Diastereoselective Hydrogenation of Imines Using

B(C₆F₅)₃

Zachariah M. Heiden and Douglas W. Stephan*

Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6 Canada

Supporting Information

Index

1)	Synthetic and Experimental Procedures	S2
2)	Multinuclear NMR of Reaction of Imine ${\bf 3}$ with $B(C_6F_5)_3$ and H_2	S20
3)	^1H NMR of Catalytic Reductions of Chiral Imines with $B(C_6F_5)_3$	S25
4)	Sample Calculation of Borohydride Cone Angles	S32
5)	3D Coordinates of Calculated Triel Hydrides for Cone Angle Calculations	S34
6)	References	S41

1) Synthetic and Experimental Procedures

All preparations and manipulations were performed on a double manifold N₂/vacuum line with Schlenk-type glassware or in a N₂-filled VAC glove box. Solvents (Aldrich) were dried using an Innovative Technologies solvent system, and degassed before use. NMR spectra were obtained on a Bruker Avance 400 MHz spectrometer and spectra were referenced to residual solvent (¹H, ¹³C) or externally (¹¹B; BF₃·OEt₂, ¹⁹F; CFCl₃, ³¹P; 85% H₃PO₄). Chemical shifts are reported in ppm. NMR solvents were purchased from Cambridge Isotopes, dried over CaH₂, vacuum distilled prior to use and stored over 4Å molecular sieves in the glovebox. B(C₆F₅)₃ was generously provided by Nova Chemicals (from Boulder Scientific Company).

N-(1-(S)-phenylethyl)-1-phenylethanimine (3). A 125 mL toluene solution of 10 ml (85 mmol) acetophenone and 11 ml (86 mmol) (S)-α-methylbenzylamine in the presence of 15 mL of 4Å molecular sieves was refluxed in a Dean-Stark apparatus. The water was removed and the toluene solution was reduced down to 50 mL by distillation. The reaction mixture was then filtered and the solvent was removed under reduced pressure. The resulting yellowish-brown colored liquid was distilled twice under vacuum resulting in a colorless liquid. The imine was found to be stable to the air (with no signs of degradation) over the course of a week, and was stored for extended periods of time under a nitrogen atmosphere in a glovebox. Yield 8.83 g (46.5 %). ¹H NMR (400 MHz, δ 1.51 (d, 3H, ³J_{HH} = 6.5 Hz, PhCH*Me*N=C(Me)Ph), 1.78 (s, 3H, $C_6 D_6$) PhCHMeN=C(*Me*)Ph), 4.64 (q, 1H, ${}^{3}J_{HH} = 6.5$ Hz, PhC*H*MeN=C(Me)Ph), 7.07-7.92 (m, ¹³C NMR (100 MHz, C_6D_6) δ 15.10, 26.06, 60.51, 127.18, 10H. phenvl protons). 127.42, 127.58, 128.62, 129.05, 129.98, 141.88, 147.31, 162.77. Anal. Calc. C₁₆H₁₇N : C 86.05, H 7.67, N 6.27; Found: C 85.99, H 8.40, N 6.30. Spectroscopic data was found to match with the data previously reported.¹

Figure S1. ¹H NMR spectrum (left) benzylic region and (right) aliphatic region of imine **3** in C_6D_6 .

Figure S2. ¹H NMR spectrum of the phenyl region of imine **3** in C_6D_6 .

Figure S3. ¹³C{¹H} NMR spectrum of imine 3 in C_6D_6 .

N-(1-(S)-cyclohexylethyl)-1-phenylethanimine (2). A similar procedure to the synthesis of N-(1-(*S*)-phenylethyl)-1-phenylethanimine was used where (*S*)-α-methylbenzylamine was replaced with 1-(*S*)-cyclohexylethyl amine. Yield 5.16 g (63 %). ¹H NMR (400 MHz, C₆D₆) δ 0.92-1.33 (m, 5H, cyclohexyl protons), 1.10 (d, 3H, J=6.7 Hz, C₆H₁₁CH*M*eN=C(Me)Ph), 1.48-1.91 (m, 6H, cyclohexyl protons), 1.85 (s, 3H, C₆H₁₁CHMeN=C(Me)Ph), 3.31 (q, 1H, J=6.3 Hz, C₆H₁₁C*H*MeN=C(Me)Ph), 7.14-7.22 (m, 3H, phenyl protons), 7.84-7.90 (m, 2H, phenyl protons). ¹³C NMR (100 MHz, C₆D₆) δ 14.53, 19.16, 27.32, 27.36, 27.56, 30.36, 30.63, 45.53, 61.30, 127.47, 128.53, 129.67, 142.20, 160.95. Anal. Calc. C₁₄H₁₃N : C 83.79, H 10.11, N 6.11; Found: C 83.80, H 10.72, N 6.14. Spectroscopic data was found to match with the data previously reported.¹

Figure S5. ¹H NMR spectrum of the phenyl region of imine **2** in C_6D_6 .

Figure S6. ¹³C{¹H} NMR spectrum of imine **2** in C_6D_6 .

