Supplementary Information

Manganese(II) complexes of scorpiand-like azamacrocycles as MnSOD mimics.

M^a Paz Clares, Salvador Blasco, Lucas del Castillo Agudo,Begoña Verdejo, Conxa Soriano, Antonio Doménech, Julio Latorre and Enrique García-España.

1.- Synthesis and characterization of compounds **2** and **3**. Scheme 1. General procedure for the synthesis of ligands.

2.- Table S1. Logarithms of protonation constants of compounds **2** and **3** determined by pH-metric titrations in 0.15 M NaClO₄ at 298.1 \pm 0.1 K.

- **3.-** Fig. S1. Molar fraction distribution of compounds **1**, **2** and **3**.
- **4.-** NMR variation. ¹H and ¹³C NMR spectra of **2** and **3**.
- **5.-** Table S2. Logarithms of stability constants of compounds **1**, **2** and **3** with Mn(II) determined by pH-metric titrations in 0.15 M NaClO₄ at 298.1 \pm 0.1 K.
- 6.- Fig. S2. Molar fraction distribution for 1, 2 and 3 with Mn(II)
- 7.- Synthesis of 4 and 5. Crystal preparation for X-ray diffraction
- 8.- Table S3. Crystallographic data for crystals 4 and 5.

9.- Crystal **4.** Table S4a: selected bond distances (Å) and angles (deg.) and Table S4b: Hydrogen-bond geometry (Å, °)

10.- Crystal **5.** Table S5a: selected bond distances (Å) and angles (deg.) and Table S5b: Hydrogen-bond geometry (Å, °)

11.- Electrochemistry studies. Fig. S3.

1.- Synthesis of 2 and 3.

The synthesis of ligands 2 and 3 was accomplished following a modification of the Richman-Atkins procedure by reaction of the pertosylated polyamine tren with 2,6-bis(bromomethyl)pyridine in 1:1 molar ratio using K_2CO_3 as a base in refluxing CH₃CN (Scheme 1). Detosylation is carried out with HBr/HAc, and the final product is obtained as the hydrobromide salt.^[1] Compounds 2 and 3 was obtained by reacting 1 in its free amine form with 2 or 4-quinoline carbaldehyde in dry ethanol followed by in situ reaction with sodium borohydride and precipitation as a hydrochloride salt.

Scheme 1. General procedure of synthesis of the ligands.

¹ B.Verdejo, A.Ferrer, S.Blasco, C.E.Castillo, J.González, J.Latorre, M.A.Máñez, M.García Basallote, C.Soriano, and E.García-España, *Inorg. Chem.* 2007, **46**, 5707-5719

5-(2-(N-2-quinolil)etilamino)-2, 5, 8, - triaza [9] - 2, 6 -piridinofano (2).

 $C_{23}H_{30}N_{6} \cdot 4HC1 \quad (PM 536.367 \text{ g/mol}). \text{ Yield: 60\%. Anal calcd for } C_{23}H_{30}N_{6} \cdot 4HC1 \cdot 4H_{2}O \quad C \quad 45.40; \text{ H} \\ 6.95; \text{ N } 13.81, \text{ found } C \quad 45.37; \text{ H } 7.01; \text{ N } 14.01. \\ ^{1}\text{H} \text{ NMR } (D_{2}O, 300.13 \text{ MHz}): \\ \delta_{H} \text{ (ppm): } 2.96 \text{ (t, } J = 5Hz, \\ 4H), \quad 3.17 \cdot 3.31 \text{ (m, 6H)}, \quad 3.50 \cdot 3.55 \text{ (m, 2H)}, \quad 4.65 \text{ (s, 4H)}, \quad 4.76 \text{ (s, 2H)}, \quad 7.45 \text{ (d, } J = 8Hz, \\ 2H), \quad 7.94 \cdot 8.01 \text{ (m, 2H)}, \quad 8.13 \text{ (d, } J = 8Hz, \\ 1H), \quad 8.15 \text{ (t, } J = 8Hz, \\ 1H), \quad 8.72 \text{ (d, } J = 8Hz, \\ 1H). \\ ^{13}\text{C NMR } (75.47 \text{ MHz, } D_{2}O): \\ \delta_{C} \text{ (ppm): } 44.8, \quad 46.2, \\ 49.1, \quad 49.8, \\ 50.8, \quad 51.2, \\ 121.0, \quad 122.2, \\ 122.5, \\ 129.4, \\ 130.7, \\ 135.7, \\ 140.1, \\ 147.3, \\ 149.1. \\ \end{cases}$

