Nickel N-Heterocyclic Carbene-Pyridine Complexes that Exhibit Selectivity for Electrocatalytic Reduction of Carbon Dioxide Over Water

V. Sara Thoi^{*a,b*} and Christopher J. Chang^{*a,b*}*

^aDepartment of Chemistry and the Howard Hughes Medical Institute, University of California, Berkeley, University of California, Berkeley, CA 94720, USA; ^bChemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

General Synthetic and Physical Methods. Unless noted otherwise, all manipulations were carried out at room temperature under a dinitrogen atmosphere in a VAC glovebox or using high-vacuum Schlenk techniques. Diethyl ether, tetrahydrofuran, and pentane were dried over activated 4 Å molecular sieves, passed through a column of activated alumina, and sparged with nitrogen prior to use. Acetonitrile, acetonitrile- d_3 , propionitrile and butyronitrile were refluxed over CaH₂, distilled, and sparged with nitrogen. All other reagents and solvents were purchased from commercial sources and used without further purification. Literature methods were used to synthesize Ni(DME)Cl₂^{1.2} and 2-(imidazolyl)pyridine.³ NMR spectra were recorded on Bruker spectrometers operating at 300, 400, or 500 MHz as noted. Chemical shifts are reported in ppm relative to residual protiated solvent; coupling constants are reported in Hz. Mass spectra were determined at the University of California, Berkeley Mass Spectrometry Facility.

Cyclic Voltammetry. Non-aqueous electrochemical experiments were conducted under a N_2 or CO_2 atmosphere in 0.1 M NBu₄PF₆ in CH₃CN. Cyclic voltammetry and controlled-potential electrolysis experiments were carried out using BASI's Epsilon potentiostat and C-3 cell stand.

The working electrode was a glassy carbon disk (3.0 mm diameter) and the counter electrode was a platinum wire. A silver wire in porous Vycor tip glass tube filled with 0.1 M NBu₄PF₆ in CH₃CN was used as a pseudo-reference electrode. The scan rate for all cyclic voltammograms was 100 mV/sec, unless otherwise noted. All potentials were referenced against ferrocene/ferrocenium as an external standard and converted to SCE by adding 0.40 V to the measured potentials.⁴

Gas Chromatographic Analysis. An Agilent 490-GC Micro-Gas Chromatograph with a Mol Sieve column and heated syringe injector was used for product detection. The column was heated to 80°C under Ar gas flow and the average sample volume of 200 nL was injected onto the column. Controlled-potential electrolysis was conducted using a custom-made glass cell fitted with a glassy carbon rod working electrode (5 mm diameter), Ag/AgNO₃ reference electrode, a Pt gauze auxiliary electrode in a glass frit, and a sparging needle. A glass adapter fused to Swagelok female miniature quick-connect with shut-off was also fitted to the cell and is used to attach to a male miniature quick-connect with shut-off on the injection line of the GC. Typically, a 10 mL solution of 0.3 M NBu₄PF₆/0.2 mM H₂O in CH₃CN was sparged for 10 minutes with N₂ or CO₂ and cyclic voltammograms were taken as controls. From a 3 mM solution of catalyst in 0.3 M NBu₄PF₆ in CH₃CN, 100 µL was injected into the cell and cyclic voltammograms were retaken under both N₂ and CO₂. The solutions are then electrolyzed at the second reductive wave (-1.5 V, -1.6 V, -1.7 V for 6, 7, and 8, respectively) for 2 h under CO₂ and subjected to GC analysis. For calculating turnover frequencies (TOF), a control in the absence of catalyst was run and the charge was subtracted from the overall charge passed in the catalysis.