N-(2,2-(*S***)-dimethyl-1-butyl)-1-phenylethanimine (1).** A similar procedure to the synthesis of N-(1-(*S*)-phenylethyl)-1-phenylethanimine was used where (*S*)- α -methylbenzylamine was replaced with 2,2-(*S*)-dimethyl-1-butylamine. Yield 5.18 g (60 %). ¹H NMR (400 MHz, C₆D₆) δ 0.95 (d, ³J_{HH} = 6.6 Hz, 3H, Me₃CCH*Me*N=C(Me)Ph), 0.97 (s, *Me*₃CCHMeN=C(Me)Ph), 1.79 (s, 3H, Me₃CCHMeN=C(Me)Ph), 3.20 (q, ³J_{HH} = 6.6 Hz, 1H, Me₃CC*H*MeN=C(Me)Ph), 7.05-7.85 (5H, phenyl protons). ¹³C NMR (100 MHz, C₆D₆) δ 14.24, 16.35, 27.15, 35.43, 64.83, 127.42, 128.56, 129.66, 142.21, 160.83. Spectroscopic data was found to match with the data previously reported.²

Figure S7. ¹H NMR spectrum of the aliphatic and benzylic region of imine 1 in C₆D₆.

Figure S8. ¹H NMR spectrum of the phenyl region of imine **1** in C_6D_6 .

Figure S9. ¹³C{¹H} NMR spectrum of imine **1** in C_6D_6 .

N-(1-(S)-phenylethyl)-propiophenonimine (4). A similar procedure to the synthesis of N-(1-(S)-phenylethyl)-1-phenylethanimine was used where acetophenone was replaced with propiophenone. A 3:2 E:Z isomer ratio was found to result from the described procedure. Yield 12.13 g (68 %). ¹H NMR (400 MHz, C_6D_6) δ 0.75 (t, ³J_{HH} = 7.9 Hz, 3H, PhCHMeN=C(CH₂CH₃)Ph, E-isomer), 1.12 (t, $^{3}J_{HH}$ = 7.9 Hz, 3H, $^{3}J_{\text{HH}}$ 6.6 PhCHMeN=C(CH₂CH₃)Ph, Z-isomer), 1.38 = (d, Hz, 3H. $^{3}J_{\text{HH}}$ PhCHMeN=C(CH₂CH₃)Ph, = Z-isomer), 1.49 6.6 (d, Hz, 3H. PhCHMeN=C(CH₂CH₃)Ph, E-isomer), 2.41 (m, 2H, PhCHMeN=C(CH₂CH₃)Ph, E and Zisomer), 4.51 (q, ³J_{HH} = 6.1 Hz, 1H, PhC*H*MeN=C(CH₂CH₃)Ph, Z-isomer), 4.72 (q, ³J_{HH} = 6.4 Hz, 1H, PhCHMeN=C(CH₂CH₃)Ph, E-isomer), 6.70-7.95 (20H, phenyl protons). ¹³C NMR (100 MHz, C₆D₆) δ 11.11, 12.61, 21.83, 26.41, 26.54, 36.69, 60.08, 61.56, 61.60, 126.84, 127.15, 127.26, 127.35, 127.42, 127.95, 128.78, 128.97, 129.02, 129.09,

129.96, 140.14, 140.19, 140.50, 140.53, 147.52, 147.54, 147.57, 167.34, 170.34. Spectroscopic data was found to match with the data previously reported.^{3,4}

Figure S10. ¹H NMR spectrum of imine 4 in CDCl₃.

Figure S11. ¹H NMR spectrum of aliphatic and benzylic region of imine 4 in CDCl₃.

Figure S12. ¹H NMR spectrum of the phenyl region of imine 4 in CDCI₃.

Figure S13. $^{13}C{^1H}$ NMR spectrum of imine 4 in C_6D_6 .

N-(1-(S)-phenylethyl)-isobutyrophenonimine (5). A similar procedure to the synthesis of N-(1-(S)-phenylethyl)-1-phenylethanimine was used where acetophenone was replaced with isobutyrophenone. The imine was found to be moderately moisture sensitive and slowly hydrolyzed in air. Yield 4.50 g (34 %). ¹H NMR (400 MHz, C₆D₆) δ ¹H NMR (400 MHz, C₆D₆) δ 1.10 (d, ³J_{HH} = 6.8 Hz, 3H, PhCHMeN=C(CHCH₃CH₃)Ph), 1.18 (d, ³J_{HH} = 6.8 Hz, 3H, PhCHMeN=C(CHCH₃CH₃)Ph), 1.39 (d, ³J_{HH} = 6.4 Hz, 3H, ³J_{HH} PhCH*Me*N=C(CHCH₃CH₃)Ph), 2.68 (septet, = 6.8 Hz, 1H, $^{3}\mathsf{J}_{\mathsf{H}\mathsf{H}}$ PhCHMeN=C(CHCH₃CH₃)Ph), 4.47 6.4 Hz, 1H, (q,

PhC*H*MeN=C(CHCH₃CH₃)Ph), 6.78-7.44 (10H, phenyl protons). ¹³C NMR (100 MHz, C_6D_6) δ 20.59, 20.70, 26.33, 39.58, 61.37, 127.06, 127.25, 128.23, 128.79, 128.95, 139.55, 147.63, 173.82. Spectroscopic data was found to match with the data previously reported.⁵

Figure S17. ¹³C{¹H} NMR spectrum of imine 5 in C_6D_6 .

