Supporting Information

Co/Mn-Mediated Oxygenative Cross-Coupling of Indoles with β-Keto Esters via Dioxygen Activation: An Efficient Access to Ketonization-Olefination of Indoles

Wenliang Wu, Jing Xu, Shijun Huang and Weiping Su*

State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian 350002 (China) E-mail: wpsu@fjirsm.ac.cn

Table of Contents

Contents

(1) General considerations, experimental data	S2 – S21
(2) Labeling experiments	S22 – S23
(3) References for known compounds	S24
(4) 1 H, 13 C and 19 F NMR spectra of products	S25 - S52
(5) Crystallographic data for compound 3a	S53 – S55

General

All reactions were carried out under dry O₂ with dry solvents under anhydrous conditions. Co(OAc)₂·4H₂O was purchased from Alfa Aesar and converted to the anhydrous salt by drying at 80 °C/l mmHg for 60 h. 3-cyano-benzoyl-acetate,¹ Methyl benzoylacetate,² Ethyl ethyl 3-(naphthalen-3-yl)-3-oxopropanoate¹ 2b, isopropyl benzoylacetate² 2c, benzyl benzoylacetate³ and Deuterioindoles⁴ were prepared according to the reported procedures. All other reagents were purchased from TCI, Sigma-Aldrich, Alfa Aesar, Acros, and Meryer and used without further purification. DMSO and DMF were distilled from CaH₂ under nitrogen and stored under nitrogen. ¹H NMR(400 MHz), ¹³C NMR (100 MHz) and ¹⁹F NMR (377 MHz) spectra were recorded in CDCl₃ solutions using a Burker AVANCE 400 spectrometer. Single-crystal X-ray diffraction data were collected on Rigaku Mercury CCD with graphite-monochromated Mo-Ka radiation ($\lambda = 0.71073$ Å) in the ω scanning mode at room temperature. The structure were solved by direct methods and refined by full-matrix least squares on F^2 with the SHELXTL-97 program. CCDC reference number 763658. Elemental analyses were performed on a Vario EL III elemental analyzer.

Table S1 Screening Results for Co/Mn-Mediated Oxidative

	N N H 1a	o + O O O O O O O O O O O O O O O O O O	Co(OAc) ₂ olvent, 75 °C, 24 h, 1 atm of O ₂		O Et
Entry	2a (equiv)	additive (equiv)	acid (equiv)	solvent	Yield (%) ^b
1	1	_		DMF	14
2 ^c	1			DMF	<5
3	1			DMSO	10
4 ^d	1			DMF	0
5 ^e	1			DMF	0
6 ^d	1	Mn(OAc) ₂ (1.0)		DMF	<5
7	5			DMF	13
8	1		PivOH (20)	DMF	15
9	5		PivOH (20)	DMF	26
10	5		PivOH(10)	DMF	17
11	5		PivOH (30)	DMF	33
12	5		PivOH (40)	DMF	32
13	3		PivOH (30)	DMF	18
14	4		PivOH (30)	DMF	24
15	6	—	PivOH (30)	DMF	28
16	5		AcOH (30)	DMF	23
17	5		EtCOOH (30)	DMF	25
18	5	Mn(OAc) ₂ (0.10)	PivOH (30)	DMF	41
19	5	Mn(OAc) ₂ (0.25)	PivOH (30)	DMF	52
20	5	Mn(OAc) ₂ (0.50)	PivOH (30)	DMF	44
21	5	Mn(OAc) ₂ (0.25)	PivOH (30)	5% DMSO-DMF	58
22	5	Mn(OAc) ₂ (0.25)	PivOH (30)	10% DMSO-DMF	63
23	5	Mn(OAc) ₂ (0.25)	PivOH(30)	20% DMSO-DMF	57
24	5	Mn(OAc) ₂ (0.25)	PivOH (30)	30% DMSO-DMF	51
25	5	Mn(OAc) ₂ (0.25), NHPI (0.15)	PivOH (30)	10% DMSO-DMF	70
26	5	Mn(OAc) ₂ (0.25), NHPI (0.30)	PivOH (30)	10% DMSO-DMF	65
27	5	Mn(OAc) ₂ (0.25), NHPI (0.50)	PivOH (30)	10% DMSO-DMF	63

Coupling of Indole with Ethyl Benzoylacetate^a

[a] 0.125 mmol scale, $Co(OAc)_2$ (1.0 equiv), DMF (1 mL, 0.125 M), 1 atm of O₂. [b] Isolated yields. [c] $Co(OAc)_2$ (0.15 equiv). [d] In the absence of $Co(OAc)_2$. [e] N₂ atmosphere.