General Methods for X-Ray Crystallography. Single-crystal X-Ray diffraction was conducted at University of California, Berkeley, College of Chemistry, X-Ray Crystallography Facility. Crystals were mounted on nylon loops in Paratone-N hydrocarbon oil. Air-sensitive samples were transferred from the glove box to Paratone-N and mounted quickly to avoid decomposition. All data collections were performed on either a Bruker SMART, or Bruker APEX diffractometer equipped with a CCD area detector and a low temperature apparatus. Data integration was performed using SAINT. Preliminary data analysis and absorption correction were performed using SHELX software package.⁶

Bis(*N*-pyridylimidazoliumyl)ethane hexafluorophosphate ([H₂^{Et}bimpy](PF₆)₂, 4). A solution of 2-(imidazolyl)pyridine (1.6 g, 11 mmol) in 5 mL of 1,2-dibromoethane was refluxed overnight. The solution was filtered by vacuum filtration and washed with CH₂Cl₂ to remove excess 1,2-dibromoethane. A sticky brown tar was obtained as 1 and suspended in CH₃CN. A second equivalent of 2-(imidazolyl)pyridine was added and refluxed overnight. The solution was again filtered and washed with CH₂Cl₂ and the residue was dissolved in deionized H₂O. NH₄PF₆ (3.6 g, 0.011 mol) was added and the product was filtered by vacuum filtration as an off-white solid (2.6 g, 4 mmol, 38%). ¹H NMR (300 MHz, DMSO): δ 10.06 (2H, s), 8.63 (d, *J* = 4.5, 2H), 8.52 (2H, s), 8.21 (t, *J* = 8.1, 2H), 7.97 (d, *J* = 8.1, 2H), 7.866 (s, 2H), 7.63 (t, *J* = 5.1, 2H), 4.48 (s, 4H) ¹³C NMR (125 MHz, DMSO): δ 149.70, 147.53, 141.13, 136.31, 125.84, 124.20, 119.81, 114.49, 49.52. Anal. Calcd for C₁₈H₁₈N₆F₁₂P₂: C, 35.54; H, 2.98; N, 13.82. Found: C, 35.40; H, 2.85; N, 13.50. ESI-HRMS ([M]⁺) *m/z* calcd for C₁₈H₁₈N₆ 159.0791, found 159.0789.

Bis(*N*-pyridylimidazoliumyl)propane hexafluorophosphate ($[H_2^{Et}bimpy](PF_6)_2$, 5). The synthesis of 5 followed the procedure of 4, starting with 468 mg (3.2 mmol) of imidazolylpyridine and 5 mL of dibromopropane (296 mg, 0.48 mmol, 15%). ¹H NMR (500 MHz, CD₃CN) δ 9.38 (s, 1H), 8.64 (d, *J* = 4.0 Hz, 2H), 8.19 – 8.14 (m, 4H), 7.79 (d, *J* = 8.2 Hz, 2H), 7.67 (d, *J* = 1.9 Hz, 2H), 7.64 (dd, *J* = 7.3, 5.0 Hz, 2H), 4.41 (t, *J* = 7.3 Hz, 4H), 2.65 – 2.57 (q, *J* = 7.3 Hz, 2H). ¹³C NMR (125 MHz, DMSO)): δ 149.58, 146.34, 140.59, 134.27, 125.58, 123.57, 119.79, 114.10, 46.94, 29.53. Anal. Calcd for C₁₈H₁₈N₆F₁₂P₂: C, 36.17; H, 3.24; N, 13.50. Found: C, 36.17; H, 2.89; N, 13.17.