N-(1-(*S***)-phenylpropyl)-propiophenonimine (6).** A similar procedure to the synthesis of N-(1-(*S*)-phenylethyl)-1-phenylethanimine was used where acetophenone was replaced with propiophenone and (S)-methylbenzylamine was replaced with (S)-ethylbenzylamine. A 8:7 E:Z isomer ratio was found to result from the described procedure. Yield 4.43 g (51 %). ¹H NMR (400 MHz, C_6D_6) δ 0.75 (t, ³J_{HH} = 7.5 Hz, 6H, PhCH(CH₂CH₃)N=C(CH₂CH₃)Ph, E and Z-isomers), 0.87 (t, ³J_{HH} = 7.2 Hz, 3H, PhCH(CH₂CH₃)N=C(CH₂CH₃)Ph, E and Z-isomers), 2.33-2.55 (m, 4H, PhCH(CH₂CH₃)N=C(CH₂CH₃)Ph, E and Z-isomers), 4.24 (dd, ³J_{HH} = 6.5, 6.8 Hz, 1H,

 $PhCH(CH_2CH_3)N=C(CH_2CH_3)Ph$, Z-isomer), 4.49 (dd, ${}^{3}J_{HH}$ = 6.5, 6.8 Hz, 1H, PhCH(CH₂CH₃)N=C(CH₂CH₃)Ph, E-isomer), 6.74-7.92 (20H, phenyl protons). ¹³C NMR (100 MHz, C₆D₆) δ 11.18, 11.56, 11.72, 12.41, 22.08, 33.53, 33.88, 35.69, 66.68, 68.12, 127.01, 127.18, 127.28, 127.86, 127.92, 128.32, 128.77, 128.88, 128.94, 128.98, 129.93, 140.42, 140.58, 146.30, 146.49, 168.06, 171.00. Spectroscopic data was found to match with the data previously reported.⁶

Figure S18. ¹H NMR spectrum of imine 6 in CDCl₃.

Figure S21. ¹³C{¹H} NMR spectrum of imine 6 in C_6D_6 .

N-(benzyl)-(D)-camphorimine (7). A similar procedure to the synthesis of N-(1-(*S*)-phenylethyl)-1-phenylethanimine was used where (*S*)-α-methylbenzylamine was replaced with benzylamine and acetophenone with (D)-(+)-camphor. Yield 7.54 g (56 %). ¹H NMR (400 MHz, C_6D_6) δ 0.66 (s, 3H), 0.78 (s, 3H), 0.99 (m, 1H), 1.14 (s, 3H), 1.36 (m, 1H), 1.60 (m, 4H), 2.09 (dt, 1H, J= 3.7, 16.7 Hz), 4.34 (m, 2H), 7.11 (t, 1H, J=7.4 Hz), 7.24 (t, 2H, J=8.4 Hz), 7.44 (d, 2H, J=7.4 Hz). ¹³C NMR (100 MHz, C_6D_6) δ 12.21, 19.49, 20.13, 28.14, 32.91, 35.96, 44.66, 47.46, 54.40, 56.12, 126.86, 128.24, 128.81, 141.99, 181.53. Anal. Calc. $C_{25}H_{23}N$: C 84.59, H 9.60, N 5.80; Found: C

Figure S22. ¹H NMR spectrum of the aliphatic region of imine 7 in C_6D_6 .

Figure S23. ¹H NMR spectrum of the (left) phenyl region and (right) benzylic region of imine **7** in C_6D_6 .

Figure S24. ¹³C{¹H} NMR spectrum of imine **7** in C_6D_6 .

N-(phenyl)-(D)-camphorimine (8). A similar procedure to the synthesis of N-(1-(*S*)-phenylethyl)-1-phenylethanimine was used where (*S*)-α-methylbenzylamine was replaced with aniline and acetophenone with (D)-(+)-camphor. Yield 7.23 g (48 %). ¹H NMR (400 MHz, C₆D₆) δ 0.72 (s, 3H,), 0.75 (s, 3H), 0.98 (m, 1H), 1.16 (s, 3H), 1.40-2.08 (m, 6H), 6.27-7.20 (m, 5H, phenyl protons). ¹³C (100 MHz, C₆D₆) δ 12.00, 19.44, 20.04, 28.05, 32.77, 36.47, 44.49, 47.40, 54.47, 120.06, 123.46, 129.59, 153.48, 183.20. Anal. Calc. C₁₆H₂₁N : C 84.53, H 9.31 , N 6.16; Found: C 84.16, H 10.00, N 6.12. Spectroscopic data was found to match with the data previously reported.⁸

Figure S25. ¹H NMR spectrum of the aliphatic region of imine **8** in C_6D_6 .

Figure S26. ¹H NMR spectrum of the phenyl region of imine **8** in C₆D₆.

Figure S27. $^{13}C{^1H}$ NMR spectrum of imine 8 in C₆D₆.

