = 1.9, 109.7, 94.1, 64.7, 62.8 (g, J = 32.2), 55.6, 54.6, 8.2(2), -0.6. ¹⁹F NMR (282 MHz, CDCl₃) δ -75.2 (s, 3F). IR (thin film): v_{max} 3367, 2247, 1756, 1603 cm⁻¹. LRMS (EI): *m/z* (%) 327 (M⁺), 268 (100), 258. HRMS (EI) Calcd for $C_{16}H_{16}F_3NO_3$: 327.1082. Found: 327.1087. $[\alpha]^{24}_{D} = -7.4$ (c 1.3, CHCl₃) for a 98.2% ee sample. Enantiomeric purity was determined by chiral HPLC analysis (PC-1, flow 0.7mL/min, Hexane/i-PrOH = 98:2, 214 nm, t_R = 7.727 min (major) and t_R = 8.477 min (minor)): 98.5% ee (before silica gel column chromatography), 98.2% ee (after silica gel column chromatography).

min (minor)): 99.5% ee (before silica gel column chromatography), 99.6% ee (after silica gel

(R)-Methyl 2-(2-methoxyphenylamino)-5,5-dimethyl-2-(trifluoromethyl)hex-3-ynoate (3i). To a

solution of 3,3-dimethylbut-1-yne (5.0 equiv) in anhydrous toluene (1.2 mL) in a sealed tube was added Me₂Zn (300 μ L, 1.2 M in toluene) under Ar at room temperature. After stirring for 12h, BINOL type ligand **4h** (6.5 mg, 5 mol%) was added as a solid in one portion. The reaction mixture was stirred for 2.5 h

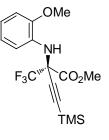
at room temperature. α-Trifluoromethyl ketoimine ester **1a** (0.3 mmol) was then added as an oil with a microliter syringe. The reaction mixture was stirred at the same temperature for 70h. The reaction mixture was quenched with saturated NH₄Cl, and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic extracts were dried over anhydrous sodium sulfate, and the solvent was removed in vacuo. The residue was purified using chromatography (Petroleum ether/Ethyl acetate = 200:1) on silica gel to give product **3i** 94 mg (91% yield) as a white solid. M.P. 51-52 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.14 (m, 1H), 6.87 – 6.76 (m, 3H), 3.91 (s, 3H), 3.87 (s, 3H), 1.17 (s, 9H). ¹³C NMR (75.4 MHz, CDCl₃) δ 166.4, 148.5, 132.8, 123.0 (q, *J* = 287.8), 120.0, 119.9, 116.4 (q, *J* = 2.0), 109.6, 99.0, 68.5, 62.8 (q, *J* = 32.3), 60.4, 55.6, 54.5, 30.1(3), 27.5. ¹⁹F NMR (282 MHz, CDCl₃) δ -75.4 (s, 3F). IR (thin film): v_{max} 3377, 2248, 1758, 1603 cm⁻¹. LRMS (EI): m/z (%) 343 (M⁺), 284 (100), 274. HRMS (EI) Calcd for C₁₇H₂₀F₃NO₃: 343.1395. Found: 343.1399. [α]²⁴_D = -20 (*c* 0.91, CHCl₃) for a 97.6% ee sample. Enantiomeric purity was determined by chiral HPLC analysis (IC, flow 0.7mL/min, Hexane/i-PrOH = 100:1, 214 nm, t_R = 8.660 min (minor) and t_R = 10.177 min (major)): 97.5% ee (before silica gel column chromatography), 97.6% ee (after silica gel column chromatography).


- (R)-Methyl 2-(2-methoxyphenylamino)-6-phenyl-2-(trifluoromethyl)hex-3-ynoate (3j). 2.5
- OMe NH F₃C^W CO₂Me

equiv of but-3-ynylbenzene and 1.2 equiv of Me₂Zn were used. The product (101 mg, 86% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 100:1). ¹H NMR (300 MHz, CDCl₃) δ 7.30 – 7.20 (m, 3H), 7.14 (d, *J* = 7.8, 2H), 6.98 (d, *J* = 7.5, 1H), 6.86 – 6.76 (m, 3H), 3.87 (s, 3H), 3.86 (s, 3H), 2.78 (m, 2H), 2.50 (td, *J* = 7.2, 3.0, 2H). ¹³C NMR (75.4 MHz, CDCl₃) δ 166.1, 148.3, 140.0, 132.7, 128.4(2), 128.3(2), 126.3, 123.0 (q, *J* = 288.0), 120.21, 119.8, 115.7 (q, *J* = 1.7), 109.7, 90.3, 70.7, 62.8 (q,

J = 32.3), 55.6, 54.5, 34.0, 20.9. ¹⁹F NMR (282 MHz, CDCl₃) δ -75.0 (s, 3F). IR (thin film): v_{max}

3374, 2250, 1756, 1603 cm⁻¹. LRMS (EI): m/z (%) 391 (M⁺), 332 (100), 91. HRMS (EI) Calcd for C₂₁H₂₀F₃NO₃: 391.1395. Found: 391.1398. $[\alpha]^{24}{}_{D} = -6.3$ (*c* 4.0, CHCl₃) for a 95.6% ee sample. Enantiomeric purity was determined by chiral HPLC analysis (PC-1, flow 0.7 mL/min, Hexane/i-PrOH = 98:2, 214 nm, t_R = 11.577 min (minor) and t_R = 12.777 min (major)): 95.1% ee (before silica gel column chromatography), 95.6% ee (after silica gel column chromatography).

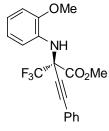

(R)-Methyl 2-(2-methoxyphenylamino)-2-(trifluoromethyl)dec-3-ynoate (3k). To a solution of

oct-1-yne (2.5 equiv) in anhydrous toluene (1.2 mL) was added Me₂Zn (300 μ L, 1.2 M in toluene) under Ar at room temperature. The reaction mixture was heated to 100 °C for 2h and cooled to room temperature. BINOL type ligand **4h** (6.5 mg, 5 mol%) was then added as a solid in one portion. The reaction

mixture was stirred for 2.5 h at room temperature. α -Trifluoromethyl ketoimine ester 1a (0.3 mmol) was then added as an oil with a microliter syringe. The reaction mixture was stirred at the same temperature for 48h. The reaction mixture was quenched with saturated NH₄Cl, and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic extracts were dried over anhydrous sodium sulfate, and the solvent was removed in vacuo. The residue was purified using chromatography on silica gel (Petroleum ether/Ethyl acetate = 200:1) to give product 3k 106 mg (95% yield) as a white solid. M.P. 22-23 °C; ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 7.10 \text{ (m, 1H)}, 6.83-6.81 \text{ (m, 3H)}, 3.90 \text{ (s, 3H)}, 3.87 \text{ (s, 3H)}, 2.22 \text{ (t, } J = 6.9, 100 \text{ (m, 1H)})$ 2H), 1.47 (m, 2H), 1.32–1.21 (m, 6H), 0.87 (t, J = 6.7, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 166.3, 148.3, 132.8, 123.1 (q, J = 287.9), 120.2, 119.8, 115.8 (q, J = 2.2), 109.7, 91.3, 69.9, 62.8 (q, J = 2.2) 32.0), 55.6, 54.5, 31.2, 28.3, 27.7, 22.5, 18.7, 14.0. ¹⁹F NMR (282 MHz, CDCl₃) δ -75.2 (s, 3F). IR (thin film): v_{max} 3376, 2249, 1758, 1603 cm⁻¹. LRMS (EI): *m/z* (%) 371 (M⁺), 312(100), 302. HRMS (EI) Calcd for C₁₉H₂₄F₃NO₃: 371.1708. Found: 371.1703. $[\alpha]^{24}_{D} = -4.7$ (*c* 2.3, CHCl₃) for a 95.9% ee sample. Enantiomeric purity was determined by chiral HPLC analysis (Sino-OJ, flow 0.7mL/min, Hexane/i-PrOH = 98:2, 214 nm, $t_R = 7.447 min (minor)$ and $t_R = 8.877 min (major)$): 96.2% ee (before silica gel column chromatography), 95.9% ee (after silica gel column chromatography).

(R)-Methyl 2-(2-methoxyphenylamino)-2-(trifluoromethyl)-4-(trimethylsilyl)but-3-ynoate (3l).

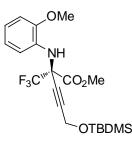
To a solution of ethynyltrimethylsilane (5.0 equiv) in anhydrous toluene (1.2 mL) in a sealed tube was added Me₂Zn (300 μ L, 1.2 M in toluene) under Ar at room temperature. After stirring for 12h, BINOL type ligand **4h** (6.5 mg, 5 mol%) was added as a solid in one portion. The reaction mixture was stirred for 2.5 h at room temperature. α -Trifluoromethyl ketoimine ester **1a** (0.3


mmol) was then added as an oil with a microliter syringe. The reaction mixture was stirred at the same temperature for 48h. The reaction mixture was diluted with EtOAc (100mL) and washed quickly with 20mL 0.1wt% H₂SO₄. The aqueous layer was extracted with EtOAc. The combined organic extracts were dried over anhydrous sodium sulfate, and the solvent was removed in vacuo. The residue was purified using chromatography on silica gel (Petroleum ether/Ethyl acetate = 200:1) to give product **3l** 91 mg (84% yield) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.11 (m, 1H), 6.84 – 6.81 (m, 3H), 3.92 (s, 3H), 3.87 (s, 3H), 0.14 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 165.7, 148.4, 132.6, 122.8 (q, *J* = 288.0), 120.1(2), 116.3 (q, *J* = 1.7), 109.7, 96.5, 93.5, 63.2 (q, *J* = 32.2), 55.6, 54.7, -0.8 (3). ¹⁹F NMR (282 MHz, CDCl₃) δ -74.9 (s, 3F). IR (thin film): v_{max} 3376, 2178, 1760, 1603 cm⁻¹. LRMS (EI): *m*/*z* (%) 359 (M⁺), 300 (100), 73. HRMS (EI) Calcd for C₁₆H₂₀F₃NO₃Si: 359.1165. Found: 359.1166. [α]²⁷_D = -25.0 (*c* 2.05, CHCl₃) for a 97.7% ee sample. Enantiomeric purity was determined by chiral HPLC Enantiomeric purity was determined by chiral HPLC Enantiomeric purity was determined by chiral HPLC analysis (Sino-OJ, flow 0.7mL/min, Hexane/i-PrOH = 98:2, 214 nm, t_R = 6.437 min (minor) and t_R = 7.777 min (major)).

(*R*)-Methyl 5-(tert-butyldimethylsilyloxy)-2-(2-methoxyphenylamino)-2-(trifluoromethyl)pent-3-ynoate (3m). To a solution of tert-butyldimethyl(prop-2-ynyloxy)silane (2.5 equiv) in anhydrous toluene (1.2 mL) was added Me₂Zn (300 μ L, 1.2 M in toluene) under Ar at room temperature. The reaction mixture was heated to 100 °C for 2h and cooled to room temperature. Then BINOL type ligand **4h** (6.5 mg, 5 mol%) was added as a solid in one portion. The reaction mixture was

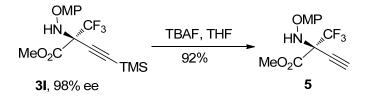
stirred for 2.5 h at room temperature. α -Trifluoromethyl ketoimine ester **1a** (0.3 mmol) was then added as an oil with a microliter syringe. The reaction mixture was stirred at the same temperature for 48h.The reaction mixture was quenched with saturated NH₄Cl, and diluted with EtOAc. The

aqueous layer was extracted with EtOAc. The combined organic extracts were dried over anhydrous sodium sulfate, and the solvent was removed in vacuo. The residue was purified using chromatography on silica gel (Petroleum ether/Ethyl acetate = 100:1) to give product **3m** 121 mg, (93% yield) as a white solid. M.P. 86-89 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.05 (m, 1H), 6.83 (m, 3H), 4.34 (s, 2H), 3.90 (s, 3H), 3.87 (s, 3H), 0.88 (s, 9H), 0.07 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 165.7, 148.2, 132.6, 122.8 (q, *J* = 288.1), 120.3, 120.0, 115.4 (q, *J* = 2.1), 109.8, 88.4, 74.3, 62.8 (q, *J* = 32.0), 55.6, 54.6, 51.5, 25.6(3), 18.1, -5.45(2). ¹⁹F NMR (282 MHz, CDCl₃) δ -74.8 (s, 3F). IR (thin film): v_{max} 3376, 2180, 1760, 1604 cm⁻¹. LRMS (EI): *m/z* (%) 431 (M⁺), 372 (100), 218, 73. HRMS (EI) Calcd for C₂₀H₂₈F₃NO₄Si: 431.1740. Found: 431.1744. [α]²⁴_D = -8.5 (*c* 1.8, CHCl₃) for a 94.7% ee sample. Enantiomeric purity was determined by chiral HPLC analysis (Sino-OJ, flow 0.7 mL/min, Hexane/i-PrOH = 98:2, 214 nm, t_R = 6.018 min (minor) and t_R = 8.318 min (major)).

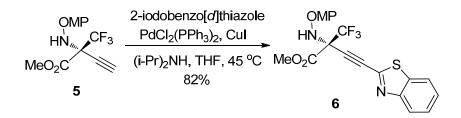

Gram-scale catalytic asymmetric synthesis of 3a and 3m

(*R*)-Methyl 2-(2-methoxyphenylamino)-4-phenyl-2-(trifluoromethyl)but
-3-ynoate (3a). To a solution of phenylacetylene (0.84 mL, 7.65 mmol, 1.7 equiv) in anhydrous toluene (18 mL) was added Me₂Zn (4.5 mL, 5.4 mmol, 1.2 M in toluene) under Ar at room temperature. After stirring for 1h, BINOL type ligand

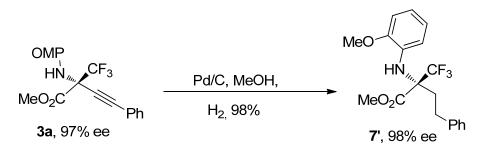
4h (97.5 mg, 5 mol%) was added as a solid in one portion. The reaction mixture was stirred for 2.5 h at room temperature. α -Trifluoromethyl ketoimine ester **1a** (1.18 g, 4.5 mmol) was then added as an oil with a microliter syringe. The reaction mixture was stirred at room temperature for 48h. The reaction mixture was quenched with saturated NH₄Cl, and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic extract was dried over anhydrous sodium sulfate, and the solvent was removed in *vacuo*. The residue was purified using chromatography on silica gel (Petroleum ether/Ethyl acetate = 100:1) to give product **3**a (1.50g, 92% yield, 97% ee) as a colorless oil. Enantiomeric purity was determined by chiral HPLC analysis (AD-H, flow 0.7mL/min, Hexane/i-PrOH = 98:2, 214 nm, t_R = 7.127 min (major) and t_R = 8.877 min (minor)): 97% ee (after silica gel chromatography).