General procedure

In a glove box, a 30 mL of Schlenk tube equipped with a stir bar was charged with indole 1, $Co(OAc)_2$ (1 equiv), $Mn(OAc)_2$ (0.25 equiv),

NHPI (0.15 equiv), pivalic acid (30 equiv), DMSO (0.1 mL), and DMF (1 mL, 0.125 M). The tube was fitted with a rubber septum and removed out of the glove box. Then, the tube was evacuated and refilled with O_2 for three times. Subsequently, ethyl benzoylacetate **2a** (5 equiv) was added to the Schlenk tube through the rubber septum using syringes, and then the septum was replaced by a Teflon screwcap under an oxygen flow. The reaction mixture was stirred at 75 °C for 24 h. Upon completion, the reaction mixture was diluted with 10 mL of ethyl ether, filtered through a pad of silica gel, followed by washing the pad of the silica gel with the ethyl ether (30 mL). The filtrate was washed with water (3×15 mL). The organic phase was dried over Na₂SO₄, filtered, concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel to provide the corresponding product **3a**.

Experimental data

Ethyl 3-(naphthalen-3-yl)-3-oxopropanoate 2b, was prepared according to the reported procedures¹, afforded an oil (65% yield). ¹H NMR [shows a 18:82 enol/ketone ratio] (400 MHz, CDCl₃): δ [keto form] 8.44 (s, 1 H), 8.01 (d, J = 8.6 Hz, 1 H), 7.96 (d, J = 8.0 Hz, 1 H), 7.90 – 7.83 (m, 2 H), 7.63 – 7.51 (m, 2 H), 4.23 (q, J = 7.1 Hz, 2 H), 4.12 (s, 2 H), 1.26 (t, J = 7.1 Hz, 3 H); [enol form] 12.70 (s, 1 H), 8.35 (s, 1 H), 7.77 – 7.75 (m, 1 H), 5.81 (s, 1 H), 4.29 (q, J = 7.1 Hz, 2 H), 1.35 (t, J = 7.1 Hz, 3 H).

Isopropyl benzoylacetate 2c, was prepared according to the reported procedures², afforded an oil (35% yield). ¹H NMR [shows a 16:84 enol/ketone ratio] (400 MHz, CDCl₃): δ [keto form] 7.93 (d, J = 7.4 Hz, 2 H), 7.58 (t, J = 7.5 Hz, 1 H), 7.47 (t, J = 7.7 Hz, 2 H), 5.10 – 5.04 (m, 1 H), 3.95 (s, 2 H), 1.22 (d, J = 6.2 Hz, 6 H); [enol form] 12.65 (s, 1 H), 7.77 (d, J = 7.6 Hz, 2 H), 7.43 – 7.40 (m, 3 H), 5.63 (s, 1 H), 5.16 – 5.13 (m, 1 H), 1.31 (d, J = 6.3 Hz, 6 H).

(Z)-ethyl 3-oxo-2-(3-oxoindolin-2-ylidene)-3-phenylpropanoate

Following the general procedure, using 20% ether in petroleum ether as the eluant afforded a red solid (70% yield). ¹H NMR (400 MHz, CDCl₃): δ 9.28 (s, 1 H), 7.96 (d, J = 7.8 Hz, 2 H), 7.58 – 7.42 (m, 5 H), 6.96 – 6.93 (m, 2 H), 4.22 (q, J = 7.1 Hz, 2 H), 1.16 (t, J = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ , 192.3, 186.1, 166.8, 152.6, 142.9, 137.6, 137.3, 133.4, 128.8, 128.5, 125.6, 122.0, 119.8, 111.9, 107.8, 61.6, 14.0. Anal. Calcd. for C₁₉H₁₅NO₄: C, 71.02; H, 4.71; N, 4.36; Found: C, 70.97; H, 4.50; N, 4.31.