[Ni(^{Et}bimpy)](PF₆)₂ (7). A solution of 4 (1.2 g, 1.9 mmol) and Ag₂O (2.97 g, 12 mmol) in 5 mL of CH₃CN was stirred overnight and the resulting solution was filtered by vacuum filtration to remove excess Ag₂O. To the colorless filtrate, Ni(DME)Cl₂ (0.425 g, 1.9 mmol) was added and stirred overnight. The resulting solution was filtered by vacuum filtration and precipitated from Et₂O. The precipitate was recrystallized in CH₃CN/Et₂O diffusion and yellow-green crystals were obtained (0.505 g, 77 mmol, 40%). ¹H NMR (500 MHz, CD₃CN): δ 8.43 (d, *J* = 5.5, 2H), 8.34 (t, *J* = 7.5, 2H), 7.90 (d, *J* = 2.5, 2H), 7.85 (d, *J* = 8.5, 2H), 7.67 (t, *J* = 6.5, 2H), 7.39 (d, *J* = 2.5, 2H), 4.57 (s, 4H) ¹³C NMR (100 MHz, CD₃CN)): δ 146.51, 150.51, 149.86, 143.85, 127.09, 124.50, 116.56, 112.23, 49.14 Anal. Calcd for C₁₈H₁₆N₆NiP₂F₆: C, 32.51; H, 2.43; N, 12.64. Found: C, 32.05; H, 2.40; N, 12.81. ESI-HRMS ([M]⁺) *m/z* calcd for C₁₈H₁₆N₆Ni 187.0389, found 187.0392.

 $[Ni(^{Pr}bimpy)](PF_6)_2$ (8). The synthesis of 8 followed the procedure of 7, starting with 180 mg (0.3 mmol) of 5 and 64 mg (0.3 mmol) of Ni(DME)Cl₂. Structural characterization found that

[Ni(Pr bimpy)Cl](PF₆) was formed and 103 mg (0.3 mmol) of TlPF₆ was added to obtain **8** quantitatively. Single crystals were obtained by diffusing Et₂O into a concentrated solution of **8** in CH₃CN. ¹H NMR (500 MHz, CD₃CN) δ 8.47 (d, *J* = 5.4 Hz, 2H), 8.36 (t, *J* = 7.8 Hz, 2H), 7.98 (d, *J* = 1.8 Hz, 2H), 7.91 (d, *J* = 8.2 Hz, 2H), 7.68 (t, *J* = 7.8 Hz, 2H), 7.44 (d, *J* = 1.9 Hz, 2H), 4.36 (s, br, 2H), 3.98 (s, br, 2H), 2.29 (s, br, 2H). ¹³C NMR (125 MHz, DMSO)): δ 157.18, 150.37, 149.50, 143.26, 125.93, 124.40, 117.88, 112.25, 46.05, 29.64. Anal. Calcd for C₁₈H₁₈N₆F₁₂P₂: , 33.61; H, 2.67; N, 12.38. Found: C, 33.33; H, 2.35; N, 12.03.

[Ni₂(^{Me}bimpy)₂](OTf)₂ (9). A suspension of KC₈ (21 mg, 0.15 mmol) in THF was added to a suspension of **6** (100 mg, 0.15 mmol) in THF slowly. The solution slowly turned dark and was stirred overnight. The solution was filtered to obtained a dark precipitate of the product and graphite. The precipitate was dissolved in CH₃CN and the graphite was filtered. The filtrate was evaporated and a black residue was obtained (24 mg, 0.069 mmol, 92%). Single crystals were obtained by diffusing Et₂O into a concentrated solution of **9** in CH₃CN at -30°C. ¹H NMR (500 MHz, CD₃CN) δ 7.84 (triplet, *J* = 7.5 Hz, 2H), 7.67 (d, *J* = 2.1 Hz, 2H), 7.59 (m, 4H), 7.54 (d, *J* = 2.1 Hz, 2H), 7.13 (dd, *J* = 6.8, 2H), 6.41 (s, 2H). ¹³C NMR (125 MHz, CD₃CN)): δ 187.35, 148.53, 148.36, 138.38, 134.41, 123.76, 115.36, 110.69, 63.10 Anal. Calcd for C₃₆H₂₈N₁₂F₆O₆S₂ Ni₂: C, 42.53; H, 2.77; N, 16.48. Found: C, 33.33; H, 2.61; N, 16.55.

