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S.1 GENERAL METHODS 
All reagents were obtained from commercial suppliers and used as received unless otherwise 
noted. 1,3-Diazidopropane (4)S 1  and 1-tert-butyl-3,5-diethynylbenzene (5)S 2  were prepared 
following literature procedures. Column chromatography was performed on silica gel (160 �– 200 
mesh), and thin-layer chromatography (TLC) was performed on precoated silica gel plates (0.25 
mm thick, 60F254, Merck, Germany) and observed under UV light. Nuclear magnetic resonance 
(NMR) spectra were recorded on Varian Inova (500 MHz) and Varian Inova (400 MHz) 
spectrometers at room temperature (298 K). Chemical shifts were referenced to the residual 
solvent peaks. High resolution electrospray ionization (ESI) mass spectrometry was performed 
on a Thermo Electron Corporation MAT 95XP-Trap mass spectrometer. Low resolution ESI 
mass spectrometry was performed on an Agilent 1200/6130 mass spectrometer with loop 
injection. Melting points were determined with an Electrothermal MEL-TEMP setup. 

 

Safety Comment: Sodium azide is very toxic, personal protection precautions should be 
taken. As low  molecular  weight  organic  azides  are  potential  explosives,  care  must  be  
taken  during  their handling. Generally, when the total number of carbon (NC) plus 
oxygen (NO) atoms is less than the total numbers of nitrogen atoms (NN) by a ratio of three, 
i.e., (NC + NO) / NN < 3, the compound is considered as an explosive hazard. In those 
instances, the compound was prepared prior to use and used immediately. A standard PVC 
blast shield was used when necessary. 
 

S.2 SYNTHESES OF TRIAZOLOPHANE 2 
 

 
Scheme S1. Syntheses of triazolophane 2. 

 

 
5/8-Oligomer 6: Diazide 4 (25 mg, 0.2 mmol) and diacetylene 5 (450 mg, 2.5 mmol) were 
dissolved in toluene (50 mL). The mixture was degassed with argon for 10 minutes at 70 ºC, 
after which CuI (38 mg, 0.2 mmol) was added with a further degassing for 10 min. The reaction 
was initialized by the injection of 1,8-diaza[5.4.0]bicycloundec-7-ene (DBU) (122 mg, 0.8 
mmol). After stirring and degassing for 2 hours at 70 ºC, the volatiles were removed in vacuo 
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S.4 1H NMR TITRATION OF TRIAZOLOPHANE 2 AND BINDING ENERGY  
DETERMINATION 

Triazolophane 2 solution in 400 L CD2Cl2 at 500 M was loaded into a capped NMR tube, and 
the initial spectrum was recorded. Aliquots of tetrabutylammonium chloride (TBA+�•Cl�–) solution 
in CD2Cl2 at 20 mM were then added into the NMR tube with a microsyringe through rubber 
septa. Spectra were recorded after each addition.  

 

Chemical shift migrations of protons a, b, c, d, e (Scheme S1), and the -methylene proton on 
tetrabutylammonium cation were modeled by HypNMR2008S3 with a set of three equilibria 
(Figure S2)S4. TBA+�•Cl�– ion-pair formation was included in the binding model. Literature value 
of the ion-pair stability ( GTBA+�•Cl�– = �–27.7 kJ mol�–1, logKip = 4.86)S5 was used and fixed. 

 

2 + Cl�– = 2�•Cl�–   Ka  (S1) 
TBA+ + Cl�– = TBA+�•Cl�–  Kip  (S2) 

2�•Cl�– + TBA+ = 2�•Cl�–�•TBA+  Kipc  (S3) 

 

A free fit, where both Ka and Kipc are allowed to float, generated unrealistic chemical shift values 
(see below). Therefore, to obtain accurate outcome to the fitting analysis, the value of Ka was 
systematically varied from 3.8 �– 4.4 while Kipc was optimized using the software. Each fitting 
result (Table S1) was examined and would be considered realistic only if all of the following 
conditions apply: (1) The generated chemical shift values of the aromatic protons (a-c) are in the 
range of 6.5 < < 11.0 ppm; (2) The generated chemical shift values of the aliphatic protons (d-e, 