(*R*)-Ethyl 5-(*tert*-butyldimethylsilyloxy)-2-(2-methoxyphenylamino)-2-(trifluoromethyl)pent-3-ynoate (3m).

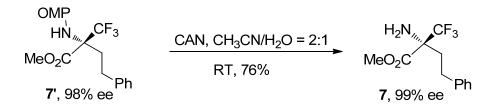
To a solution of tert-butyldimethyl(prop-2-ynyloxy)silane (2.0 mL, 9.575 mmol, 2.5 equiv) in anhydrous toluene (15 mL) was added Me₂Zn (3.83 mL, 4.6 mmol, 1.2 M in toluene) under Ar at room temperature. The reaction mixture was heated to 100 °C for 2 h and cooled to room temperature. Then BINOL type ligand **4h** (83 mg, 5 mol%) was added as a solid in one portion.


The reaction mixture was stirred for 2.5 h at room temperature. α -Trifluoromethyl ketoimine ester **1a** (1.0 g, 3.83 mmol) was then added as an oil with a microliter syringe. The reaction mixture was stirred at the same temperature for 48h. The reaction mixture was quenched with saturated NH₄Cl, and diluted with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic extract was dried over anhydrous sodium sulfate, and the solvent was removed in *vacuo*. The residue was purified using chromatography on silica gel (Petroleum ether/Ethyl acetate = 100:1) to give product **3m** (1.54 g, 93% yield, 96% ee) as a colorless oil. Enantiomeric purity was determined by chiral HPLC analysis (Sino-OJ, flow 0.7 mL/min, Hexane/i-PrOH = 98:2, 214 nm, t_R = 6.52 min (minor) and t_R = 9.76 min (major)): 96% ee (after silica gel chromatography).

Synthesis of compound 6.

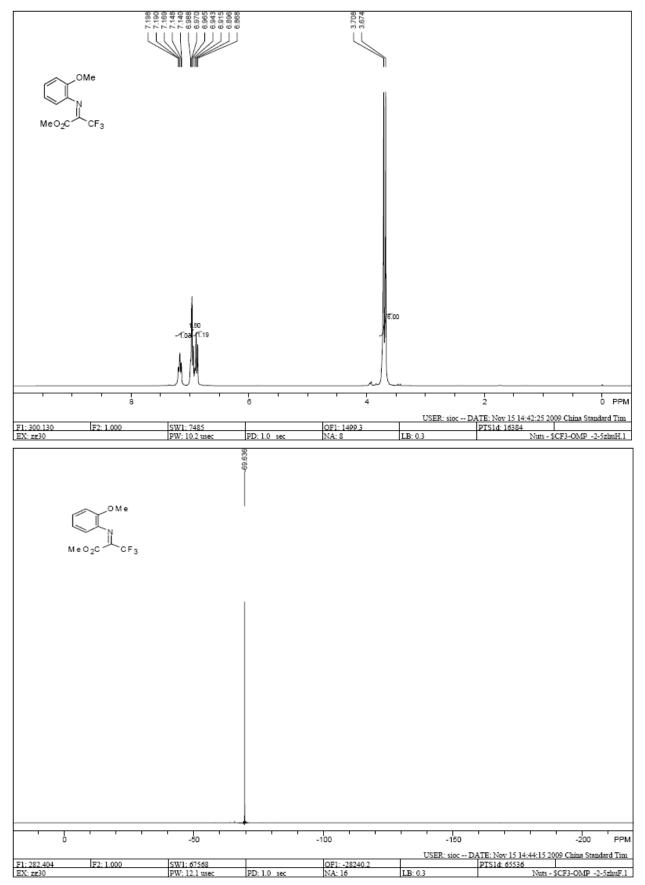


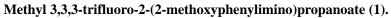
(*R*)-methyl 2-((2-methoxyphenyl)amino)-2-(trifluoromethyl)but-3-ynoate (5). To a solution of 3l (650 mg, 1.8 mmol) in THF was added TBAF (1.0 M in THF, 2.2 mL, 2.2 mmol) immediately at 0 °C. After stirring for 1 min, the reaction mixture was quenched with saturated aqueous NH₄Cl. The reaction mixture was extracted with ethyl acetate, washed with brine, dried over anhydrous sodium sulfate, and the solvent was removed in vacuo. The residue was purified using chromatography on silica gel (Petroleum ether/Ethyl acetate = 100:1) to give alkyne 5 in 92% yield (475 mg) as an oil. ¹H NMR (300 MHz, CDCl₃) δ 7.06 (m, 1H), 6.85 (m, 3H), 5.62 (s, 1H), 3.93 (s, 3H), 3.88 (s, 3H), 2.69 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 165.3, 148.4, 132.4, 122.7 (q, *J* =


286.3), 120.3, 115.5, 109.9, 78.3, 73.4, 62.8 (q, J = 25.9), 55.6, 54.8. ¹⁹F NMR (282 MHz, CDCl₃) δ -74.2 (s, 3F). IR (thin film): v_{max} 3382, 3283, 2127, 1760 cm⁻¹. LRMS (EI): m/z (%) 287 (M⁺), 228 (100), 144. HRMS (EI) Calcd for C₁₃H₁₂F₃NO₃: 287.0769. Found: 287.0770. [α]²⁵_D = -9.1 (c 3.2, CHCl₃).

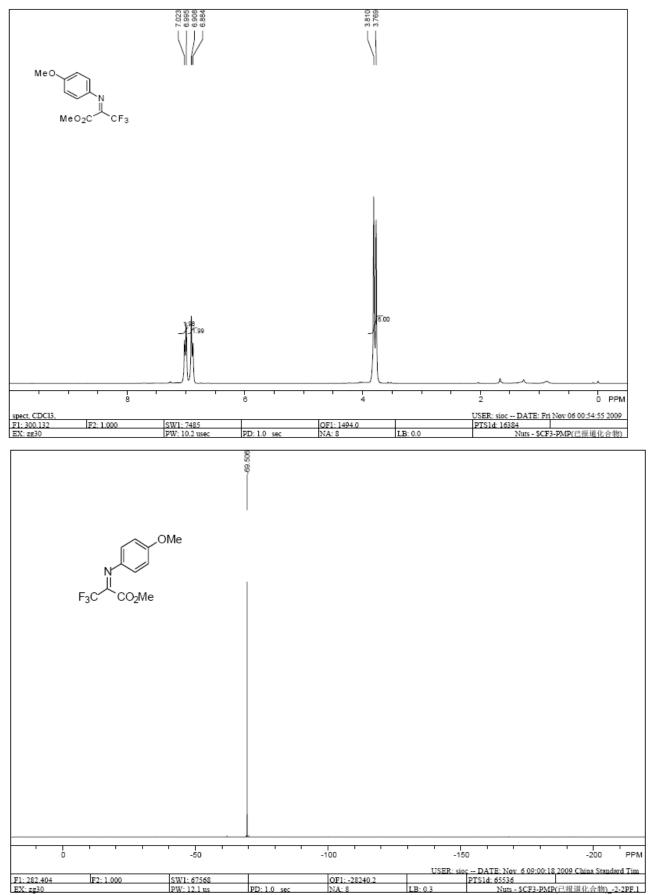
(*R*)-methyl 4-(benzo[*d*]thiazol-2-yl)-2-((2-methoxyphenyl)amino)-2-(trifluoromethyl)but-3 -ynoate (6). To a mixture of 5 (178 mg, 0.62 mmol) and 2-iodobenzo[*d*]thiazole (162 mg, 0.62 mmol) in THF (2 mL) was added (i-Pr)₂NH (2 mL), followed by PdCl₂(PPh₃)₂ (19 mg, 0.03 mmol) and CuI (2.4 mg, 0.012 mmol) at room temperature under N₂. The reaction mixture was heated to 45 °C and stirred for 5 h. The reaction mixture was cooled to room temperature and water was added. The reaction mixture was extracted with EtOAc, dried over Na₂SO₄, and concentrated. The residue was purified using chromatography on silica gel (Petroleum ether/Ethyl acetate = 30:1) to give alkyne **6** in 82% yield (214 mg) as a yellow solid. The solid was recrystallized with Petroleum ether/Ethyl acetate to give a white solid. M.P. 77-79 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.08 (d, J = 7.8 Hz, 1H), 7.86 (d, J = 8.1 Hz, 1H), 7.50 (m, 2H), 7.14 (m, 1H), 6.88 (m, 3H), 5.79 (br, 1H), 4.00 (s, 3H), 3.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 152.5, 148.6, 146.3, 135.3, 132.2, 126.9, 126.8, 123.9, 122.6 (q, *J* = 289.3), 121.3, 120.7, 120.5, 115.8 (q, *J* = 2.0), 109.9, 85.3, 82.5, 63.6 (q, *J* = 31.9), 55.6, 55.1.¹⁹F NMR (282 MHz, CDCl₃) δ -74.1 (s, 3F). IR (thin film): v_{max} 3356, 1764, 1601 cm⁻¹. LRMS (EI): *m*/*z* (%) 420 (M⁺), 361 (100), 362, 77. HRMS (EI) Calcd for C₂₀H₁₅F₃N₂O₃S: 420.0755. Found: 420.0758. [α]²⁶D = 18 (*c* 2.0, CHCl₃).

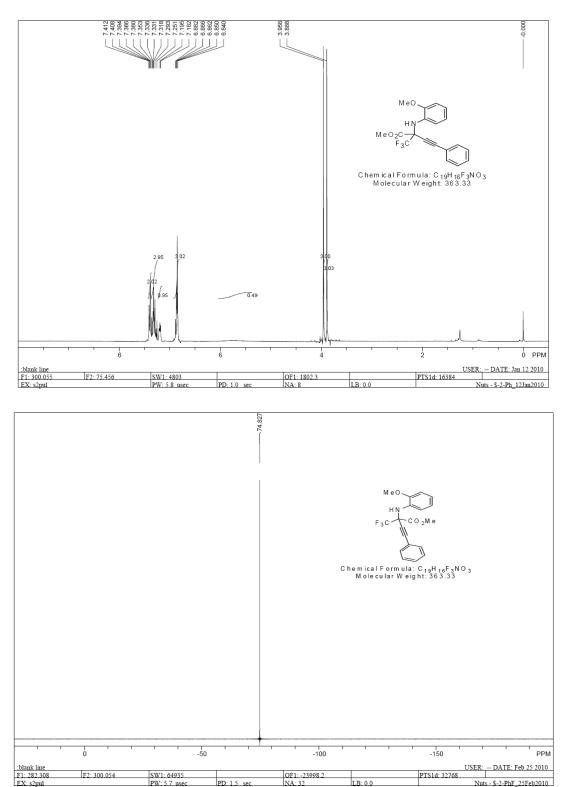
(*R*)-Methyl 2-(2-methoxyphenylamino)-4-phenyl-2-(trifluoromethyl)butanoate (7'). To a solution of **3a** (210 mg, 0.578 mmol) in MeOH (30 mL) was added Pd/C 10% (40 mg). The reaction mixture was stirred under H₂ (1 atm) for 24 h. The reaction mixture was filtered through a silica gel pad, washed with CH₂Cl₂, and filtrate was concentrated. The residue was purified using chromatography on silica gel (Petroleum ether/Ethyl acetate = 100:1) to give hydrogenated product (209 mg, 98%) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.25 – 7.12 (m, 3H), 6.92 – 6.84 (m, 6H), 3.91 (s, 3H), 3.85 (s, 3H), 2.75 – 2.64 (m, 1H), 2.55 – 2.23 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 148.6, 140.1, 133.2, 128.4, 128.3, 126.2, 124.8 (q, *J* = 289.3), 120.7, 119.7, 115.3 (q, *J* = 3.7), 110.1, 67.5 (q, *J* = 28.0), 55.8, 53.7, 31.1, 29.3. ¹⁹F NMR (282 MHz, CDCl₃) δ -73.3 (s, 3F). IR (thin film): v_{max} 3371, 1750, 1603 cm⁻¹. LRMS (EI): *m/z* (%) 367 (M⁺), 91 (100), 308. HRMS (EI) Calcd for C₁₉H₂₀F₃NO₃: 367.1395. Found: 367.1392. [α]²⁹_D = 62 (*c* 0.50, CHCl₃) for a 98% ee sample. Enantiomeric purity was determined by chiral HPLC analysis (Sino-AD, flow 0.5 mL/min, Hexane/*i*PrOH = 98:2, 214 nm, t_R = 9.127 min (minor) and t_R = 10.477 min (major)).


(*R*)-Methyl 2-amino-4-phenyl-2-(trifluoromethyl)butanoate (7). To a solution of Cerium(IV) Ammonium Nitrate (CAN, 396mg, 5.0 eqiv) in MeCN / H₂O (6 mL, 1:1) at 0 °C was added a solution of 5' (53 mg, 0.144 mmol, 1equiv, 98% ee) in MeCN (3 mL). The reaction mixture was stirred at 0 °C for 1h and quenched with saturated aqueous NaHSO₃ (1 mL). The reaction mixture was extracted with EtOAc. The combined organic extract was washed with brine, dried over anhydrous sodium sulfate, and the solvent was removed in *vacuo*. The residue was purified using chromatography on Al₂O₃ (100% CH₂Cl₂) to give product 7 (29 mg, 76% yield) as a brown oil. ¹H


NMR (300 MHz, CDCl₃) δ 7.33 – 7.26 (m, 2H), 7.24 – 7.16 (m, 3H), 3.80 (s, 3H), 2.85 – 2.79 (m, 1H), 2.57 – 2.34 (m, 2H), 1.99 (m, 1H), 1.90 (br, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 168.9, 140.2, 128.4 (2), 128.3 (2), 126.2, 124.8 (q, J = 284.9), 64.6 (q, J = 27.1), 53.3, 34.4, 29.4. ¹⁹F NMR (282 MHz, CDCl₃) δ -78.3 (s, 3F). IR (thin film): v_{max} 3420, 3344, 1748, 1604 cm⁻¹. LRMS (EI): m/z (%) 261 (M⁺), 91 (100), 202. HRMS (EI) Calcd for C₁₂H₁₄F₃NO₂: 261.0977. Found: 261.0978. [α]²⁹_D = -26.5 (c 0.493, CHCl₃). Enantiomeric purity was determined by chiral HPLC analysis (PC-2, flow 0.7 mL/min, Hexane/*i*PrOH = 50:50, 214 nm, t_R = 5.402 min (minor) and t_R = 6.238 min (major)).