 $[Ni_2(^{Et}bimpy)_2](PF_6)_2$ (10). The synthesis of 10 followed the procedure of 9, starting with 7.8 (0.057 mmol) of KC₈ and 37 mg of 7 (0.056 mmol) and obtaining a yield of 24 mg of 10 (0.023 mmol, 82%). Single crystals were obtained by diffusing Et₂O into a concentrated solution of 9 in CH₃CN at -30°C. ¹H NMR (500 MHz, CD₃CN): δ 7.95, 7.84, 7.68, 7.62, 7.49, 7.7, 7.24, 7.12,

7.037, 6.27, 4.44, 4.23 ¹³C NMR (125 MHz, CD₃CN)): δ 183.72, 148.81, 147.34, 138.02, 125.23, 122.54, 121.13, 110.61, 49.01, 14.57 ESI-HRMS ([M]⁺) *m/z* calcd for C₁₈H₁₆N₆Ni 374.0784, found 374.0776.

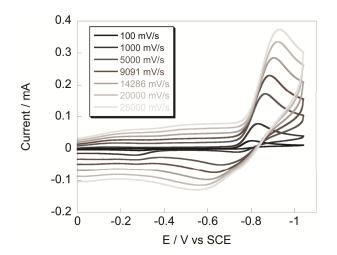


Fig. S1 Cyclic voltammograms of 6 in the presence of N_2 at different scan rates, in 0.1 M NBu₄PF₆ in CH₃CN, using a glassy carbon disk electrode.

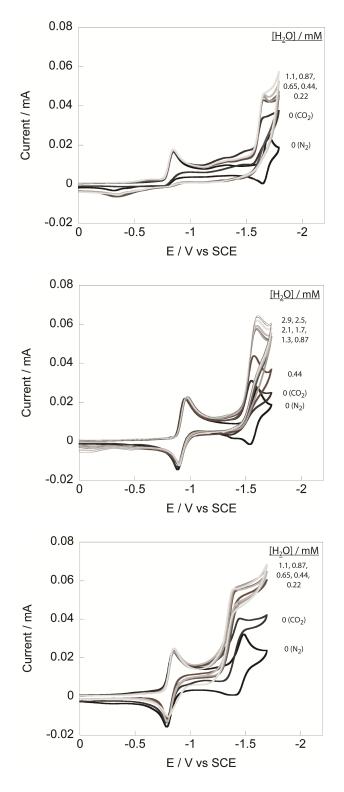
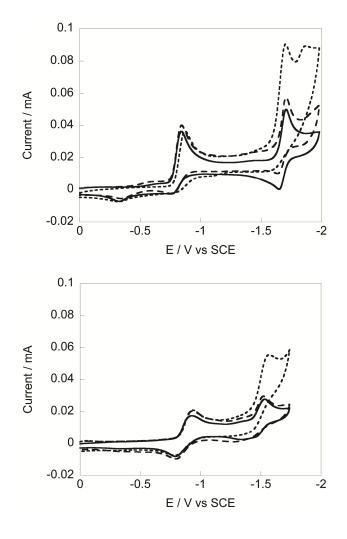
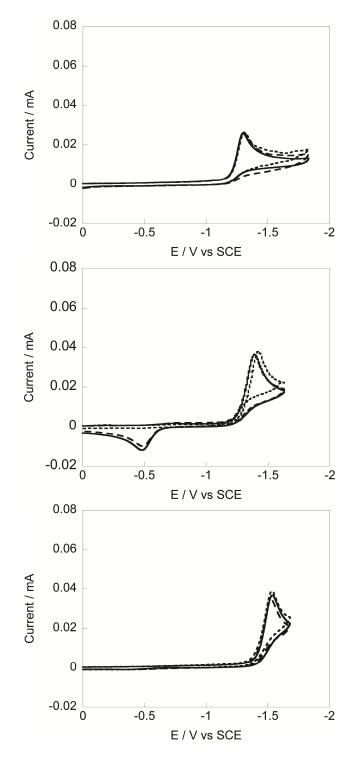




Fig. S2 Cyclic voltammograms of 6 (top), 7 (middle), and 8 (bottom) in the presence of N_2 , CO_2 , and H_2O under a CO_2 atmosphere in 0.1 M NBu₄PF₆ in CH₃CN. Scan rate: 100 mV/s; glassy carbon disk electrode.