5-(2-(N-4-quinolil)etilamino)-2, 5, 8, - triaza [9] - 2, 6 -piridinofano (3).

C₂₃H₃₀N₆·4HCl (PM 536.367 g/mol) Yield: 48.6%. Anal calcd for C₂₃H₃₀N₆·4HCl·5H₂O C 44.09; H 6.39; N 13.41, found C 43.70; H 6.32; N 13.32. ¹H NMR (D₂O, 300.13 MHz): $\delta_{\rm H}$ (ppm): 2.98 (t, J = 5Hz, 4H), 3.19-3.32 (m, 6H), 3.58-3.66 (m, 2H), 4.64 (s, 4H), 5.18 (s, 2H), 7.45 (d, J = 8Hz, 2H), 7.95 (t, J = 8Hz, 1H), 8.09(t, J = 8Hz, 1H), 8.19-8.25 (m, 2H), 8.46 (d, J = 8 Hz, 1H), 9.21 (d, J = 6Hz, 1H). ¹³C NMR (75.47 MHz, D₂O): $\delta_{\rm C}$ (ppm): 46.2, 47.7, 49.8, 50.9, 51.2, 121.4, 121.8, 122.5, 124.64, 127.2, 135.9, 140.1, 144.3, 149.2.

2.- Protonation constants.

pH-Metric studies were carried out at 298.1 K in aqueous solution in 0.15 M NaClO₄ using the equipment previously described.² The data was analyzed by means of the HYPERQUAD set of programs to derive the ligand basicity constants and the Mn^{II} complexes formation constants.

Table S1 Logarithms of protonation constants of ligands. Determined in 0.15 mol.dm ⁻³	NaClO ₄ at 298.1
± 0.1 K.	

	Reaction ^a	PyTREN	PyTREN-2Q	PyTREN-4Q
	L+H≒HL	10.19(6) ^c	10.03(1) ^b	9.93(1)
	HL+H≒H ₂ L	9.19(3)	8.40(1)	8.31(1)
	H ₂ L+H≒H ₃ L	7.94(4)	6.23(1)	5.94(1)
	H ₃ L+H≒H ₄ L			2.82(1)
^{<i>a</i>} Charges omitted for	$Log \beta$	27.32(8)	24.66(2)	27.00(1)

Values in

3.- Molar fraction distribution of compounds 1,2and 3.

parentheses are standard deviations in the last significant figure. ^c Values obtained of ref.^[1]

² E. García-España, M. J. Ballester, F. Lloret, J.-M. Moratal, J. Faus and A. Bianchi, J. Chem. Soc. Dalton Trans., 1988, 1, 101-104.

Figure S1.- Distribution diagrams for the protonation of compounds 1-3.

4.- NMR variation.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

Protonation secuence of 2:

¹H NMR Spectra Aliphatic region

¹H NMR Spectra Aromatic region

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

¹H NMR Spectra Aliphatic region

¹ H NMR Spectra Aromatic region

9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Table S2.- Logarithms of stability constants of compounds 1, 2 and 3 with Mn(II). Determined in 0.15 mol.dm⁻³ NaClO₄ at 298.1 \pm 0.1 K.

Reaction ^{<i>a</i>}	PyTREN	PyTREN-2Q	PyTREN-4Q
Mn+L≒MnL	11.43(5) ^b	11.08(1)	8.91(1)
Mn+L+H≒HMnL	17.32(6)	16.23(6)	
$Mn+L+H_2O \leftrightarrows MnL(OH)+H^+$	0.58(6)		-1.36(1)
MnL+H≒HMnL	5.88(2)	5.15(2)	
MnL+OH≒MnL(OH)	2.89(1)		3.45(1)

^a Charges

clarity. ^b Values in parentheses are standard deviations in the last significant figure.