References


- 1) Wu, T. R.; Shen, L.; Chong, J. M. Org. Lett. 2004, 6, 2701-2704.
- 2) Maruoka, K.; Yamamoto, H. Bull. Chem. Soc. Jpn. 1988, 61, 2975-2976.
- 3) Pagliai, F.; Pirali, T.; Grosso, E. D.; Brisco, R. D.; Tron, G. C.; Sorba, G.; Genazzani, A. A. J. *Med. Chem.* **2006**, *49*, 467-470.
- 4) Hemming, K.; Bevan, M. J.; Loukou, C.; Patel, S. D.; Renaudeau, D. Synlett 2000, 1565-1568
- 5) a) Watanabe, H.; Hashizume, Y.; Uneyama, K. Tetrahedron Lett. 1992, 33, 4333-4336; b) Abe, H.;

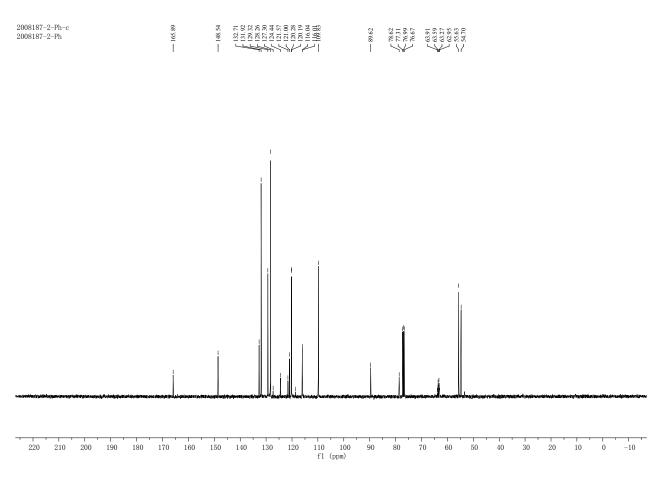

Amii, H.; Uneyama, K. Org. Lett. 2001, 3, 313-315.

(R)-Methyl 2-(2-methoxyphenylamino)-4-phenyl-2-(trifluoromethyl)but-3-ynoate (3a).

OF1: -23998.2 NA: 32

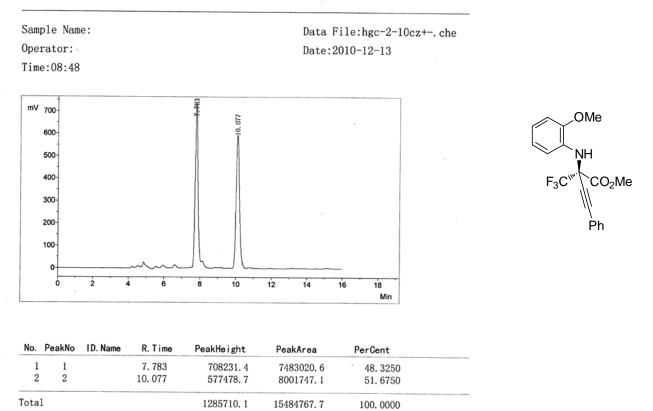
LB:00

PTS1d: 32768

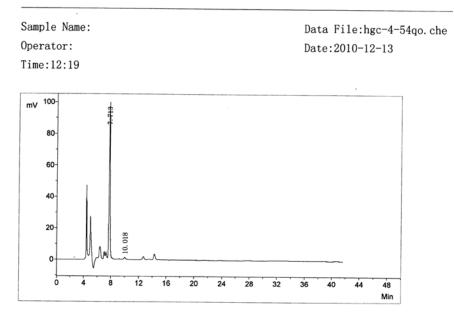

Nuts - \$-2-PhF 25Feb2010

F2: 300.054

SW1: 64935


PW: 5.7 used

PD:15 sec

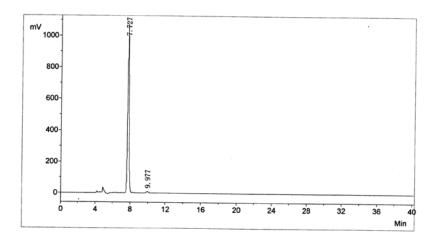


Chiral HPLC Analysis of 3a

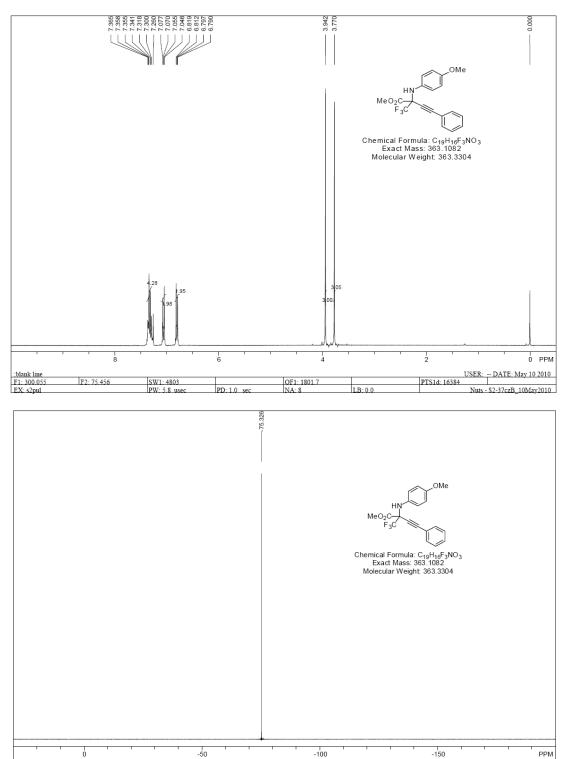
HPLC Report

HPLC Report

No. F	PeakNo	ID. Name	R.Time	PeakHeight	PeakArea	PerCent	
1	1		7.713	82537.2	1035689.0	99. 1575	
2	2		10.018	769.1	8799.9	0.8425	
Total				83306.3	1044488.9	100.0000	before


before column chramatography

HPLC Report


Sample Name: Operator:

Time:11:02

Data File:HGC-4-54T8.che Date:2010-12-13

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent
1	1 2		7. 727 9. 977	1071819. 7 10604. 4	12329029. 5 169541. 0	98.6435 1.3565
Tota	1			1082424.1	12498570.5	100.0000