(Z)-ethyl 3-oxo-2-(3-oxoindolin-2-ylidene)-3-p-tolylpropanoate

Electronic Supplementary Material (ESI) for Chemical Communications This journal is o The Royal Society of Chemistry 2011

3b

Following the general procedure, using 20% ether in petroleum ether as the eluant afforded a red solid (69% yield). ¹H NMR (400 MHz, CDCl₃): δ 9.29 (s, 1 H), 7.87 (d, J = 8.2 Hz, 2 H), 7.52 – 7.45 (m, 2 H), 7.23 (d, J = 8.1 Hz, 2 H), 6.95 – 6.91 (m, 2 H), 4.21 (q, J = 7.1 Hz, 2 H), 2.39 (s, 3 H), 1.16 (t, J = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 191.9, 186.1, 166.9, 152.5, 144.3, 142.8, 137.5, 134.9, 129.3, 128.9, 125.6, 121.9, 119.9, 111.9, 108.1, 61.6, 21.8, 14.0. Anal. Calcd. for C₂₀H₁₇NO₄: C, 71.63; H, 5.11; N, 4.18; Found: C, 71.31; H, 4.95; N, 4.05.

(Z)-ethyl 3-oxo-2-(3-oxoindolin-2-ylidene)-3-m-tolylpropanoate

3c

Following the general procedure, using 20% ether in petroleum ether as the eluant afforded a red solid (68% yield). ¹H NMR (400 MHz, CDCl₃): δ 9.29 (s, 1 H), 7.81 (s, 1 H), 7.73 (d, J = 7.6 Hz, 1 H), 7.53 – 7.46 (m, 2 H), 7.38 – 7.29 (m, 2 H), 6.96 – 6.92 (m, 2 H), 4.22 (q, J = 7.1 Hz, 2 H), 2.39 (s, 3 H), 1.16 (t, J = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 192.4, 186.1, 166.8, 152.6, 142.8, 138.4, 137.5, 137.3, 134.3, 129.2, 128.4, 126.2, 125.6, 122.0, 119.9, 111.9, 108.1, 61.6, 21.4, 14.0. Anal. Calcd. for C₂₀H₁₇NO₄: C, 71.63; H, 5.11; N, 4.18; Found: C, 71.52; H, 4.90; N, 4.10.

(Z/E)-ethyl 3-oxo-2-(3-oxoindolin-2-ylidene)-3-o-tolylpropanoate

Following the general procedure, using 20% ether in petroleum ether as the eluant afforded a red solid (61% yield). ¹H NMR [**Z**/**E** = 4:1] (400 MHz, CDCl₃): δ **Z**: 9.28 (s, 1 H), 7.67 – 6.91 (m, 8 H), 4.24 (q, *J* = 7.1 Hz, 2 H), 2.78 (s, 3 H), 1.20 (t, *J* = 7.1 Hz, 3 H). **E**: 10.59 (s, 1 H), 4.09 (q, *J* = 7.1 Hz, 2 H), 2.36 (s, 3 H), 1.06 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ **Z**: 193.8, 186.3, 167.0, 152.6, 142.4, 140.8, 137.5, 134.3, 132.0, 132.0, 130.7, 125.5, 125.2, 121.9, 119.9, 111.9, 110.1, 61.6, 21.6, 14.0. **E**: 197.3, 187.0, 167.9, 152.1, 139.5, 137.5, 136.6, 135.3, 132.7, 129.9, 125.9, 125.1, 123.6, 123.0, 119.7, 112.4, 109.0, 67.7, 19.3, 13.5. Anal. Calcd. for C₂₀H₁₇NO₄: C, 71.63; H, 5.11; N, 4.18; Found: C, 71.49; H, 5.10; N, 4.15.

(Z)-ethyl 3-(4-chlorophenyl)-3-oxo-2-(3-

oxoindolin-2-ylidene)propanoate

Following the general procedure, using 20% ether in petroleum ether as the eluant afforded a red solid (66% yield). ¹H NMR (400 MHz, CDCl₃): δ 9.28 (s, 1 H), 7.90 (d, J = 8.6 Hz, 2 H), 7.53 – 7.47 (m, 2 H), 7.42 (d, J= 8.6 Hz, 2 H), 6.97 – 6.94 (m, 2 H), 4.22 (q, J = 7.1 Hz, 2 H), 1.17 (t, J= 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 191.1, 186.1, 166.5, 152.5, 143.1, 139.8, 137.7, 135.7, 130.2, 128.9, 125.7, 122.2, 119.8, 112.0, 107.2, 61.7, 14.0. Anal. Calcd. for C₁₉H₁₄ClNO₄: C, 64.14; H, 3.97; N, 3.94; Found: C, 64.15; H, 3.87; N, 3.87.