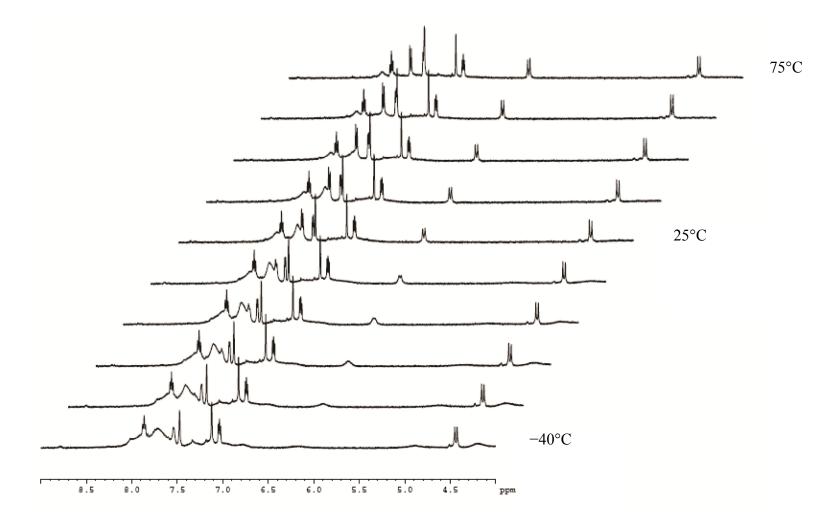


Fig. S3 Cyclic voltammograms of **6** (top) and **7** (bottom) in the presence of N_2 (___), 0.87 mM H₂O under a N_2 atmosphere (_ __), and subsequently, 0.87 mM H₂O under a CO₂ atmosphere (___) in 0.1 M NBu₄PF₆ in CH₃CN. Scan rate: 100 mV/s; glassy carbon disk electrode.

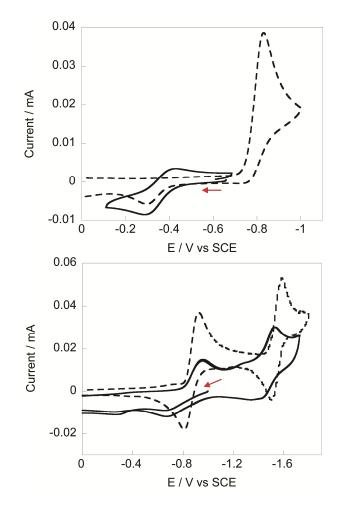


Fig. S4 Cyclic voltammograms of **3** (top), **4** (middle), and **5** (bottom) in the presence of N_2 (___), CO₂ (_ _), and subsequently, 0.44 mM H₂O under a CO₂ atmosphere (---) in 0.1 M NBu₄PF₆ in CH₃CN. Scan rate: 100 mV/s; glassy carbon disk electrode.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Fig. S5 Variable-temperature ¹H NMR of **10** from 75°C (top) to -40°C (bottom) in a gas-tight J. Young tube under a N₂ atmosphere. CD₃CN; 500 MHz.

Fig. S6 Cyclic voltammograms of **9** (top) and **10** (bottom) in the presence of N_2 (**___**), and their Ni(II) congeners, **6** and **7**, respectively (**___**) in 0.1 M NBu₄PF₆ in CH₃CN. The arrow refers to the direction of the potential scanned in **9** and **10**. Scan rate: 100 mV/s; glassy carbon disk electrode.