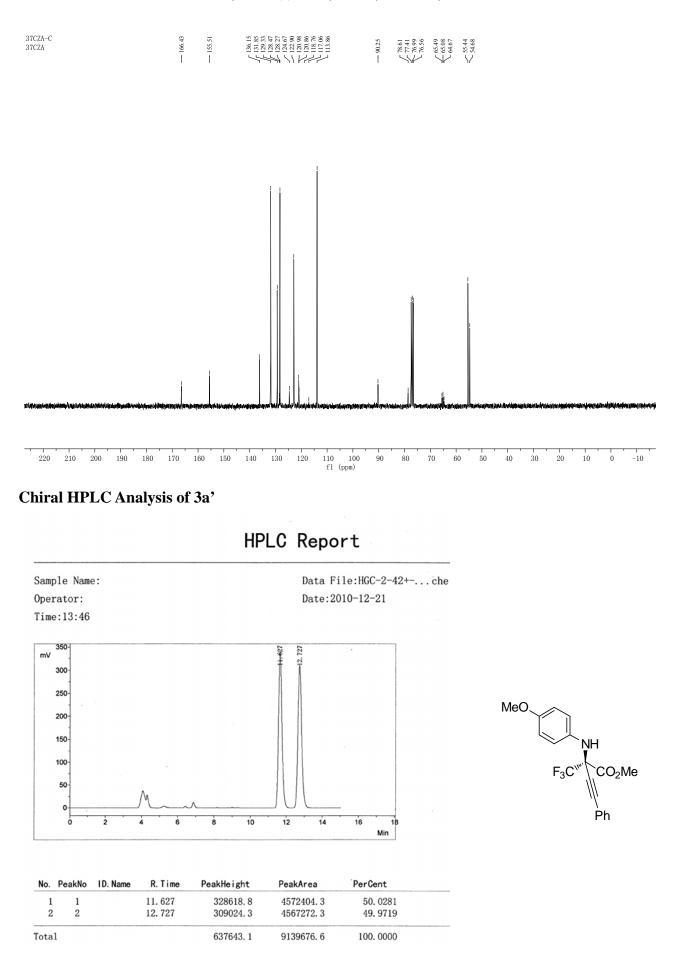
OF1: -23998.2 NA: 32

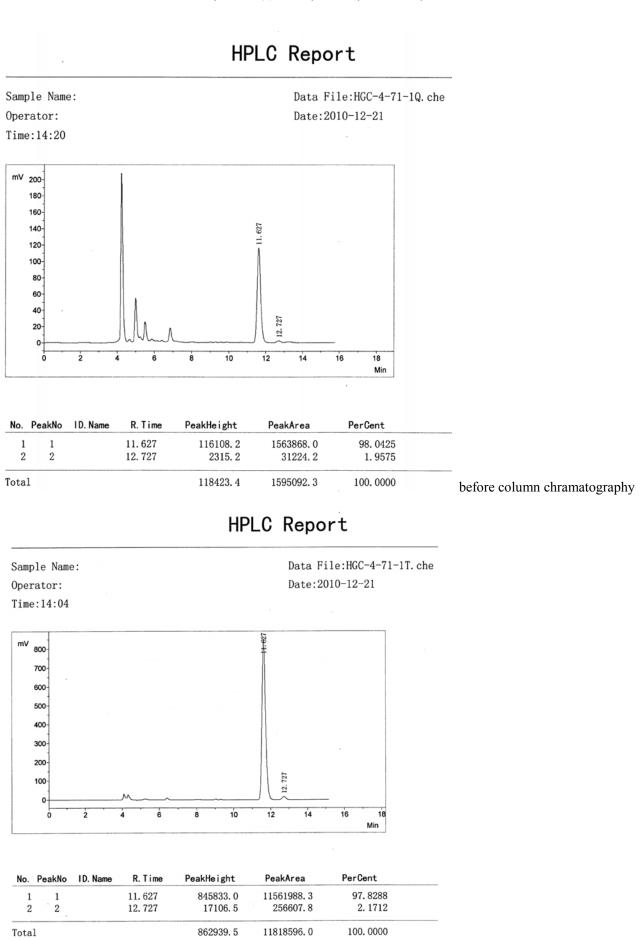
LB-00

USER: -- DATE: May 10 2010

- \$2-37czAF 10Mav2010

PTS1d: 32768

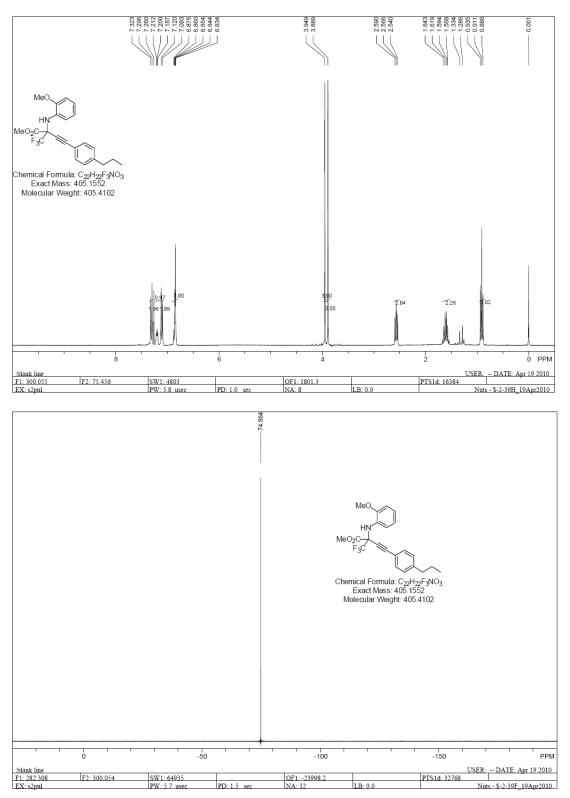

Nuts

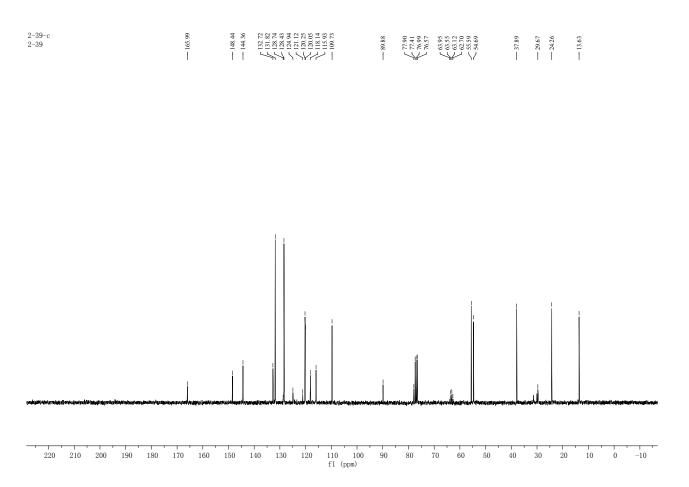

;blank line F1: 282.308 EX: s2pul

F2: 300.054

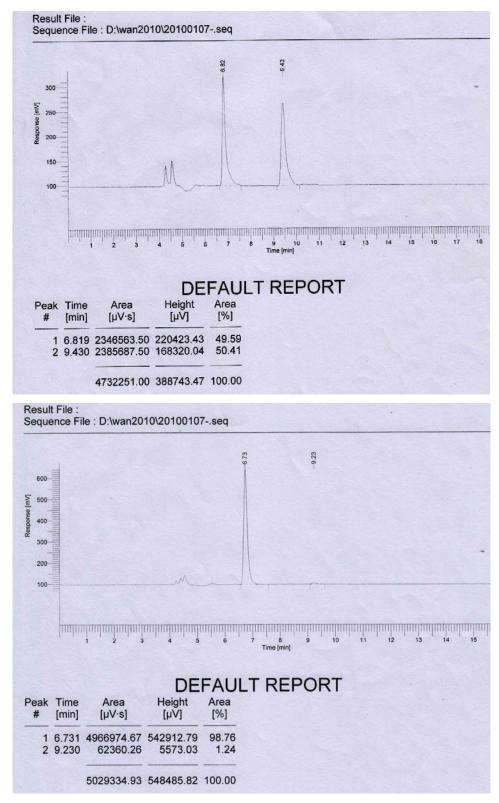
SW1: 64935 PW: 5.7 used

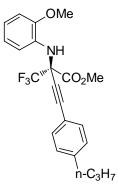
PD: 1.5 se

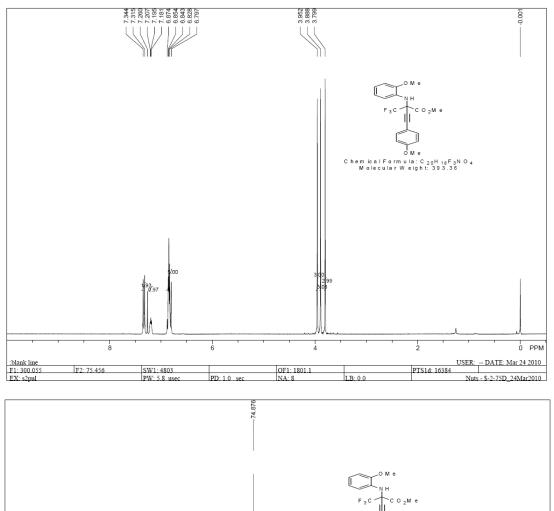


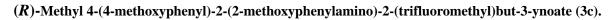


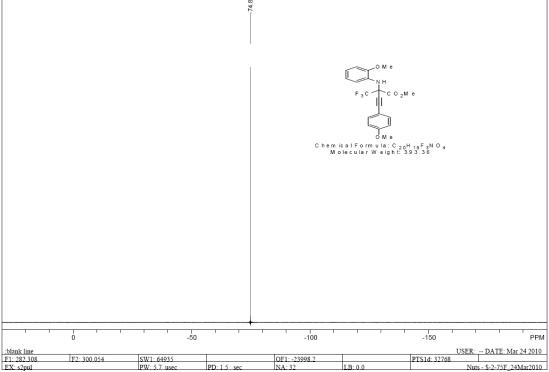
39. 5 11818596. 0 100. 0000 after column chramatography

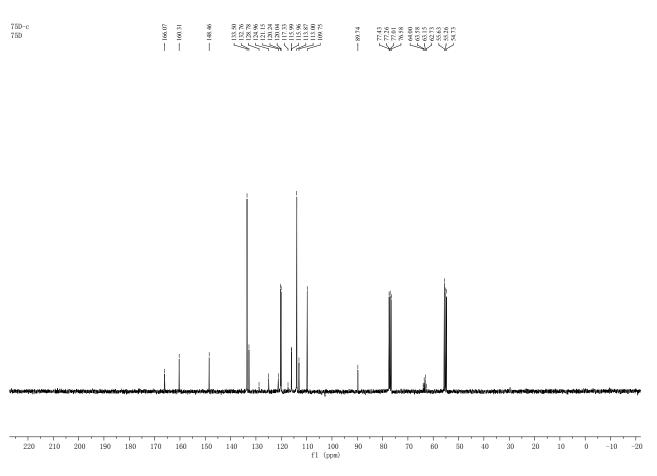

(*R*)-Methyl 2-(2-methoxyphenylamino)-4-(4-propylphenyl)-2-(trifluoromethyl)but-3-ynoate



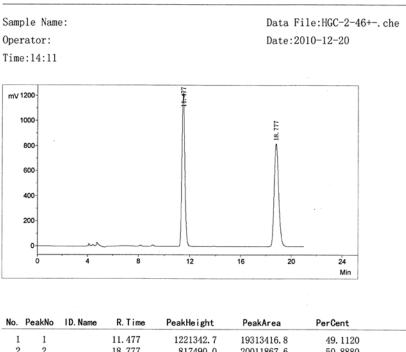


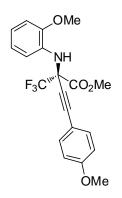

Chiral HPLC Analysis of 3b

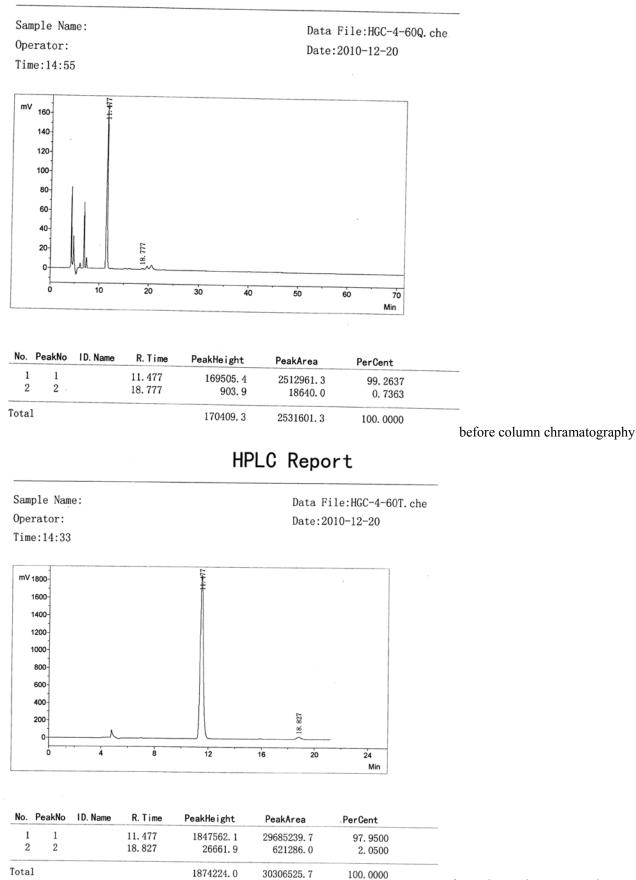


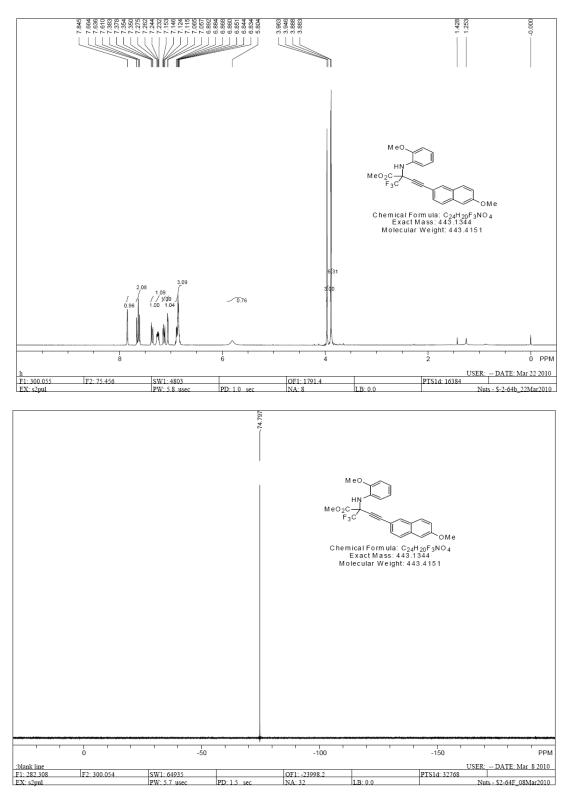


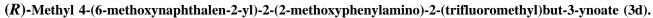
after column chramatography



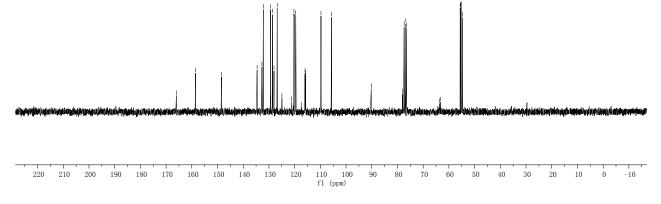



HPLC Report

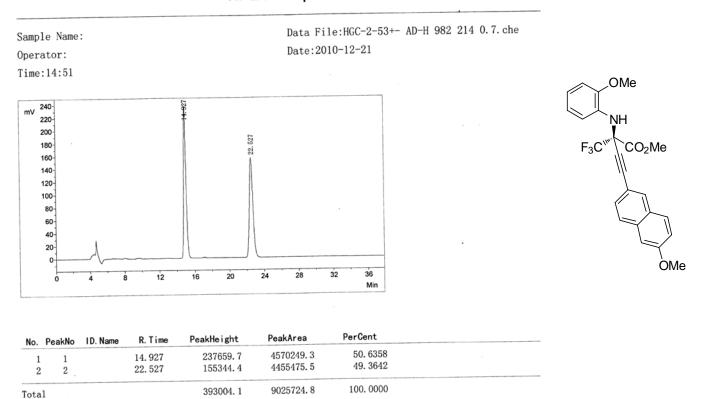


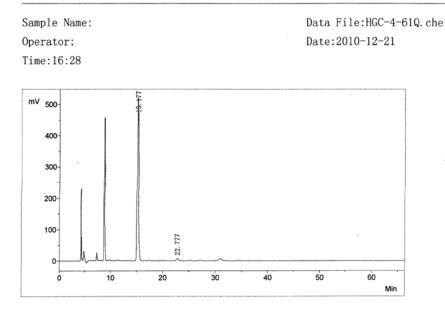

No. P	eakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent
1	1		11.477	1221342.7	19313416.8	49.1120
2	2		18.777	817490.0	20011867.6	50.8880
`otal				2038832.7	39325284.4	100.0000

HPLC Report



after column chramatography





Chiral HPLC Analysis of 3d

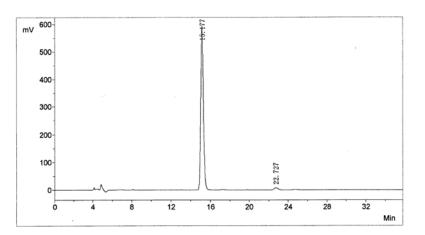
HPLC Report

HPLC Report

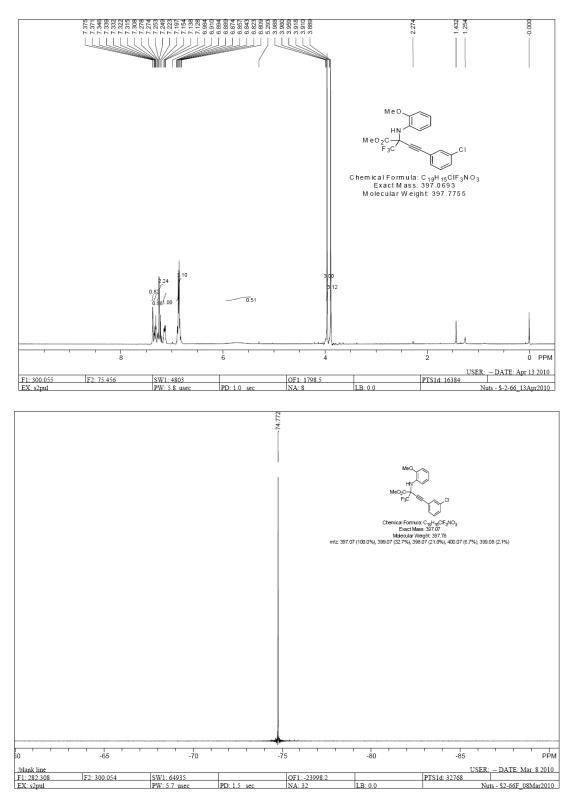
No. P	eakNo	ID. Name	R. Time	PeakHe i ght	PeakArea	PerCent	
1	1		15.177	521123.2	9702739.9	97.9889	
2	2		22.777	6955.2	199135.6	2.0111	
Total				528078.5	9901875.5	100.0000	

before column chramatography

HPLC Report


Data File:HGC-4-61T.che

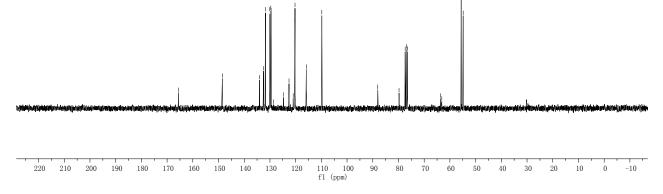
Date:2010-12-21


Sample Name:

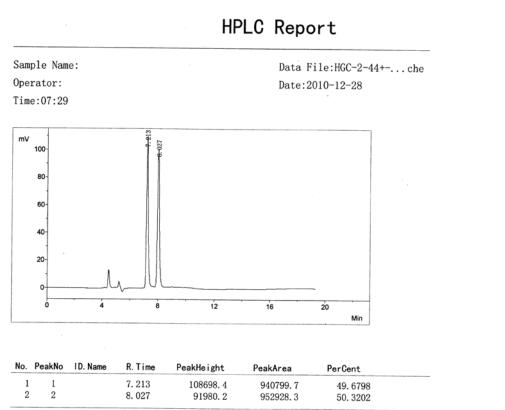
Operator:

Time:15:36

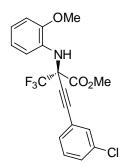
No.	PeakNo	ID. Name	R.Time	PeakHeight	PeakArea	PerCent	
$1 \\ 2$	$\frac{1}{2}$		15. 177 22. 727	586368.6 8401.4	11126921.8 237349.0	97.9114 2.0886	
Total				594770.0	11364270.8	100.0000	


(R)-Methyl 4-(3-chlorophenyl)-2-(2-methoxyphenylamino)-2-(trifluoromethyl)but-3-ynoate (3e).