6.- Molar fraction distribution for 1,2 and 3 with Mn(II)

Figure S2.- Distribution diagrams for the systems Mn(II)-1-3

7.- Synthesis of 4 and 5.

Crystal preparation for X-ray diffraction

Slow evaporation of aqueous solutions containing either 2 or 3 along with $MgSO_4$ and $NaClO_4$ at pH value of c.a. 8 yielded crystals suitable for monocrystal X-ray diffraction.

X-ray diffraction experimental: One single crystal of **4** was measured in an Enraf-Nonius KappaCCD single-crystal diffractometer using MoK α radiation (λ =0.71073Å) at room temperature. 10151 reflections were collected. One single-crystal of **5** was measured in an Oxford Diffraction SuperNova single crystal diffractometer with MoK α radiation (λ =0.71073Å). This crystal showed very low reflectivity; therefore it was measured at 120K. 5548 reflections were collected. In both cases the structure was solved with SHELXS-97 program and further refined with SHELXL-97³ up to the final structure. Hydrogen atoms were placed in calculated positions. Final drawings of the structures were made with the Mercury program⁴

Anal. Calcd for [C₂₃H₃₀N₆Mn](ClO₄)₂(**4**) C, 42.9, H, 4.7, N, 13.0 Found: C, 43.1, H, 5.0, N, 12.8. Anal. Calcd for [C₂₃H₃₀N₆Mn](ClO₄)₂(H₂O)(**5**) C, 41.7, H, 4.9, N, 12.7 Found: C, 42.0, H, 5.1, N, 12.5.

³ G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122.

⁴ Mercury CSD 2.0 - New Features for the Visualization and Investigation of Crystal Structures C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, *J. Appl. Cryst.*, 2008, **41**, 466-470.

8.- Crystallographic data for crystals 4 and 5.

Table S3: Crystallographic data for crystals 4 and 5.

	4	5
sum formula	C ₂₃ H ₃₂ Cl ₂ Mn N ₆ O ₉	C ₂₃ H ₃₂ Cl ₂ Mn N ₆ O ₉
size, mm	0.19 imes 0.14 imes 0.10	0.10 imes 0.04 imes 0.02
system	monoclinic	monoclinic
space group	$P 2_1/c$	P 2 ₁
a, Å	9.329(3)	8.7809(4)
b, Å	17.568(5)	15.2321(6)
<i>c</i> , Å	18.335(5)	10.2323(5)
β, deg.	105.680(16)	94.030(5)
$V, Å^3$	2893.1(15)	1365.2(1)
Т, К.	293	120
Mr, g/mol	662.39	662.39
ρ, g/cm3	1.521	1.611
Z	4	2
μ, mm-1	0.701	0.743
F(000)	1372.0	686.0
R1(reflections)	0.1139(1365)	0.0746(2567)
wR2(reflections)	0.4127(4520)	0.1806(4042)
GooF	1.034	1.027
parameters	372	371

9.- Crystal 4.