N-(benzyl)- menthonimine (9). A similar procedure to the synthesis of N-(1-(*S*)-phenylethyl)-1-phenylethanimine was used where (*S*)-α-methylbenzylamine was replaced with benzylamine and acetophenone with (L)-(-)-menthone. Yield 7.32 g (52 %). Three isomers were found to be present. ¹H NMR (400 MHz, C₆D₆) δ 0.68 (d, J = 6.5 Hz), 0.77 (d, J = 6.5 Hz), 0.83 (d, J = 6.5 Hz), 0.87 (d, J = 6.5 Hz), 0.99 (d, J = 7.1 Hz), 1.03 (d, J = 6.7 Hz), 0.90-2.58 (cyclohexyl protons), 4.47 (m, benzylic protons), 7.05-7.50 (phenyl protons). ¹³C NMR (100 MHz, C₆D₆) δ 19.74, 20.71, 21.03, 21.50, 21.96, 22.54, 22.64, 22.68, 23.11, 27.16, 27.52, 27.61, 28.50, 28.88, 29.87, 30.66, 34.33, 34.69, 34.74, 34.88, 35.99, 37.84, 44.28, 45.74, 53.88, 54.38, 54.67, 55.21, 126.85, 126.90, 128.25, 128.43, 128.49, 128.83, 128.86, 142.31, 142.40, 142.45,

173.24, 174.46, 175.09. Anal. Calc. $C_{17}H_{25}N$: C 83.89, H 10.35 , N 5.75; Found: C 83.52, H 10.70, N 5.77. Spectroscopic data was found to match with the data previously reported. 9

Figure S28. ¹H NMR spectrum of the aliphatic region of imine 9 in C₆D₆.

Figure S29. ¹H NMR spectrum of the phenyl and benzylic region of imine 9 in C₆D₆.

Figure S30. ${}^{13}C{}^{1}H$ NMR spectrum of imine **9** in C₆D₆.

N-(phenyl)- menthonimine (10). A similar procedure to the synthesis of N-(1-(*S*)-phenylethyl)-1-phenylethanimine was used where (*S*)-α-methylbenzylamine was replaced with aniline and acetophenone with (L)-(-)-menthone. Yield 6.82 g (51 %). Three isomers were found to be present. ¹H NMR (400 MHz, C₆D₆) δ 0.48 (d, J = 6.3 Hz), 0.57 (d, J = 6.3 Hz), 0.66 (d, J = 6.3 Hz), 0.82 (d, J = 7.2 Hz), 0.84 (d, J = 6.3 Hz), 0.92 (d, J = 6.3 Hz), 0.96 (d, J = 7.2 Hz), 1.01 (d, J = 6.3 Hz), 0.86-2.50 (cyclohexyl protons), 6.60-7.20 (phenyl protons). ¹³C NMR (100 MHz, C₆D₆) δ 19.61, 20.26, 21.00, 21.80, 22.03, 22.31, 22.39, 22.47, 23.06, 27.23, 27.38, 27.79, 28.48, 28.69, 29.61, 30.01, 30.23, 34.41, 35.16, 35.46, 36.65, 36.92, 39.89, 44.65, 46.35, 53.19, 54.32, 120.00, 120.13, 120.25, 122.98, 123.03, 123.18, 129.41, 129.47, 129.47, 129.49, 152.44, 152.49, 152.75, 174.18, 175.62, 176.46. Spectroscopic data was found to match with the data previously reported.¹⁰

Figure S31. ¹H NMR spectrum of the aliphatic region of imine 10 in C_6D_6 .

Figure S32. ¹H NMR spectrum of the phenyl region of imine 10 in C_6D_6 .

Figure S33. ${}^{13}C{}^{1}H$ NMR spectrum of imine **10** in C₆D₆.

Stoichimetric reduction of chiral imines with NaBH₃CN or NaHB(OAc)₃. The amines were prepared by a similar procedure previously described by Abdel-Magid and coworkers.¹¹ One gram (~ 5 mmol) imine was dissolved in 30 mL acetonitrile and treated with the respective reducing agent (6 mmol) and acetic acid (6 mmol). The slurry was allowed to stir for 16 hours and was quenched with 50 mL of a 2 M NaOH solution. Further addition of NaOH was required if the aqueous layer was not basic. Extraction and distillation of the organic layer under reduced pressure resulted in the respective amines which matched the previously described literature values (see also Figures S44-S55).^{3,10,12}

Stoichiometric hydrogenation of chiral imines with B(C_6F_5)₃.10 mg (0.02 mmol) B(C_6F_5)₃, 8 mg (0.05 mmol) 1,3,5-trimethoxybenzene (internal standard), and the appropriate amount of imine was dissolved in 0.8 mL C_6D_5Br or toluene-d₈. The solution was transferred to J. Young NMR Tube and degassed by three freeze pump thaw cycles followed by a fill with H₂ and evacuation before pressurizing the reaction vessel at 1 atm H₂ at 77K (~ 4 atm H₂ at 298K). The reaction was monitored at room temperature for 48 hours followed by heating at 70°C for 48 hours. Reaction products and diastereomer excess was determined by ¹H NMR spectroscopy and integrated with respect to the resonances of 1,3,5-trimethoxybenzene.