LB: 0.0

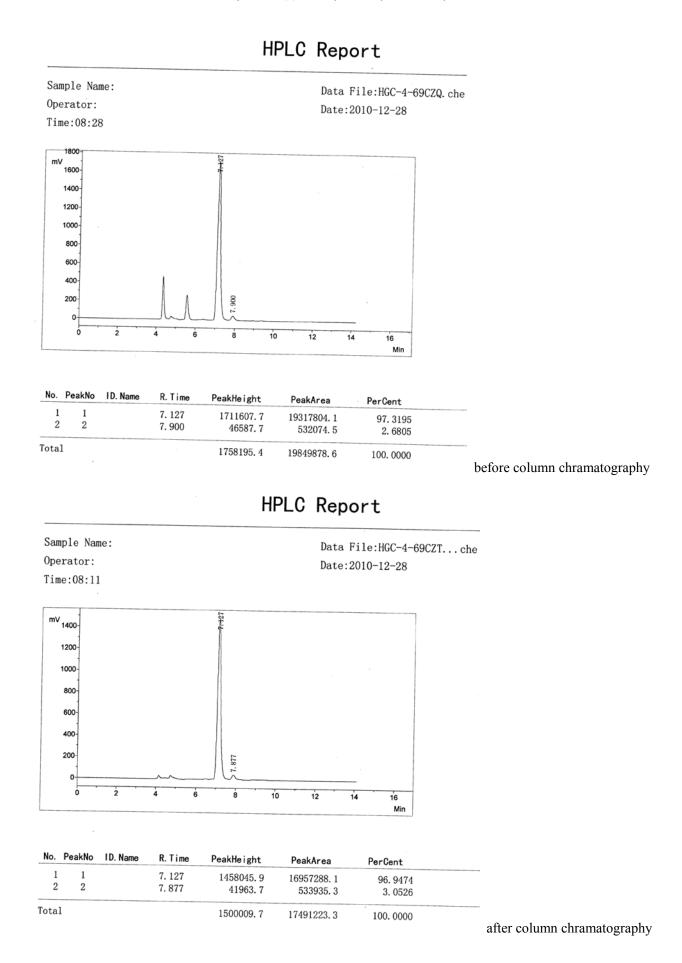

PD: 1.5 sec

Nuts - \$2-66F_08Mar2010

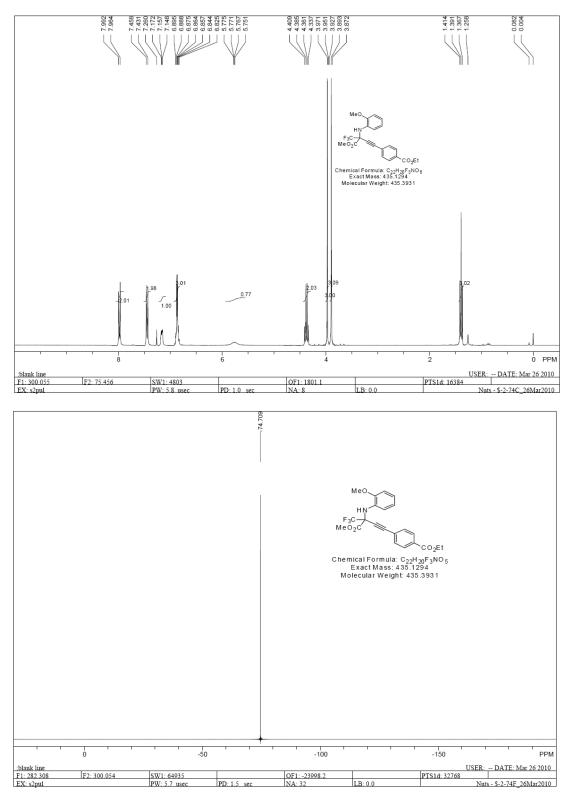


Chiral HPLC Analysis of 3e

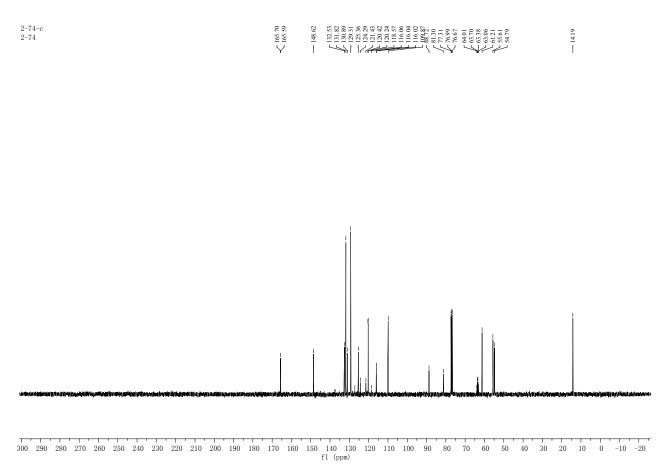
200678.6

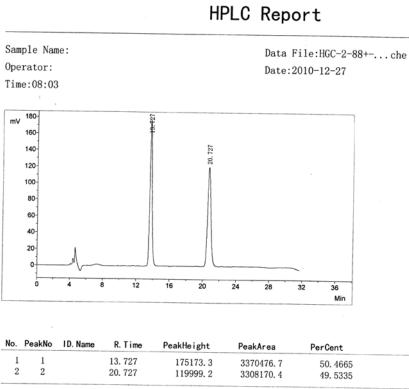


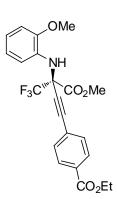
Total


S40

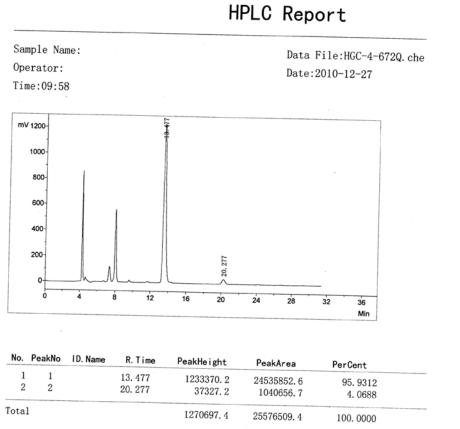
100.0000


1893727.9


S41

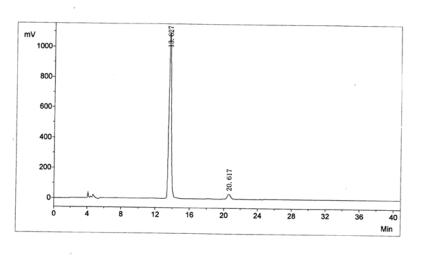


(*R*)-Ethyl 4-(4,4,4-trifluoro-3-(methoxycarbonyl)-3-(2-methoxyphenylamino)but-1-ynyl)benzoate (3f).

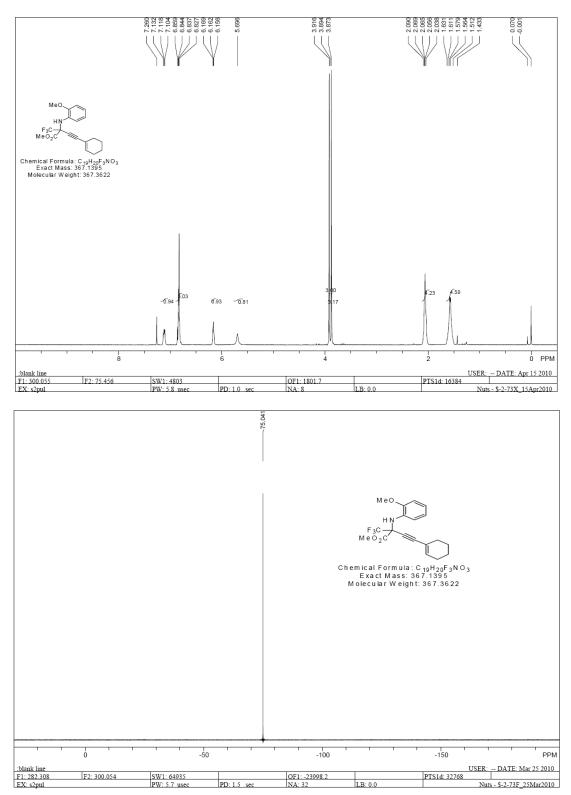


Chiral HPLC Analysis of 3f

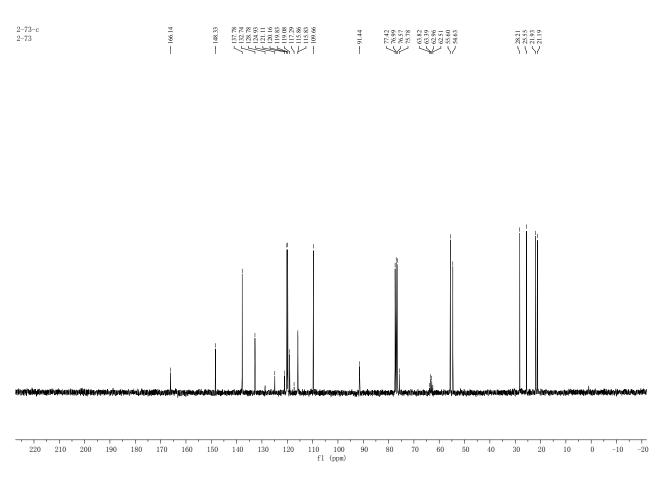
No.	PeakNo	ID. Name	R.Time	PeakHeight	PeakArea	PerCent
1 2	1 2		13. 727 20. 727	175173.3 119999.2	3370476. 7 3308170. 4	50. 4665 49. 5335
`ota]	L			295172.4	6678647.1	100.0000


before column chramatography

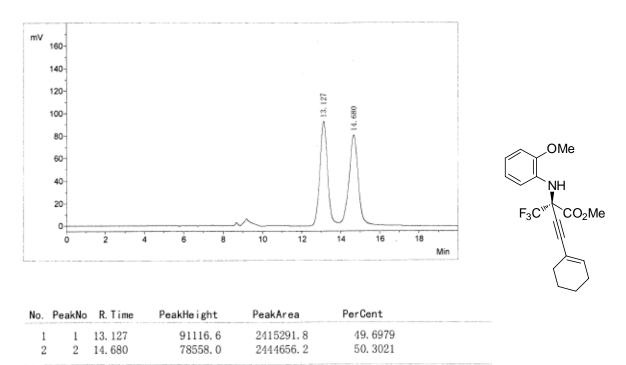
HPLC Report


Sample Name: Operator:

Time:08:37

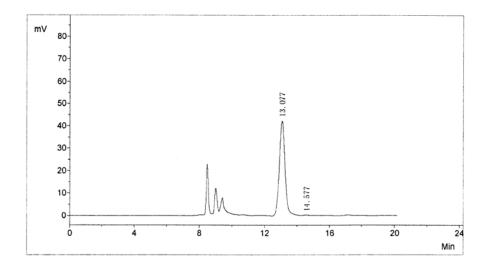

Data File:HGC-4-672T.che Date:2010-12-27

PeakNo	ID. Name	R.Time	PeakHeight	PeakArea	PerCent	
1 2		13. 627 20. 617	1089395. 0 33398. 6	21087603. 4 894878. 5	95. 9291 4. 0709	
1			1122793.6	21982481.9	100.0000	
	1 2	1 2	1 13. 627 2 20. 617	1 13.627 1089395.0 2 20.617 33398.6	1 13.627 1089395.0 21087603.4 2 20.617 33398.6 894878.5	1 13.627 1089395.0 21087603.4 95.9291 2 20.617 33398.6 894878.5 4.0709

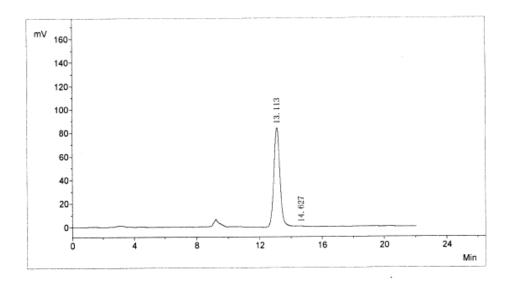


(*R*)-Methyl 4-cyclohexenyl-2-(2-methoxyphenylamino)-2-(trifluoromethyl)but-3-ynoate (3g).

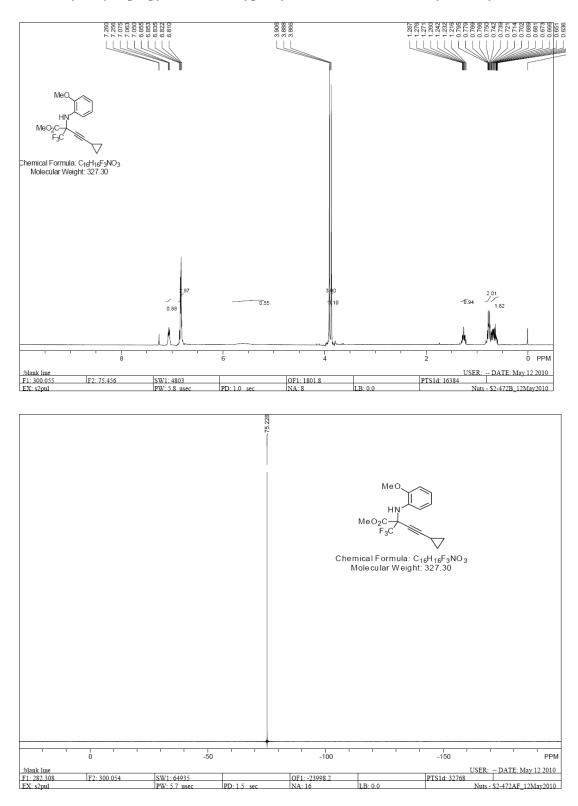
Chiral HPLC Analysis of 3g

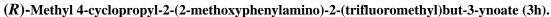

Total

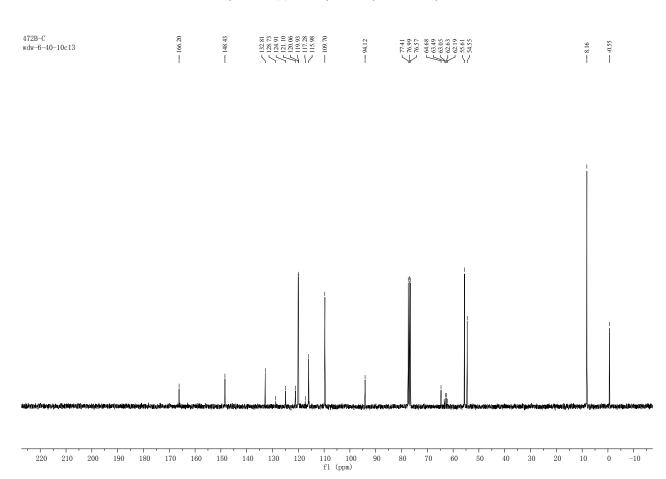
100.0000

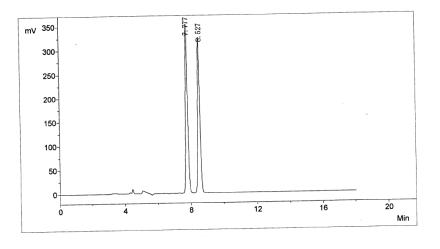

4859947.9

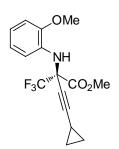
169674.7

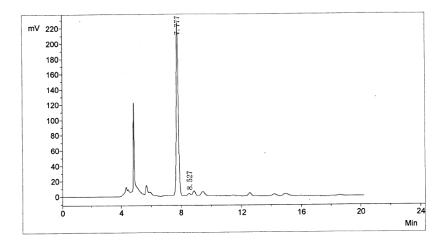



No.	PeakNo	R. Time	PeakHeight	PeakArea	PerCent	
$1 \\ 2$	$\frac{1}{2}$	13. 077 14. 577	42466. 9 111. 1	1031002.0 2391.9	99. 7685 0. 2315	
Total			42578.0	1033393.9	100. 0000	