-CH2) are in the range of 2.0 < < 5.5 ppm; (3) for each proton included in the fitting, the 
differences in the chemical shift positions between 2�•Cl�– and 2�•Cl�–�•TBA+ are smaller than 1.0 
ppm. The Cl  binding energy of triazolophane 2 was determined as logKa = 4.1 ± 0.2 ( Ga = �–23 
± 2 kJ mol�–1) on the basis of the three criteria used above. Similarly, the stability of the ion-pair 
complex was found to be logKipc = 3.6 ± 0.2 ( Gipc = �–21 ± 2 kJ mol�–1). 

 

Table S1. Result of HypNMR2008 data fitting as the value of logKa was systematically varied. 

logKa 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5a 
log(Ka�•Kipc) 7.8 7.8 7.8 7.7 7.7 7.7 7.6 7.4a 

logKipc 4.0 3.9 3.8 3.6 3.5 3.4 3.2 2.9 
Sigmab 4.5 3.9 3.2 2.6 2.0 1.5 1.1 1.0 

Realistic? no no partially yes yes partially no no 

a. Both logKa and log(Ka�•Kipc) are allowed to float. b. Sigma represents the residual of fitting. 
Smaller sigma values indicate a better match between the experimental and the calculated value. 
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Sample HypNMR2008 Output (realistic fitting): 
Sigma = 2.61 

  value standard deviation 

log beta(TCl) 4.86 fixed 

log beta(MCl) 4.10 fixed 

log beta(MClT) 7.74 0.01 

 

Chemical shifts for each nucleus (error on 4th decimal place) 
 M T TCl MCl MClT Error 

a 7.28   10.23 9.71 0.02 

b 7.67   8.98 8.75 0.01 

c 7.42   8.17 8.04 0.01 

e 4.61   4.43 4.51 0.01 

d 2.84   2.92 2.95 0.01 

a-CH2-  3.08 3.34  3.15 0.01 

 

 

 

Sample HypNMR2008 Output (unrealistic fitting): 
Sigma = 0.98 

  value standard deviation 

log beta(TCl) 4.86 fixed 

log beta(MCl) 4.53 0.02 

log beta(MClT) 7.42 0.04 

 

Chemical shifts for each nucleus (error on 4th decimal place) 
 M T TCl MCl MClT Error 

a 7.28   9.39 11.50 0.03 

b 7.67   8.61 9.55 0.27 

c 7.42   7.96 8.51 0.01 

e 4.61   4.48 4.48 0.12 

d 2.84   2.90 3.06 0.01 

a-CH2-  3.13 3.33  3.11 0.07 
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S.6 DIFFUSION NMR TITRATION OF TRIAZOLOPHANE 2 
Solutions containing known amounts of triazolophane 2 and TBA+�•Cl�– were prepared in a sealed 
NMR tube and PGSE NMR measurements were performed. The self-diffusion coefficients, D, of 
triazolophane protons (e and f) and tetrabutylammonium protons the -methylene and -methyl 
protons) were calculated (Table S2). In a solution containing triazolophane 2 and TBA+�•Cl�– 
which exist in the presence of all three equilibria, the observed diffusion coefficient based on the 
triazolophane (Eq. S5) and TBA+ (Eq. S6) signals can be represented as follows: 

 

Dt,obs(2) = Dt (2) × f (2) + Dt (2�•Cl�–) × f (2�•Cl�–) + Dt (2�•Cl�–�•TBA+) × f (2�•Cl�–�•TBA+) (S5) 

Dt,obs(TBA+) = Dt (TBA+) × f (TBA+) + Dt (TBA+�•Cl�–) × f (TBA+�•Cl�–) + Dt (2�•Cl�–�•TBA+) × f 
(2�•Cl�–�•TBA+)           (S6) 

 

Where is Dt,obs(2) and Dt,obs(TBA+) are the observed self-diffusion coefficients based on 
triazolophane 2 and TBA+, respectively. Dt is the self-diffusion coefficient of the species in 
interest, and the f value is the fraction number of species in interest as relative to the total 
population of the species that are in exchange with the species in interest. 