Catalytic hydrogenation of chiral imines with B(C₆**F**₅)_{3.} 10 mg (0.02 mmol) B(C₆**F**₅)₃ and the appropriate amount of imine was dissolved in 8 mL toluene. The solution was transferred to a thick walled reaction vessel and degassed by three freeze pump thaw cycles followed by a fill with H₂ and evacuation before pressurizing the reaction vessel at 1 atm H₂ at 77K (~ 4 atm H₂ at 298K). The reaction was heated for the designated amount of time (Table 3) and the pressure was vented and the solvent was removed under reduced pressure. Reaction products and diastereomer excess was determined by NMR spectroscopy (Figures S44-S55).

N-benzyl bornylammonium HB(C₆**F**₅)₃. A colorless toluene solution (15 mL) containing 150 mg (0.62 mmol) imine **7** and 320 mg (0.63 mmol) B(C₆F₅)₃ was degassed by three freeze pump thaw cycles followed by a fill with H₂ and evacuation before pressurizing the reaction vessel at 1 atm H₂ at 77K (~ 4 atm H₂ at 298K). The reaction was heated at 115°C for 72 hours. The pressure was vented and the solvent was removed under reduced pressure, resulting in a colorless oil. Thirty mL of n-hexanes was added and the slurry was allowed to triturate for 24 hours, resulting in a colorless solid. The slurry was filtered resulting in a white solid which was recrystallized from 1,2-dichloroethane/hexanes and dried under vacuum for three hours. Yield: 0.174 g (37 %). ¹H NMR (400 MHz, CD₃CN) δ 0.86 (s, 3H, -CH₃), 0.93 (s, 3H, -CH₃), 0.96 (s, 3H, -CH₃), 1.05-2.00 (5H, cyclohexyl protons), 3.12 (dd, ³J_{HH} = 5.3 Hz, ³J_{HH} = 8.8 Hz, 1H, cyclohexyl proton), 3.62 (br q, ¹J_{BH} = 94.5 Hz, B-*H*), 4.20 (m, 2H, benzylic protons), 6.25 (br s, -NH₂), 7.43-7.56 (m, 5H, phenyl protons). ¹¹B NMR (128 MHz, CD₃CN) δ -25.57 (d, ¹J_{BH} = 94.5 Hz). ¹⁹F NMR (377 MHz, CD₃CN) δ -134.66 (s, 2F), -164.98 (t, ³J_{FF} = 19.4 Hz, 2F), -168.30 (m, 1F).

2) Multinuclear NMR of Imine 3 with $B(C_6F_5)_3$ and H_2

Figure S34. ¹H NMR (C_6D_5Br) of imine **3** with one equivalent of $B(C_6F_5)_3$ before H_2 .

Figure S35. ¹H NMR (C_6D_5Br) of benzylic CHMe region of imine **3** with one equivalent of $B(C_6F_5)_3$ before H_2 .

Figure S36. ¹H NMR (C_6D_5Br) of phenyl region of imine 3 with one equivalent of $B(C_6F_5)_3$ before H_2 .

Figure S37. ¹¹B NMR (C_6D_5Br) of imine **3** with one equivalent of $B(C_6F_5)_3$ before H_2 .

Figure S38. ¹⁹F NMR (C_6D_5Br) of imine **3** with one equivalent of $B(C_6F_5)_3$ before H_2 .

Figure S39. ¹⁹F NMR (C_6D_5Br) of imine **3** with one equivalent of $B(C_6F_5)_3$ before H_2 .

Figure S40. ¹⁹F NMR (C_6D_5Br) of imine **3** with one equivalent of $B(C_6F_5)_3$ before H_2 .

Figure S41. ¹H NMR (C_6D_5Br) of imine **3** with one equivalent of $B(C_6F_5)_3$ with H_2 after heating at 65°C for 48 hours.

Figure S42. ¹¹B NMR (C_6D_5Br) of imine **3** with one equivalent of $B(C_6F_5)_3$ with H₂ after heating at 65°C for 48 hours.

Figure S43. ¹⁹F NMR (C_6D_5Br) of imine **3** with one equivalent of $B(C_6F_5)_3$ with H₂ after heating at 65°C for 48 hours.

3) ¹H NMR of Catalytic Reductions of Chiral Imines with $B(C_6F_5)_3$

Figure S44. Crude ¹H NMR (CDCl₃) of catalytic hydrogenation of imine **1** with 10 mol % $B(C_6F_5)_3$.

Figure S45. Crude ¹H NMR (CDCl₃) of catalytic hydrogenation of imine **2** with 10 mol % $B(C_6F_5)_3$.

Figure S46. Crude ¹H NMR (CDCl₃) of catalytic hydrogenation of imine **3** with 10 mol % $B(C_6F_5)_{3.}$

Figure S47. Crude ¹H NMR (CDCl₃) of catalytic hydrogenation of imine **4** with 10 mol % $B(C_6F_5)_3$.

Figure S48. Crude ¹H NMR (CDCl₃) of catalytic hydrogenation of imine **5** with 10 mol % $B(C_6F_5)_3$.

Figure S49. Crude ¹H NMR (CDCl₃) of catalytic hydrogenation of imine **6** with 10 mol % $B(C_6F_5)_3$.

Figure S50. Crude ¹H NMR (CDCl₃) of catalytic hydrogenation of imine **7** with 10 mol % $B(C_6F_5)_3$.