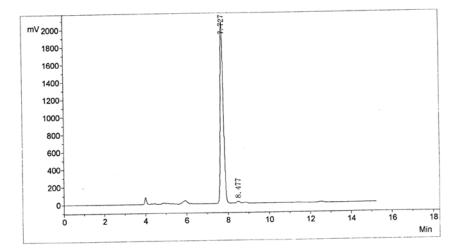

before column chromatography


No. P	eakNo	R. Time	PeakHe i ght	PeakArea	PerCent	
1 2	1 2	13. 113 14. 627	84195. 9 235. 0	2235363.3 4798.2	99. 7858 0. 2142	
Total			84430.9	2240161.5	100.0000	

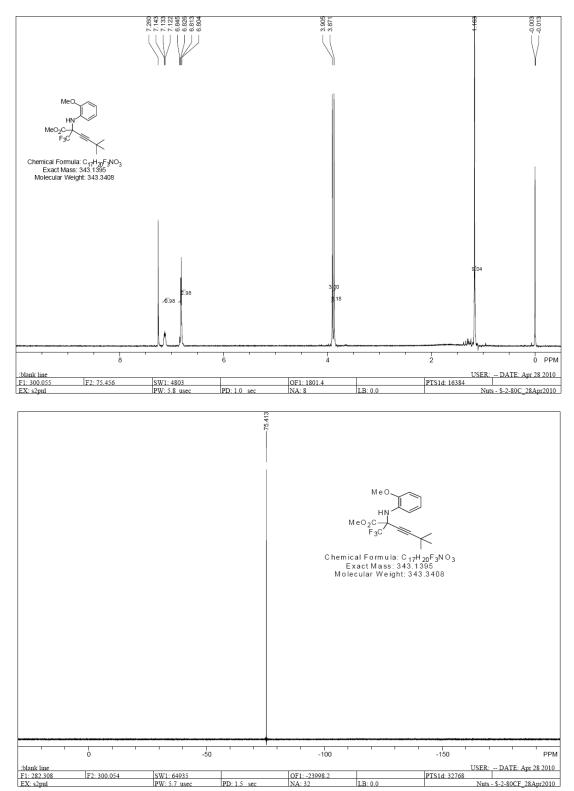


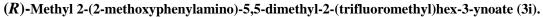


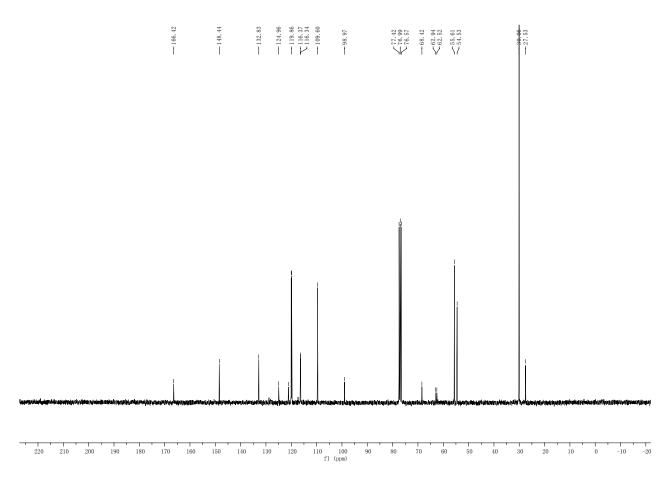
Chiral HPLC Analysis of 3h



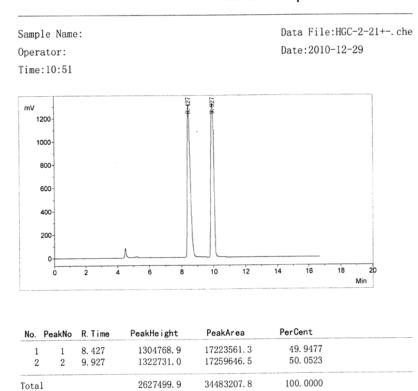
No. PeakNo	ID. Name	R.Time	PeakHeight	PeakArea	PerCent
$\begin{array}{c}1\\1\\2\\2\end{array}$		7.777 8.527	353140. 5 308758. 6	3165398. 1 3190581. 7	49.8019 50.1981
Total			661899.2	6355979.8	100.0000

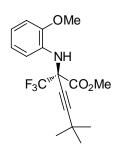


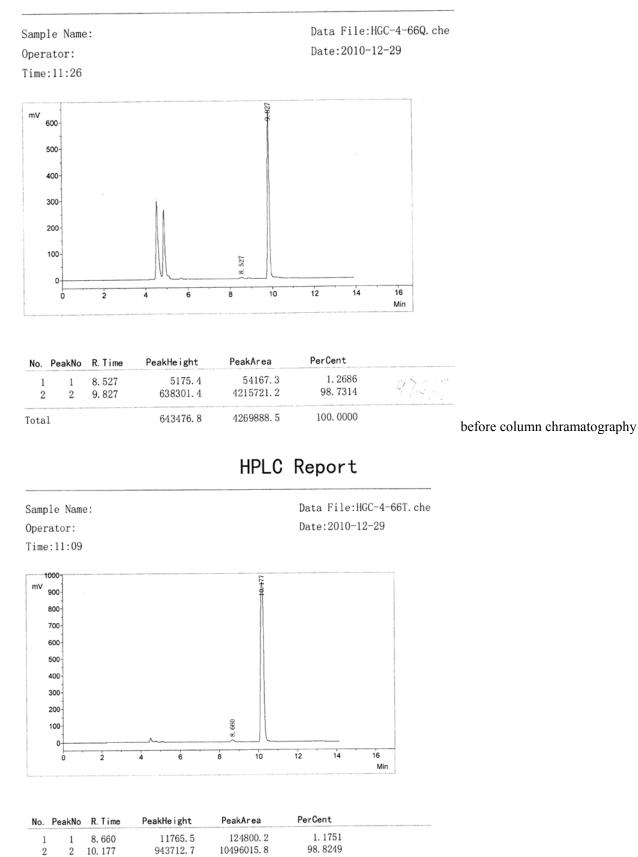

No. P	eakNo	ID. Name	R.Time	PeakHeight	PeakArea	PerCent	
1 2	1 2		7. 777 8. 527	216594. 8 1888. 5	2147230. 1 16632. 8	99. 2313 0. 7687	
Total				218483.3	2163862.8	100.0000	


before column chramatography

No. Pe	akNo	ID. Name	R.Time	PeakHeight	PeakArea	PerCent
1 2	1 2		7.727 8.477	2009651.4 19180.2	21004026.3 190726.3	99. 1001 0. 8999
Total				2028831.6	21194752.5	100.0000

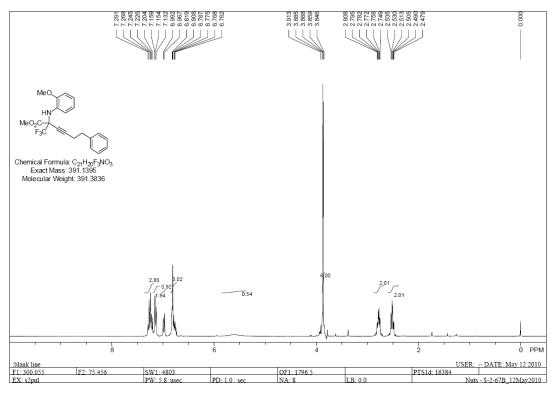




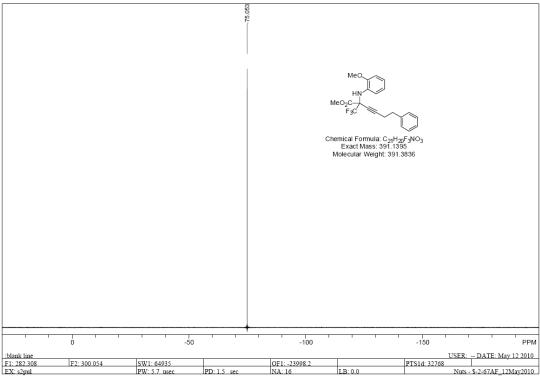

Chiral HPLC Analysis of 3i

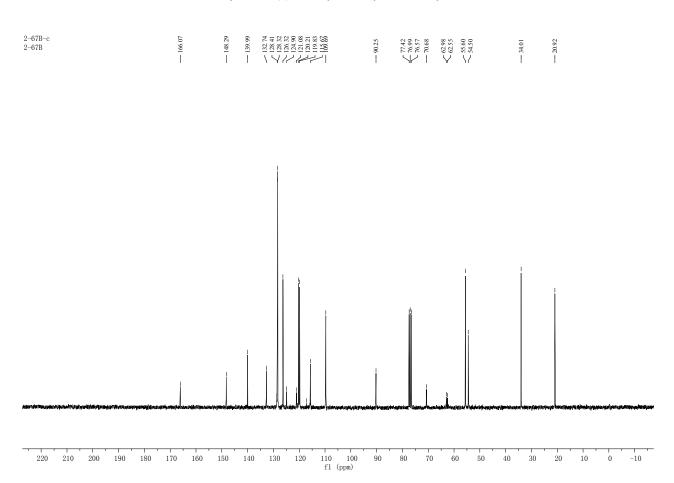
HPLC Report

HPLC Report

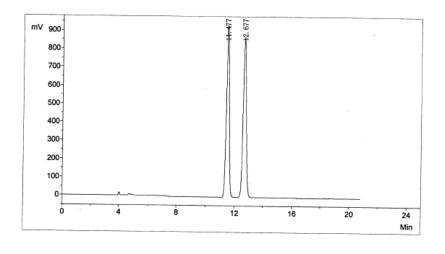

after column chramatography

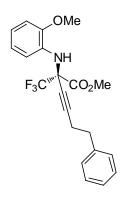
100.0000

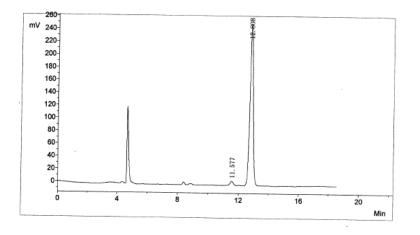

10620816.0


955478.2

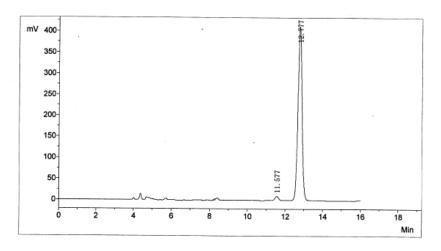
Total



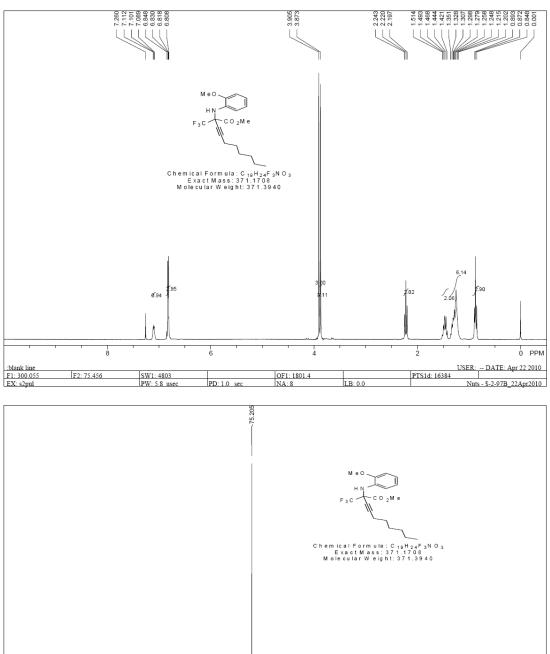


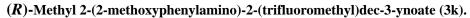


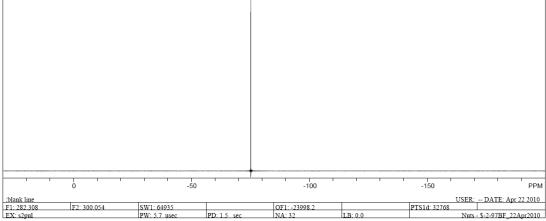
Chiral HPLC Analysis of 3j

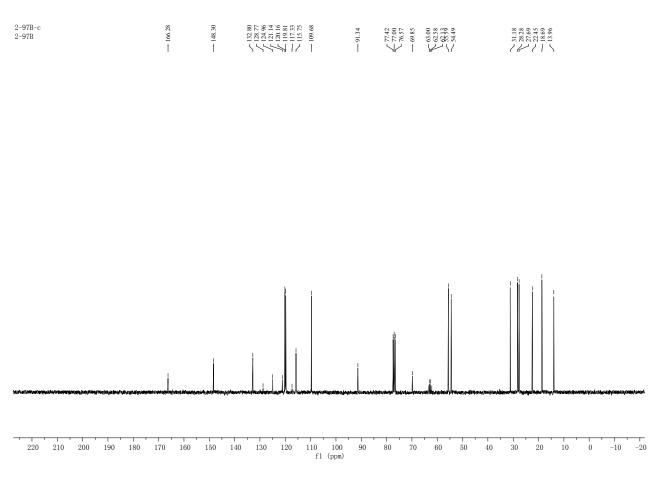


No. P	eakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent
1 2	1 2		11. 477 12. 677	924158.5 872668.6	12936033. 2 13421786. 7	49. 0785 50. 9215
Total				1796827.0	26357819.9	100.0000