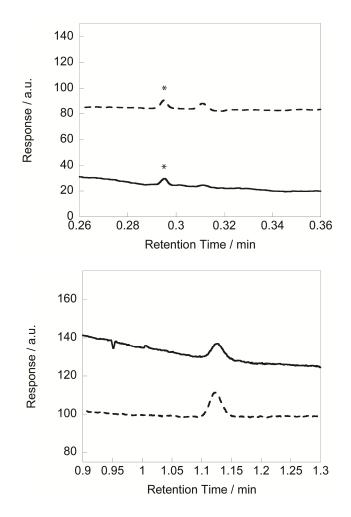


Fig. S7 Gas chromatogram of 8 after 2 h electrolysis at -1.5 V relative to SCE ($_$) and addition of 10 µL H₂ after 2 h electrolysis ($_$) in 0.3 M NBu₄PF₆ in wet CH₃CN, using a glassy carbon rod electrode. H₂ (top) and CO (bottom) were identified at 0.31 and 1.15 min, respectively.

*unknown trace component also observed in a blank sample of air

 Table S1. Crystallographic Data for Ni complexes 7-10

	[Ni(^{Et} bimpy)](PF ₆) ₂ (7)	[Ni(^{Pr} bimpy)](PF ₆) ₂ (8)	[Ni ₂ (^{Me} bimpy) ₂](OTF) ₂ (9)	[Ni ₂ (^{Et} bimpy) ₂](PF ₆) ₂ ·2DME (10)
Empirical				
Formula	$C_{18}H_{16}N_6NiP_2F_{12}$	$C_{19}H_{18}N_6NiP_2F_{12}$	$C_{36}H_{28}N_{12}Ni_2F_6O_6S_2$	$C_{42}H_{48}N_{12}Ni_2P_2F_{12}O_4$
Formula Weight	665.02	679.04	1020.24	1192.28
Crystal System	Monoclinic	Trigonal	Monoclinic	Monoclinic
Space Group	C2/c	R-3	P2(1)/c	P2(1)/n
a	10.0790(7)	33.730(4)	7.404(17)	10.6550(15)
b	19.0802(15)	33.730(4)	31.424(7)	21.779(3)
С	12.1281(9)	13.4121(18)	16.616(4)	21.880(3)
α(°)	90	90	90	90
β(°)	100.4060(10)	90	98.615(4)	99.063(2)
γ (°)	90	120	90	90
$V(A^3)$	2294.0(3)	12314(3)	3822.2(15)	5014.0(12)
Z	4	18	8	8
ρ_{calc} (g/cm ³)	1.926	1.536	1.773	3.159
μ (mm ⁻¹)	1.106	0.866	1.190	1.828
$2\theta_{max}$ (°)	50.66	50.74	50.70	50.9
Reflections				
Collected	12525	94483	32458	51586
Independent				
Reflections	2099	5384	6961	9220
Refl/Param	11.45	14.91	12.06	13.94
<i>R1</i> , w <i>R2 (I>2σ)</i>	0.0217, 0.0564	0.0406, 0.1052	0.0518, 0.1058	0.0406, 0.0825
<i>R1</i> , w <i>R2 (all</i>				
data)	0.0220, 0.0566	0.0485, 0.1099	0.0939, 0.1254	0.0837, 0.1003
Ni-Ni (Å)			2.5087(10)	2.5790 (6)

References

- Masotti, H.; Wallet, J. C.; Peiffer, G.; Petit, F.; Mortreux, A.; Buono, G. J. Organomet. Chem. 1986, 308, 241-252.
- 2. Kermagoret, A.; Braunstein, P. Organometallics 2008, 27, 88-99.
- 3. Zhu, L.; Guo, P.; Li, G.; Lan, J.; Xie, R.; You, J. J. Org. Chem. 2007, 72, 8535-8538.
- 4. N. G. Connelly and W. E. Geiger, Chem. Rev., 1996, 96, 877-910.
- 5. G. M. Sheldrick, SHELXTL, Bruker AXS Inc.: Madison, WI (USA), 2005.
- 6. (a) G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 1990, 46, 467-473; (b) G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112-122; (c) G. M. Sheldrick, SHELXL-97: Program for crystal structure determination, University of Göttingen: Göttingen, Germany, 1997.