 

The result of the dffusion NMR titration justifies the inclusion of the ion-pair complexation 
equilibrium (Kipc, Eq. S3) in the binding model. The experimentally observed diffusion 
coeffecients of the small TBA+ ccation from a solution of 2:TBA+�•Cl�– at 1:0.75 and 1:1.5 molar 
ratios ([2] = 1 mM, Table S2) were smaller than that of free TBA+ and TBA+�•Cl�– (i.e., 10.1±0.1 
< 10.6±0.1). Thus, the only explanation that can rationalize these observations is that the the 
TBA+ cation is involved in an equilibrium to form a larger species, i.e., the ion-pair complex 
2�•Cl�–�•TBA+.  

 

The diffusion coefficient of 2 (8.1±0.2) was observed to get smaller (7.6±0.2) with increasing 
amounts of TBA+�•Cl�– (Table S2). However, this observation is not as conclusive as the diffusion 
coefficient of TBA+, on account of the fact that the diffusion coefficient of 2�•Cl�– is unknown. 

 

Table S2. Diffusion coefficients (±0.1 × 10�–10 m2 s�–1) generated from control and titration NMR 
experiments. 

 TBA+  Triazolophane 2 
 H H Ave.  He Hf Ave. 
TBA+�•Cl�–   10.6     
TBA+   10.6     
2a     7.9 8.3 8.1±0.2
2 + TBA+�•Cl�– (0.75 equiv.)b 10.0 10.2 10.1  7.8 8.0 7.9 
2 + TBA+�•Cl�– (1.5 equiv.)b 9.9 10.0 10.0  7.4 7.7 7.6±0.2
a. [2] = 0.5 mM. b. [2] = 1 mM. 
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phenylene is present) are calculated (Table S3). The corresponding deformation energy for 
receptor 2 (Eq. S11) and 3 (Eq. S14) can also be estimated. 
 
2 = 2*   (S11) G = 23  ( 44.4) = 21.4 kJ mol 1 
2* + Cl  = 2�•Cl  (S12) G = 48  2 × ( 3.6) + 2 × ( 1.3) = 44.4 kJ mol 1  
2 + Cl  = 2�•Cl  (S13) G = 23 kJ mol 1  
 
3 = 3*   (S14) G = 11  ( 51.6) = 40.6 kJ mol 1  
3* + Cl  = 3�•Cl  (S15) G = 48 + 3.6 = 51.6 kJ mol 1  
3 + Cl  = 3�•Cl  (S16) G = 11 kJ mol 1  

 
Table S3. Expected net chloride binding energy and the fee energy contribution from each types 
of donors. 

Unit: kJ mol 1 H-bond strength 
of single donor 1 2 3 

Triazole CH 8.9 8.9 × 4 = 35.6 8.9 × 4 = 35.6 8.9 × 4 = 35.6 

N-linked Ph CH 3.6 3.6 × 2 = 7.2  3.6 × 3 = 10.8 

C-linked Ph CH 2.7 2.7 × 2 = 5.4 2.7 × 2 = 5.4 2.7 × 2 = 5.4 

Methylene CH 1.3  1.3 × 2 = 2.6  

Expected G  48 44 52 

Observed G  38 23 11 

 
The contribution from each type of pre-organization can be quantified by comparing the 
appropriate deformation free energies: 
 
Macrocyclic effects: 
Benefit of the highly pre-organized macrocycle 1 compared to poorly pre-organized oligomer 3 

G(1)  G(7) = 10  41 = 31 kJ mol 1 

 
Benefit of the partially pre-organized macrocycle 2 compared to poorly pre-organized oligomer 3 

G(4)  G(7) = 21  41 = 20 kJ mol 1 

 

Conformational Pre-organization (aka rigidity) 
Benefit of highly pre-organizing the macrocycle 1 compared to 2 

G(1)  G(4) = 10  21 = 11 kJ mol 1 
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