Figure S51. Crude ¹H NMR (CDCl₃) of catalytic hydrogenation of imine **8** with 10 mol % $B(C_6F_5)_3$.

Figure S52. Crude ¹H NMR (CDCl₃) of catalytic hydrogenation of imine **9** with 20 mol % $B(C_6F_5)_3$.

Figure S53. Crude ¹H NMR (CDCl₃) of catalytic hydrogenation of imine **9** with 10 mol % $B(C_6F_5)_3$.

Figure S54. Crude ¹H NMR (CDCl₃) of catalytic hydrogenation of imine 10 with 20 mol % $B(C_6F_5)_3$.

Figure S55. Crude ¹H NMR (CDCl₃) of catalytic hydrogenation of imine **10** with 10 mol % $B(C_6F_5)_3$.

4) Sample Calculation of Borohydride Cone Angle

Van der Waal's Radius¹³ for H : 1.2 Å

$$\begin{aligned} \alpha &= 180^{\circ} - \tau = 180^{\circ} - 109.47^{\circ} = 70.53^{\circ} \\ \beta &= 90 - \alpha = 90^{\circ} - 70.53^{\circ} = 19.47^{\circ} \\ x &= d_{2} \sin \beta = 1.24118 \text{ Å} \cdot \sin(19.47^{\circ}) = 0.413727 \text{ Å} \\ y &= d_{2} \sin \alpha = 1.24118 \text{ Å} \cdot \sin(70.53^{\circ}) = 1.170196 \text{ Å} \\ d_{3} &= \sqrt{\left(x + d_{1} + 1.48 \text{ Å}\right)^{2} + y^{2}} = \sqrt{\left(0.413727 \text{ Å} + 1.24118 \text{ Å} + 1.48 \text{ Å}\right)^{2} + \left(1.170196 \text{ Å}\right)^{2}} = 3.346192 \text{ Å} \\ \gamma &= \tan^{-1} \left(\frac{y}{x + d_{1} + 1.48 \text{ Å}}\right) = \tan^{-1} \left(\frac{1.170196 \text{ Å}}{0.413727 \text{ Å} + 1.24118 \text{ Å} + 1.48 \text{ Å}}\right) = 20.47^{\circ} \\ \varepsilon &= \sin^{-1} \left(\frac{\text{Van der Waal's Radius}}{d_{3}}\right) = \sin^{-1} \left(\frac{1.2}{3.346192}\right) = 21.02^{\circ} \\ \Theta &= 2(y + \varepsilon) = 2(20.47^{\circ} + 21.02^{\circ}) = 82.97^{\circ} \end{aligned}$$

For borohydrides containing different ligands or orientations of ligands, the reported cone angle is the average of the cone angle of each ligand of the low energy structure minimized at the B3LYP/6-31g(d) level of theory.

A value of 1.48 Å was taken as the average distance between a B-H and an imininium carbon in the hydride transfer transition state.¹⁴

Cone Angle (°)
83.0
85.3
92.2
155.7
162.5
163.0
168.0
186.3

Table S1. List of cone angles for main group hydrides of interest.

5) 3D Coordinates of Triel Hydrides for Cone Angle Calculations

Only the lowest energy configurations of the hydrides were used in the cone angle calculations. All coordinates are taken from the .xyz files with units of Ångstroms.¹⁵ All structures were minimized using the Gaussian 03 program. All minimized structures were found to contain no imaginary frequencies. Transition states contained only one imaginary frequency and the transition states were connected to the minimized structures via IRC analysis.

Gray = Carbon Pink = Boron White = Hydrogen Light Green = Fluorine Red = Oxygen

Complex: AIH_4^{-} , gas phase

Al	0.00000	0.00000	0.00000
Н	0.95155	0.95155	0.95155
Н	-0.95155	0.95155	-0.95155
Н	0.95155	-0.95155	-0.95155
Н	-0.95155	-0.95155	0.95155

Complex: BH₄, gas phase

3D Coordinates:

В	0.00000	0.00000	0.00000
Н	0.71660	0.71660	0.71660
Н	-0.71660	0.71660	-0.71660
Н	0.71660	-0.71660	-0.71660
Н	-0.71660	-0.71660	0.71660

Complex: BH₃CN⁻, gas phase

0.00000	0.00000	-1.32000
0.00000	1.16138	-1.71751
1.00578	-0.58069	-1.71751
-1.00578	-0.58069	-1.71751
0.00000	0.00000	0.27403
0.00000	0.00000	1.44406
	0.00000 0.00000 1.00578 -1.00578 0.00000 0.00000	0.000000.000000.000001.161381.00578-0.58069-1.00578-0.580690.000000.000000.000000.00000