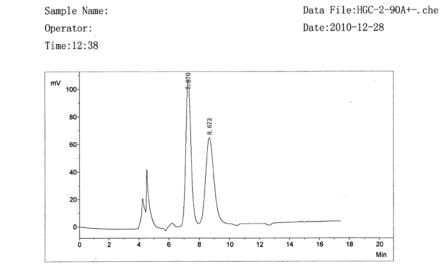


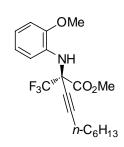

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent	
1 2	1 2		11. 577 12. 808	6225. 8 251919. 7	96006. 2 3793692. 4	2. 4682 97. 5318	
Total				258145.5	3889698.6	100.0000	

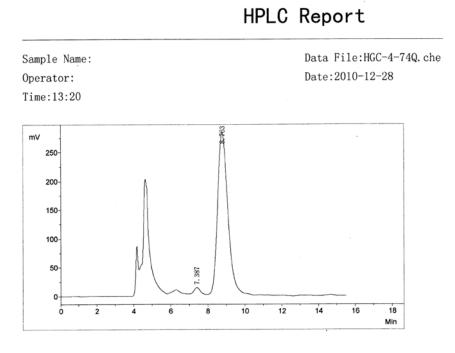

before column chramatography



No.	PeakNo	ID. Name	R.Time	PeakHeight	PeakArea	PerCent	
1 2	$\frac{1}{2}$		11. 577 12. 777	9758.2 405925.6	141981.6 6251899.5	2. 2206 97. 7794	_
Total				415683. 9	6393881.0	100. 0000	

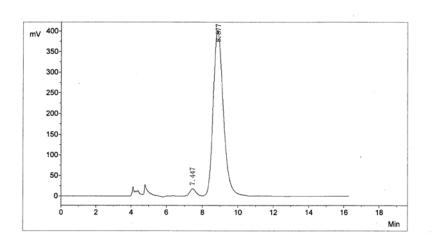




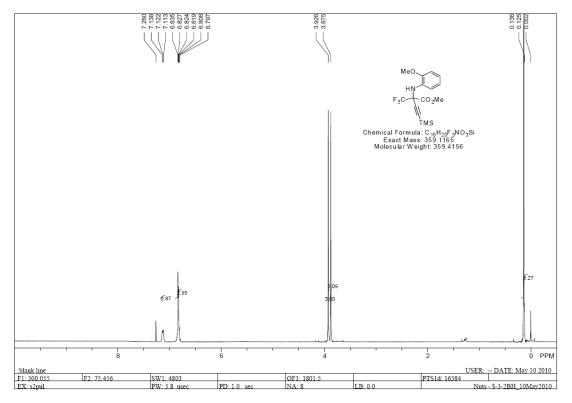

Chiral HPLC Analysis of 3k

HPLC Report

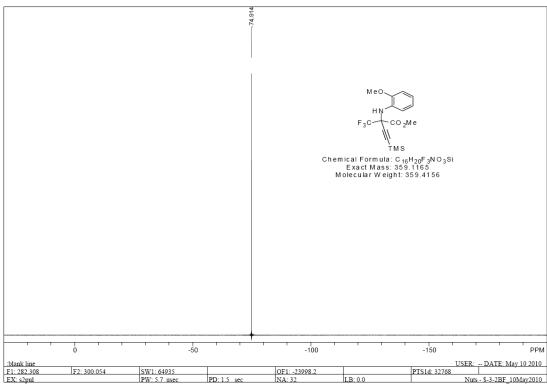
No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent	
1	1		7.270	105646.2	2471514.5	51.1821	
2	2		8.673	62258.4	2357351.8	48.8179	
Total	L			167904.6	4828866.2	100.0000	

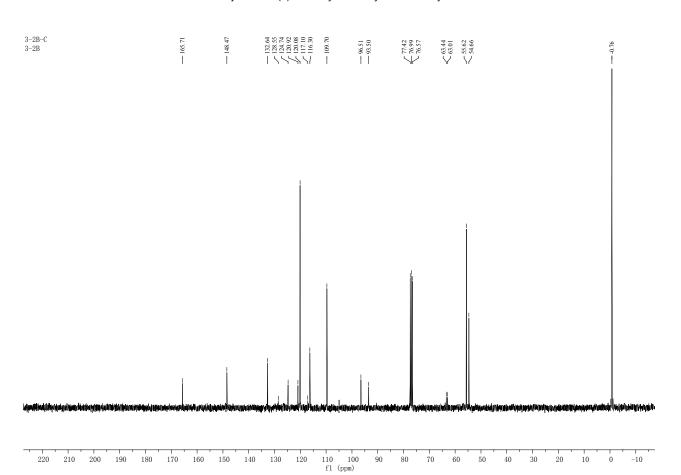


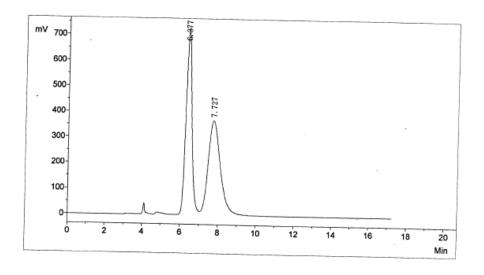
No. F	PeakNo	ID. Name	R.Time	PeakHeight	PeakArea	PerCent	
1 2	$1 \\ 2$		7. 387 8. 763	10106. 6 276291. 7	195413.8 10181971.4	1.8831 98.1169	
Total				286398.3	10377385.2	100.0000	

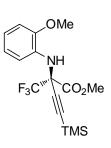

before column chramatography

HPLC Report

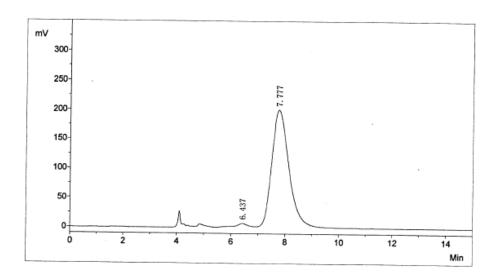

Sample Name: Operator: Time:12:59 Data File:HGC-4-74T.che Date:2010-12-28


No.	PeakNo	ID. Name	R.Time	PeakHeight	PeakArea	PerCent	
1	1		7.447	16028.6	331337.4	2.0607	
2	2		8.877	397929.4	15747339.6	97.9393	
Total	1 .			413958.0	16078677.0	100.0000	 a

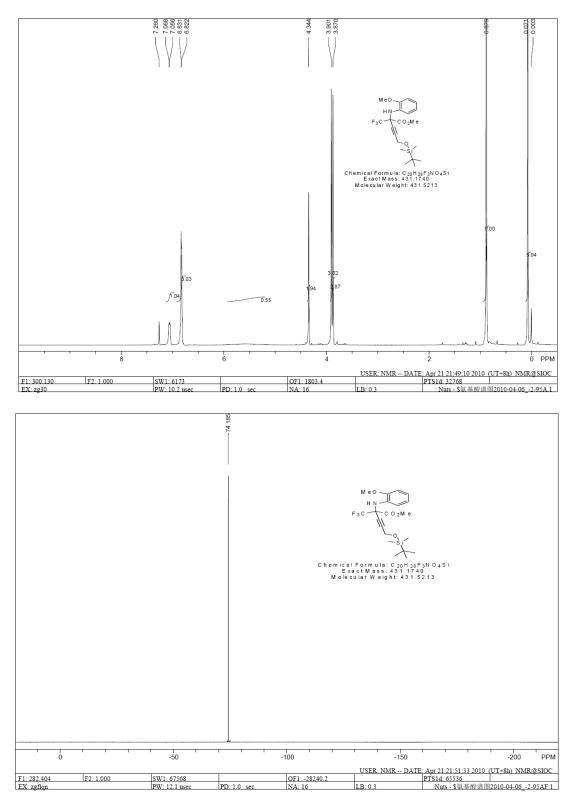


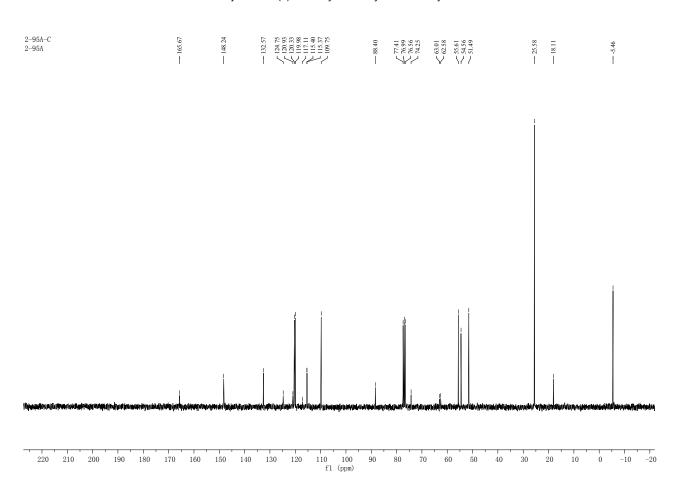


Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

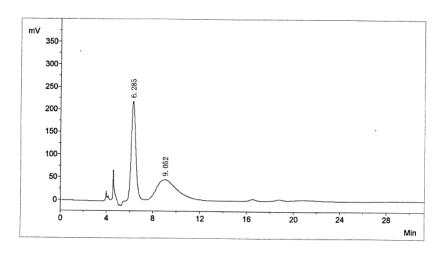


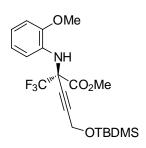
Chiral HPLC Analysis of 31


No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent
1 2	1 2		6.377 7.727	716992.7 367667.3	15971217.7 16543929.5	49. 1193 50. 8807
Total				1084660.0	32515147.3	100.0000

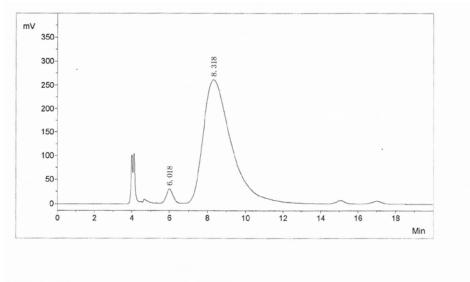

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent
1 2	1 2		6. 437 7. 777	4913. 4 198488. 0	101610. 2 8708159. 6	1.1534 98.8466
Total	L			203401.4	8809769.8	100.0000

(*R*)-Methyl 5-(tert-butyldimethylsilyloxy)-2-(2-methoxyphenylamino)-2-(trifluoromethyl)pent-3-ynoate

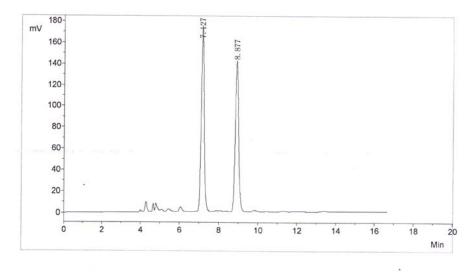

(**3m**).



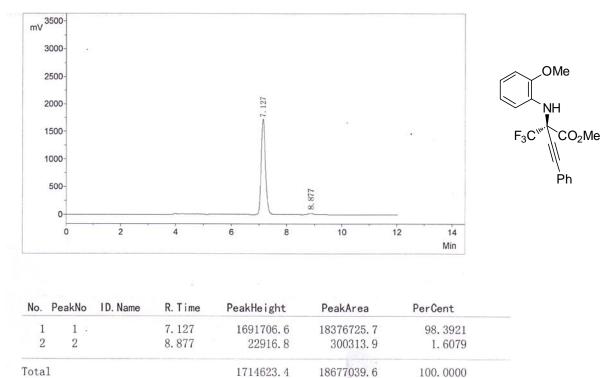
Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011



Chiral HPLC Analysis of 3m

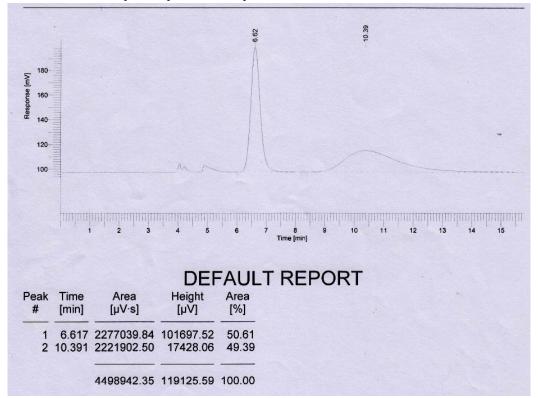


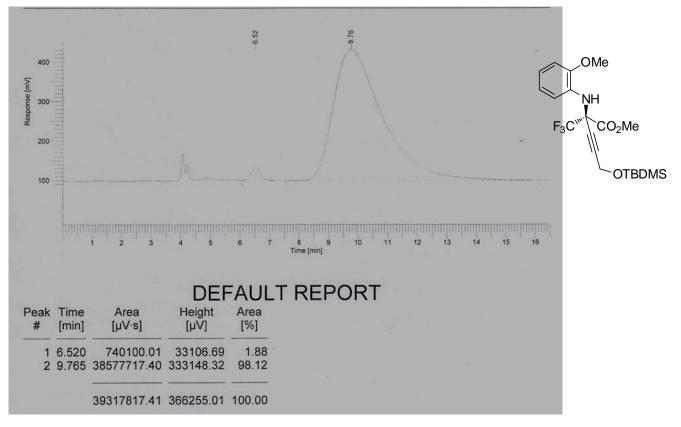
No. I	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent	
1 2	1 . 2		6.285 9.052	220558.2 46869.1	6066888.6 6007278.3	50. 2469 49. 7531	
Total				267427.4	12074166.8	100.0000	

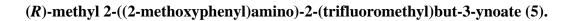


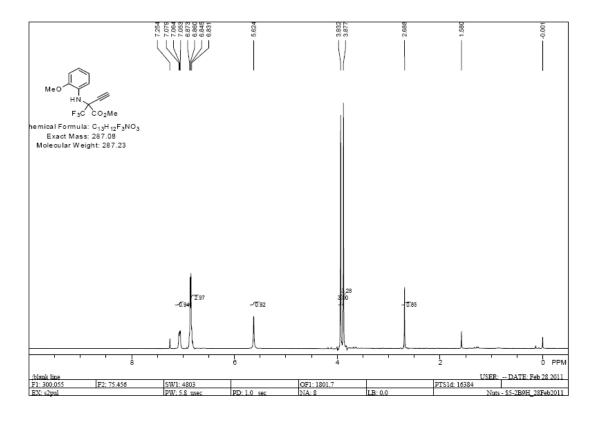
No.	PeakNo	ID. Name	R.Time	PeakHeight	PeakArea	PerCent	
1	1		6.018	28887.4	719545.4	2.6446	
2	2		8.318	260364.9	26488698.9	97.3554	
Tata				000050 0	07000044-0	100.0000	
Tota	1			289252.3	27208244.3	100.0000	

