ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

Unprecedented Ipso Aromatic Nucleophilic Substitution Upon Oxidative Decarboxylation of Tris-(p-carboxyltetrathiaaryl)methyl (TAM) Radicals: A New Access to Diversely Substituted TAM Radicals

Christophe Decroos, ${ }^{a}$ Thierry Prangé, ${ }^{b}$ Daniel Mansuy, ${ }^{a}$ Jean-Luc Boucher, ${ }^{a}$ and Yun Li, ${ }^{a}$
${ }^{a}$ Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris
Descartes, UMR 8601 CNRS, 45 Rue des Saints Pères, 75270 Paris cedex 06, France.
${ }^{b}$ Laboratoire de Cristallographie et RMN Biologiques, Université Paris Descartes, UMR 8015 CNRS, 4 Av de l'Observatoire, 75270 Paris cedex 06, France.

Experimental Section

General procedure for TAM-Nu (4-7) synthesis: To a solution of TAM 1 in distilled water (~ 1 mL per mg of TAM 1) under magnetic stirring was added 2 equiv. of $\mathrm{K}_{2} \operatorname{Ir}(\mathrm{IV}) \mathrm{Cl}_{6}$ (20 mM solution freshly prepared from distilled water). After 1 min at room temperature, 50 equiv. of nucleophile were added to the reaction mixture. If not soluble in water, the nucleophile was dissolved in a minimum of an organic solvent such as THF or methanol. When N-acetylcysteine methyl ester was used as a nucleophile, NaOH (50 equiv. of a 0.1 M solution) was mixed with the thiol before adding to TAM $\mathbf{1}^{+}$. After 10 min at room temperature, the mixture was analyzed by HPLC-MS. Solvents were removed and products were purified by semi-preparative HPLC with a reversed-phase Hypersil ODS column $(250 \times 7.8 \mathrm{~mm})$ and a water / acetonitrile gradient was used.

Radical 11 was synthesized according to the same procedure (50 equiv. NaNO_{2}) except for the use of 12 equiv. of $\mathrm{K}_{2} \mathrm{Ir}(\mathrm{IV}) \mathrm{Cl}_{6}$. Product was purified by precipitation and isolated in a 74% yield. Slow diffusion of pentane into a solution of $\mathbf{1 1}$ in chloroform at room temperature for about 2 weeks allowed the isolation of single crystals suitable for X-ray diffraction. ${ }^{[15]}$

Table S1. ESI-HRMS molecular ion of TAM-Nu 4, 5, 6, 7 and 11

TAM-Nu	ESI-HRMS
$\mathbf{4}$	1156.1316 (calculated for $\mathrm{C}_{51} \mathrm{H}_{65} \mathrm{O}_{4} \mathrm{PS}_{12} 1156.1269$)
$\mathbf{5}$	1071.9973 (calculated for $\mathrm{C}_{46} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{12} 1071.9950$)
$\mathbf{6}$	1038.0272 (calculated for $\mathrm{C}_{44} \mathrm{H}_{48} \mathrm{NO}_{4} \mathrm{~S}_{12} 1038.0232$)
$\mathbf{7}$	1152.9716 (calculated for $\mathrm{C}_{45} \mathrm{H}_{48} \mathrm{NO}_{7} \mathrm{NaS}_{13} 1152.9698$)
$\mathbf{1 1}$	1001.9272 (calculated for $\mathrm{C}_{37} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}_{12} 1001.9253$)

EPR spectroscopy

EPR spectra were recorded at $20^{\circ} \mathrm{C}$ using a Bruker Elexsys 500 EPR spectrometer operating at Xband $(9.85 \mathrm{GHz})$ with a SHQ cavity and an AquaX quartz cell, under the following conditions: modulation frequency, 100 kHz ; modulation amplitude, 0.1 G ; time constant, 40.96 ms ; conversion time, 40.96 ms ; and microwave power, 1 mW .

$a_{P}=3.30 \mathrm{G}$
C

$$
a_{N}=0.38 \mathrm{G}
$$

$a_{N} \sim 0.2 \mathrm{G}$ (unresolved, estimated value)

Figure S1. EPR spectra of TAM-Nu 4 (A), 5 (B), 5 (C), and 7 (D) (in degassed MeOH)

UV-Visible Spectroscopy

UV-Visible spectra were recorded at room temperature on a Cary 300 spectrophotometer (Varian, Les Ulis, France).

Figure S2. UV-Visible spectra of TAM-Nu 4 (A), 5 (B), 6 (C), 7 (D), and 11 (E) (in MeOH except for 11: in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)

Table S2. Absorption maxima of the UV-visible spectra of TAM-Nu 4-7, 11 and 16-20 in the visible region

TAM-Nu	$\lambda_{\max }(\mathrm{nm})$	TAM-Nu	$\lambda_{\max }(\mathrm{nm})$
$\mathbf{4}$	459,490, and $671^{[\mathrm{a}]}$	5	463 and $648^{[\mathrm{a}]}$
$\mathbf{6}$	463 and $648^{[\mathrm{ad}]}$	7	475 and $643^{[\mathrm{a}]}$
$\mathbf{1 1}$	494,525, and $548^{[\mathrm{bb]}}$		

[^0]Table S3. Crystallographic data for 11.

Chemical formula	$\mathrm{C}_{37} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}_{12}$
Formula weight	1003.53
Temperature (K)	110 (2)
Wavelength (\AA)	0.92770
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{n}$
Unit cell dimensions (in \AA and ${ }^{\circ}$)	$a=11.770(1), \alpha=90$
	$b=23.106(1), \beta=90.12(5)$
	$c=16.200(1), \gamma=90$
Volume (\AA^{3})	4406.0(5)
Z	4
Density (mg/m ${ }^{3}$, calculated90.12(5))	1.513
$\mathrm{F}(000)$	2076
Crystal size (mm)	$0.22 \times 0.23 \times 0.06$
θ range for data collection-rotation method (${ }^{\circ}$)	360
Index ranges	$0<h<12 ; 0<k<26 ;-18<l<+18$
No of reflections collected	11911
No of independent reflections	6231
Refinement method	full-matrix least-squares on F^{2}
Data / restraints / parameters	5631/0/526
Goodness-of-fit on F^{2}	1.015
Final R indexes [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0623, \mathrm{wR} 2=0.1715$
R indexes (all data)	$\mathrm{R} 1=0.0637, \mathrm{wR} 2=0.1733$
Largest diff. peak and hole ($\mathrm{e}^{\AA^{-3} \text {) }}$	+0.39 / -0.44

[^0]: ${ }^{[a]}$ in $\mathrm{MeOH} ;{ }^{[b]}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