Complex: $HBEt_3$, gas phase

В	-0.00084	-0.00128	0.17153
Н	-0.00347	0.00002	1.42314
С	-1.57241	-0.07616	-0.35600
Н	-2.09003	0.88146	-0.16214
Н	-1.60752	-0.19662	-1.45725
С	0.85077	-1.32723	-0.34852
Н	0.28530	-2.25367	-0.13882
Н	0.96212	-1.31010	-1.45114
С	0.72221	1.39764	-0.35208
Н	1.80895	1.36978	-0.15099
Н	0.64281	1.48786	-1.45398
С	2.24930	-1.49942	0.26812
Н	2.78279	-2.40608	-0.07133
Н	2.89930	-0.64354	0.03612
Н	2.18237	-1.55068	1.36442
С	0.17905	2.69518	0.26995
Н	0.68720	3.61116	-0.08312
Н	-0.89162	2.82429	0.05734
Н	0.27788	2.66795	1.36471
С	-2.42813	-1.18995	0.27141
Н	-3.47664	-1.20377	-0.07826
Н	-2.01028	-2.18483	0.06042
Н	-2.44967	-1.08722	1.36592

Complex: HBPh₃, gas phase

В	0.00067	-0.00034	-0.78085
С	1.26272	-0.94702	-0.31170
С	1.60777	-1.23998	1.02435
С	2.09517	-1.53518	-1.28570
С	2.69179	-2.05247	1.36615
Н	1.01269	-0.82258	1.83366
С	3.18413	-2.35102	-0.96532
Н	1.87185	-1.34025	-2.33314
С	3.49190	-2.61716	0.36996
Н	2.91351	-2.24651	2.41546
Н	3.79409	-2.78010	-1.76039
Н	4.33799	-3.25137	0.63050
С	-1.45138	-0.61973	-0.31461
С	-1.87045	-0.79439	1.02104
С	-2.38638	-1.02087	-1.29047
С	-3.11710	-1.32575	1.36105
Н	-1.20413	-0.50741	1.83157
С	-3.63836	-1.55504	-0.97192
Н	-2.11238	-0.90580	-2.33770
С	-4.01484	-1.71230	0.36311
Н	-3.38971	-1.43897	2.41022
Н	-4.32240	-1.84853	-1.76830
Н	-4.98799	-2.12687	0.62209
С	0.18894	1.56562	-0.30999
С	0.24580	2.01122	1.02728
С	0.30788	2.57940	-1.28223
С	0.40811	3.35536	1.37232
Н	0.16164	1.28738	1.83511
С	0.47099	3.92960	-0.95860
Н	0.26987	2.28832	-2.33050
С	0.52267	4.32963	0.37790
Н	0.44577	3.64419	2.42258
Н	0.55777	4.67178	-1.75227
Н	0.64937	5.37884	0.64070
Н	0.00253	0.00005	-2.01107

Complex: $HB(OAc)_3$, gas phase

3D Coordinates:

В	-0.02013	-0.05971	-0.79155
0	-1.09226	-1.07989	-0.93858
0	1.18768	-0.78323	-0.24160
0	-0.38067	0.96249	0.24498
С	2.37047	-0.20571	-0.14421
С	-0.93955	2.12988	-0.03131
С	-1.62932	-1.87384	-0.02385
0	2.64445	0.95442	-0.40691
0	-1.42165	2.48150	-1.09348
0	-2.50436	-2.67641	-0.31722
С	-0.91931	3.04154	1.19374
Н	0.11875	3.24309	1.48159
Н	-1.43136	3.98062	0.97205
Н	-1.40167	2.54724	2.04486
С	-1.12366	-1.77068	1.41263
Н	-0.06805	-2.05487	1.45357
Н	-1.18417	-0.73912	1.76939
Н	-1.71879	-2.43399	2.04463
С	3.42434	-1.19015	0.36225
Н	3.16026	-1.53885	1.36771
Н	3.45985	-2.07309	-0.28563
Н	4.40391	-0.70769	0.38870
Н	0.19856	0.41803	-1.87207

Complex: Selectride (tri-sec-butylborohydride), gas phase

В	0.09617	-0.03463	0.68568
Н	0.10827	-0.27514	1.90668
С	-0.72769	1.42433	0.49799
Н	0.00175	2.19055	0.82383
С	-0.57120	-1.38616	-0.05484
Н	-0.29713	-1.40263	-1.12953
С	1.69069	0.30038	0.20633
Н	1.62712	1.07401	-0.58503
С	-0.00965	-2.67974	0.57796
Н	-0.28569	-3.60159	0.03859
Н	1.08141	-2.66384	0.64309
Н	-0.38169	-2.77920	1.60816
С	2.46514	0.94388	1.37513
Н	3.44415	1.36980	1.09369
Н	1.88339	1.75319	1.83350
Н	2.64544	0.20157	2.16617
С	-1.94271	1.61627	1.42964
Н	-2.34611	2.64417	1.42803
Н	-2.77520	0.95085	1.16648
Н	-1.66145	1.37739	2.46291
С	2.54435	-0.82494	-0.42151
Н	2.84660	-1.54392	0.35631
Н	1.93672	-1.39544	-1.13669
С	3.81345	-0.35454	-1.15592
Н	4.50896	0.16503	-0.48498
Н	4.36134	-1.19503	-1.60807
Н	3.55848	0.34580	-1.96358
С	-2.11609	-1.46037	-0.01715
Н	-2.44723	-1.48323	1.03322
Н	-2.54057	-0.54404	-0.44138
С	-2.75778	-2.64795	-0.75925
Н	-2.48333	-3.61339	-0.31745
Н	-3.85630	-2.58552	-0.74962
Н	-2.43905	-2.67013	-1.81125
С	-1.07524	1.79935	-0.96286
Н	-1.93547	1.20836	-1.31148