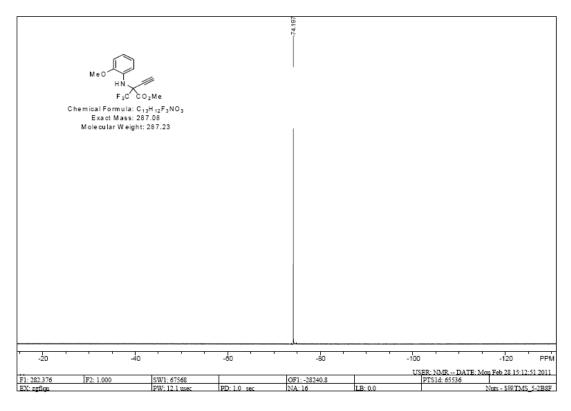
Gram-scale catalytic asymmetric synthesis of 3a

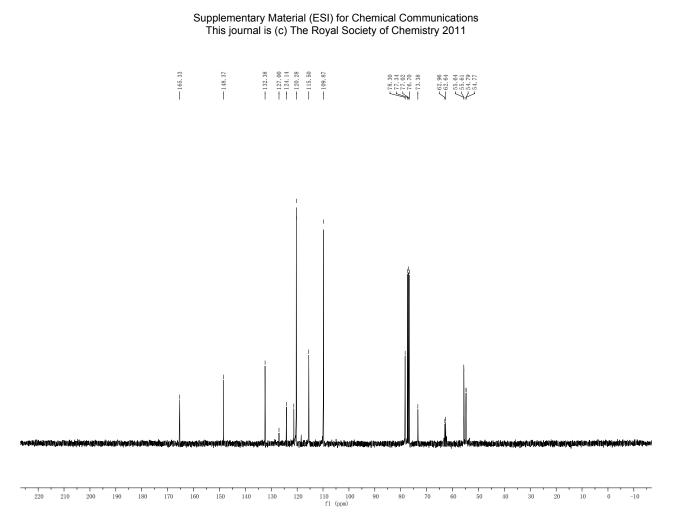


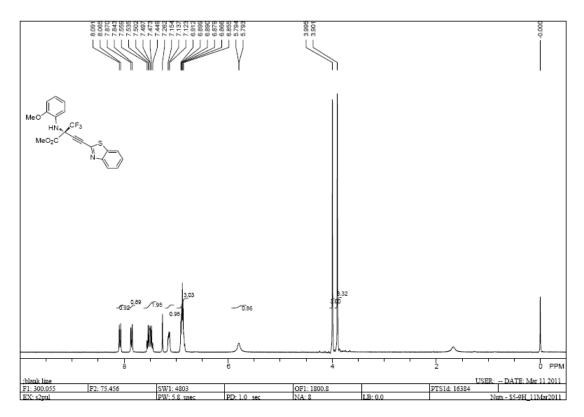

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent	
1	1		7.127	163672.7	1836024.8	52.3244	
2	2		8.877	139045.0	1672900.3	47.6756	
Total	L			302717.8	3508925.1	100.0000	

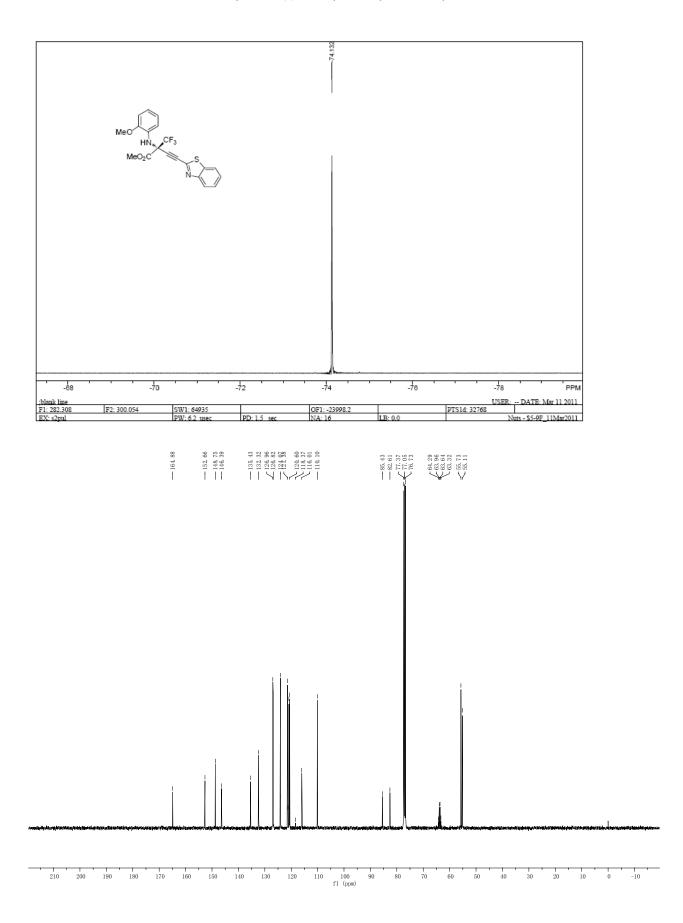


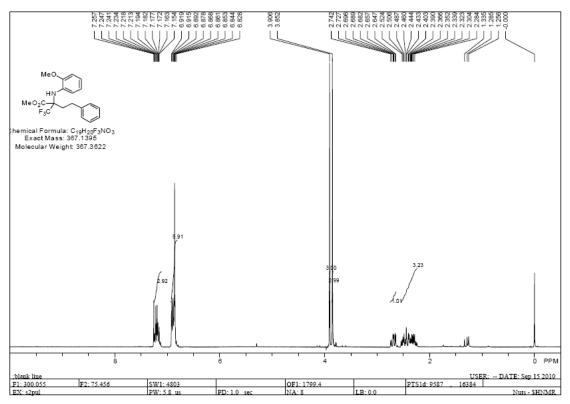

Total	1714623.4	18677039.6
		Service State

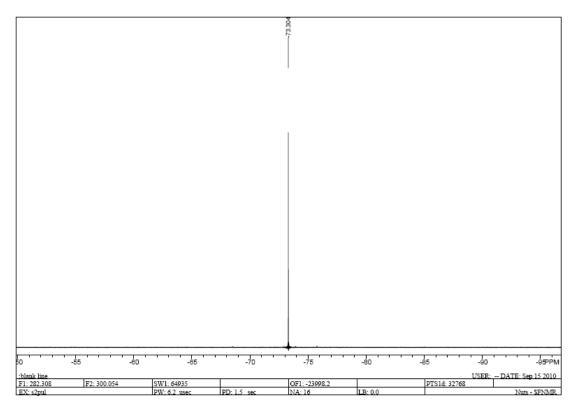

Gram-scale catalytic asymmetric synthesis of 3m

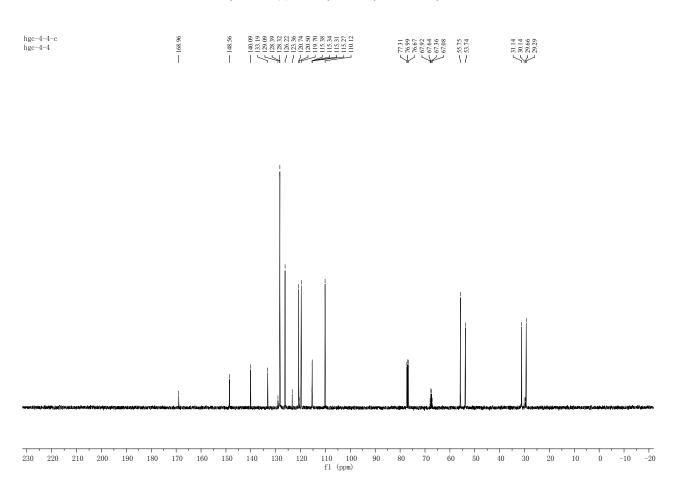


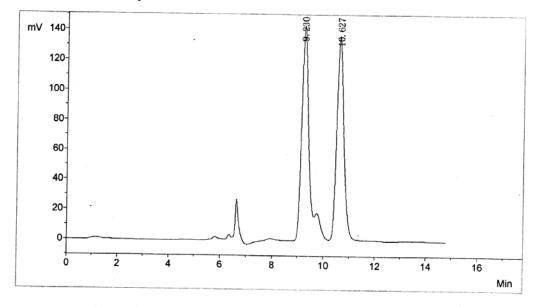


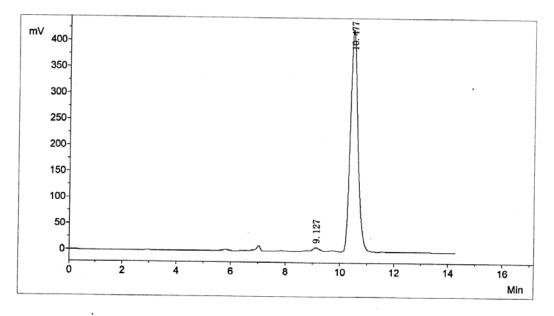


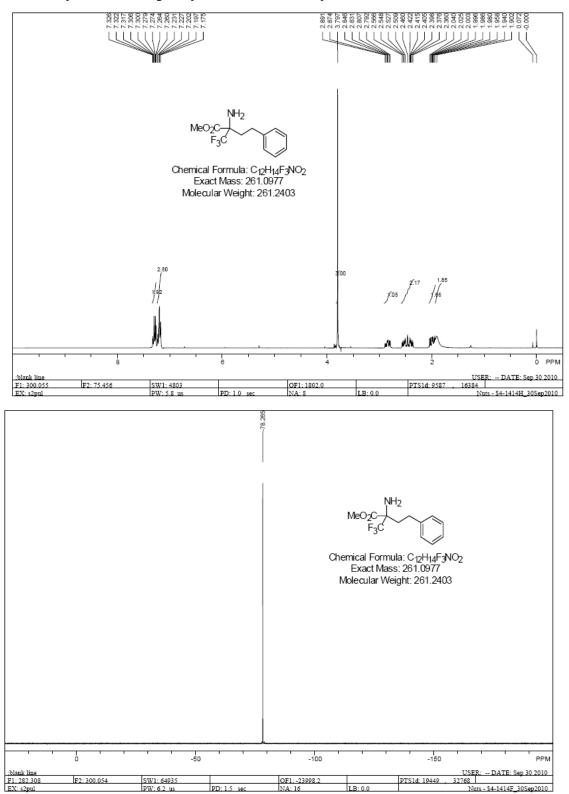


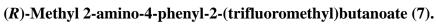

(*R*)-methyl 4-(benzo[*d*]thiazol-2-yl)-2-((2-methoxyphenyl)amino)-2-(trifluoromethyl)but-3 -ynoate (6).



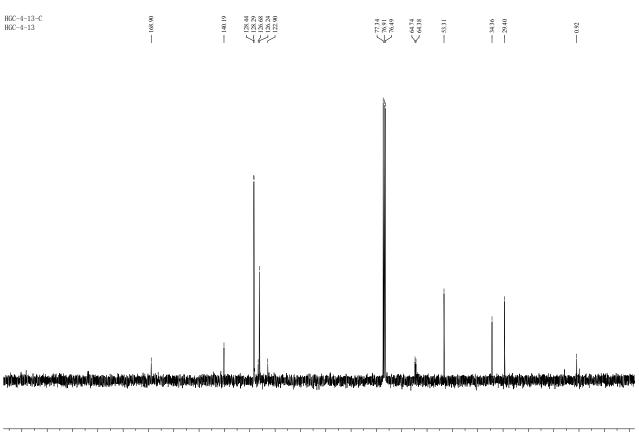

(*R*)-Methyl 2-(2-methoxyphenylamino)-4-phenyl-2-(trifluoromethyl)butanoate (7').


Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

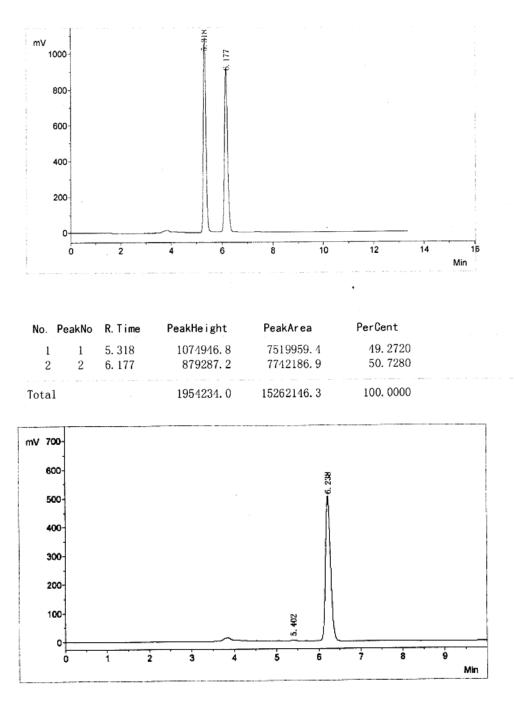

Chiral HPLC Analysis of 7'



No.	PeakNo	ID. Name	R.Time	PeakHeight	PeakArea	PerCent
1 2	1 2		9. 230 10. 627	135165. 2 133249. 8	2255122. 4 2591797. 2	46. 5269 53. 4731
Total	L			268415.0	4846919.6	100.0000



No. P	eakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent
1 2	1 2		9. 127 10. 477	6028. 2 417956. 6	94128.8 8203551.9	1. 1344 98. 8656
Total				423984.8	8297680.7	100.0000



Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 f1 (ppm)	20 10 0 -10 -20

Chiral HPLC Analysis of 7

No.		R. Time	PeakHe i ght	PeakArea	PerCent
1 2	1 2	5. 402 6. 238	2971. 9 495937. 7	18229. 2 4174408. 7	0. 4348 99. 5652
Total			498909.5	4192637.9	100. 0000