Table S4a: Selected bond distances (Å) and angles (deg.) for crystal 4

Mn(1)—N(1)	2.155(12)	N(1)—Mn(1)—N(5)	168.0(6)
Mn(1)—N(5)	2.220(17)	N(1)—Mn(1)—N(6)	114.9(4)
Mn(1)—N(6)	2.229(13)	N(5)—Mn(1)—N(6)	77.1(6)
Mn(1)—N(4)	2.303(12)	N(1)—Mn(1)—N(4)	74.5(5)
Mn(1)—N(3)	2.287(12)	N(5)—Mn(1)—N(4)	103.0(7)
Mn(1)—N(2)	2.335(12)	N(6)—Mn(1)—N(4)	111.7(5)
		N(1)—Mn(1)—N(3)	91.9(5)
		N(5)—Mn(1)—N(3)	76.1(6)
		N(6)—Mn(1)—N(3)	152.9(5)
		N(4)—Mn(1)—N(3)	78.0(5)
		N(1)—Mn(1)—N(2)	73.7(5)
		N(5)—Mn(1)—N(2)	103.1(7)
		N(6)—Mn(1)—N(2)	102.9(5)
		N(4)—Mn(1)—N(2)	140.3(5)
		N(3)—Mn(1)—N(2)	79.9(5)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O(1)— $H(1C)$ ···O(23) ⁱ	0.92	2.23	2.91(3)	131.5
$O(1)$ — $H(1D)$ ···· $O(12)^{ii}$	0.72	2.34	3.03(3)	160.5
$N(2)$ — $H(2)$ ···· $O(11)^{iii}$	0.91	2.37	3.25(3)	161.8
N(4)—H(4)····O(21)	0.91	2.60	3.45(3)	157.8
$N(5) - H(5) - O(13)^{iii}$	0.91	2.36	3.26(3)	168.9
Symmetry codes: (i) $-x+1$, $y+1/2$, $-z+1/2$; (ii) $-x$, $y+1/2$, $-z+1/2$; (iii) x , $-y+1/2$, $z-1/2$				

Table S4b: Hydrogen-bond geometry for crystal 4 (Å, $^\circ)$

10.- Crystal 5.

Table S5a: Selected bond distances (Å) and angles (deg.) for crystal $\mathbf{5}$

Mn(1)—O(1)	2.081(7)	O(1)—Mn(1)—N(1)	93.6(3)
Mn(1)—N(1)	2.220(8)	O(1)—Mn(1)—N(3)	169.7(3)
Mn(1)—N(3)	2.267(9)	N(1)—Mn(1)—N(3)	96.1(3)
Mn(1)—N(5)	2.285(8)	O(1)—Mn(1)—N(5)	90.9(3)
Mn(1)—N(4)	2.341(8)	N(1)—Mn(1)—N(5)	174.8(3)
Mn(1)—N(2)	2.319(8)	N(3)—Mn(1)—N(5)	79.6(3)
		O(1)—Mn(1)—N(4)	102.3(3)
		N(1)—Mn(1)—N(4)	72.5(3)
		N(3)—Mn(1)—N(4)	77.3(3)
		N(5)—Mn(1)—N(4)	109.2(3)
		O(1)—Mn(1)—N(2)	109.2(4)
		N(1)—Mn(1)—N(2)	73.0(3)
		N(3)—Mn(1)—N(2)	77.2(4)
		N(5)—Mn(1)—N(2)	103.0(3)
		N(4)—Mn(1)—N(2)	134.1(3)

D—H…A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
O(1)— $H(1C)$ ···O(24) ⁱ	0.85	2.34	3.081(16)	148.2	
$O(1)$ — $H(1D)$ ···· $N(6)^{ii}$	0.93	2.34	2.772(11)	112.4	
N(2)-H(2)···O(13) ⁱ	0.93	2.23	3.059(13)	148.1	
$N(4) - H(4) \cdots O(11)^{iii}$	0.93	2.57	3.390(17)	148.1	
N(4)— $H(4)$ ···O(13) ⁱⁱⁱ	0.93	2.43	3.214(17)	142.5	
$N(5) - H(5) - O(14)^{iii}$	0.93	2.40	3.221(11)	146.5	
Symmetry codes: (i) $-x+1$, $y-1/2$, $-z+1$; (ii) x , y , $z-1$; (iii) $-x$, $y-1/2$, $-z+1$					

Table S5b: Hydrogen-bond geometry for crystal 5 (Å, °)

11.- Electrochemistry studies.

Figure S3.Cyclic voltammograms for a) unmodified and, b) **4**-modified glassy carbon electrodes immersed into O₂-saturated 0.10 M Et₄NClO₄/MeCN. Potential scan rate 50 mV/s.

Figure S4. Cyclic voltammogram for a 1.0 mM solution of Mn-2 in 0.15 M NaClO4 at pH 7.4. Potential scan rate 20 mV/s.