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Н	-0.23818	1.51333	-1.61602
С	-1.38308	3.28610	-1.21519
Н	-0.53154	3.91544	-0.92138
Н	-1.59421	3.48964	-2.27599
Н	-2.25245	3.62744	-0.63868

Complex: $HB(C_6F_5)_3$, gas phase

F	-1.1921	2.1346	0.0479
F	-0.7702	4.6647	0.7598
F	1.7315	5.4985	1.5487
F	3.7913	3.7019	1.5859
F	3.4012	1.1622	0.8792
F	1.3593	-0.0417	2.8821
F	0.0816	-1.4728	4.7409
F	-1.9818	-3.1297	4.0464
F	-2.7400	-3.3161	1.4207
F	-1.4591	-1.9201	-0.4654
F	1.2452	-0.2085	-2.9988
F	3.2001	-1.5493	-4.1918
F	5.0545	-2.9369	-2.7220
F	4.8832	-2.9321	0.0077
F	2.9363	-1.5868	1.2441
С	1.0913	1.5038	0.4097
С	0.0901	2.4702	0.4300
С	0.2610	3.8009	0.7936
С	1.5244	4.2248	1.1897
С	2.5695	3.3054	1.2035
С	2.3370	1.9824	0.8261
С	0.0217	-0.9010	1.1091
С	0.3607	-0.8423	2.4639
С	-0.2885	-1.5765	3.4556
С	-1.3368	-2.4225	3.1073
С	-1.7120	-2.5217	1.7719
С	-1.0278	-1.7731	0.8176
С	1.9794	-0.8220	-0.7950
С	2.1279	-0.8625	-2.1805

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

С	3.1336	-1.5561	-2.8492
С	4.0741	-2.2611	-2.1079
С	3.9813	-2.2564	-0.7194
С	2.9537	-1.5471	-0.1012
В	0.7372	-0.0249	-0.0794
Н	-0.1057	0.1079	-0.9466

6) References

- (1) Funabiki, K.; Honma, N.; Hashimoto, W.; Matsui, M. Org. Lett. 2003, 5, 2059-2061.
- (2) Jaeger, D. A.; Cram, D. J. J. Am. Chem. Soc. 1971, 93, 5153-61.
- (3) Garcia Ruano, J. L.; Perez-Ossorio, R. Anales de Quimica (1968-1979) **1975**, 71, 93-7.
- (4) Perez-Ossorio, R.; Garcia Ruano, J. L.; Pascual Rigau, C. Afinidad **1978**, 35, 200-2.
- (5) Boyd, D. R.; Jennings, W. B.; Waring, L. C. J. Org. Chem. **1986**, *51*, 992-5; Perez-Ossorio, R.; del Olmo, V. S. *Tetrahedron Lett.* **1961**, 737-43; Arjona, O.; Perez-Ossorio, R.; Perez-Rubalcaba, A.; Plumet, J.; Santesmases, M. J. J. Org. Chem. **1984**, *49*, 2624-6.
- (6) Yoshida, T.; Harada, K. Bull. Chem. Soc. Jap. 1972, 45, 3706-10.
- (7) Page, P. C. B.; Limousin, C.; Murrell, V. L. J. Org. Chem. 2002, 67, 7787-7796.
- (8) Love, B. E.; Ren, J. J. Org. Chem. 1993, 58, 5556-7.
- (9) Ma, Y.; Lobkovsky, E.; Collum, D. B. J. Org. Chem. 2005, 70, 2335-2337.
- (10) El Abed, R.; Touati, R.; M'Saddak, M.; Ben Hassine, B. J. Soc. Chim. Tunis. 2004, 6, 139-146.
- (11) Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D. J. Org. Chem. 1996, 61, 3849-3862.
- (12) Nugent, T. C.; Ghosh, A. K.; Wakchaure, V. N.; Mohanty, R. R. Adv. Synth. Catal. 2006, 348, 1289-1299; Alvaro, G.; Savoia, D.; Valentinetti, M. R. Tetrahedron 1996, 52, 12571-12586; Bolton, R.; Danks, T. N.; Paul, J. M. Tetrahedron Lett. 1994, 35, 3411-12; Vetter, A. H.; Berkessel, A. Synthesis 1995, 419-22; Alexakis, A.; Gille, S.; Prian, F.; Rosset, S.; Ditrich, K. Tetrahedron Lett. 2004, 45, 1449-1451; Gracheva, R. A.; Budanova, L. I.; Vsemirnova, E. A.; Potapov, V. M. Zhurnal Organicheskoi Khimii 1973, 9, 1235-9.
- (13) Pauling, L. C. The Nature of the Chemical Bond and the Structure of Molecules and Crystals. An Introduction to Modern Structural Chemistry. 3rd ed, 1960.
- (14) Rokob, T. A.; Hamza, A.; Stirling, A.; Papai, I. *J. Am. Chem. Soc.* **2009**, *131*, 2029-2036; Heiden, Z. M.; Stephan, D. W. *unpublished results.*
- (15) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; J. A. Montgomery, J.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; J. Tomasi; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.;

Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; Gaussian, Inc.: Wallingford CT, 2004.