(Z)-ethyl 3-(3-chlorophenyl)-3-oxo-2-(3-

oxoindolin-2-ylidene)propanoate

3f

Following the general procedure, using 20% ether in petroleum ether as the eluant afforded a red solid (65% yield). ¹H NMR (400 MHz, CDCl₃): δ 9.27 (s, 1 H), 7.93 (t, J = 1.8 Hz, 1 H), 7.84 (dt, J = 7.8 Hz, J = 1.2Hz,1 H), 7.55 – 7.49 (m, 3 H), 7.39 (t, J = 7.8 Hz, 1 H), 6.99 – 6.95 (m, 2 H), 4.24 (q, J = 7.1 Hz, 2 H), 1.18 (t, J = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 191.1, 186.1, 166.5, 152.5, 143.2, 138.9, 137.8, 134.9, 133.3, 129.9, 128.7, 126.9, 125.8, 122.2, 119.7, 111.9, 107.0, 61.8, 14.0 Anal. Calcd. for C₁₉H₁₄ClNO₄: C, 64.14; H, 3.97; N, 3.94; Found: C, 64.15; H, 4.01; N, 3.91.

(Z)-ethyl 3-(4-bromophenyl)-3-oxo-2-(3-

oxoindolin-2-ylidene)propanoate

3g

Following the general procedure, using 20% ether in petroleum ether as the eluant afforded a red solid (65% yield). ¹H NMR (400 MHz, CDCl₃): δ 9.28 (s, 1 H), 7.83 (d, J = 8.8 Hz, 2 H), 7.58 (d, J = 8.6 Hz, 2 H), 7.53 – 7.47 (m, 2 H), 6.97 – 6.93 (m, 2 H), 4.21 (q, J = 7.1 Hz, 2 H), 1.16 (t, J =7.1 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 191.3, 186.1, 166.5, 152.5, 143.1, 137.7, 136.1, 131.9, 130.2, 128.6, 125.7, 122.2, 119.8, 112.0, 107.1, 61.7, 14.0. Anal. Calcd. for C₁₉H₁₄BrNO₄: C, 57.02; H, 3.53; N, 3.50; Found: C, 56.61; H, 3.54; N, 3.33.

(Z)-ethyl 3-(4-fluorophenyl)-3-oxo-2-(3-

oxoindolin-2-ylidene)propanoate

Electronic Supplementary Material (ESI) for Chemical Communications This journal is o The Royal Society of Chemistry 2011

Following the general procedure, using 20% ether in petroleum ether as the eluant afforded a red solid (68% yield). ¹H NMR (400 MHz, CDCl₃): δ 9.30 (s, 1 H), 8.00 – 7.97 (m, 2 H), 7.52 – 7.46 (m, 2 H), 7.12 – 7.08 (m, 2 H), 6.95 – 6.92 (m, 2 H), 4.20 (q, *J* = 7.1 Hz, 2 H), 1.15 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 192.1, 186.1, 166.6, 165.9 (d, *J* = 254.8 Hz), 152.6, 142.9, 137.7, 133.9 (d, *J* = 2.8 Hz), 131.4 (d, *J* = 9.5 Hz), 125.6, 122.1, 119.8, 115.7 (d, *J* = 21.9 Hz), 112.0, 107.4, 61.6, 14.0; ¹⁹F NMR (377 MHz, CDCl₃): δ -104.79. Anal. Calcd. for C₁₉H₁₄FNO₄: C, 67.25; H, 4.16; N, 4.13; Found: C, 66.68; H, 4.73; N, 4.01.

(Z)-ethyl 3-(3-methoxyphenyl)-3-oxo-2-(3-

oxoindolin-2-ylidene)propanoate

Following the general procedure, using 30% ether in petroleum ether as the eluant afforded a red solid (67% yield). ¹H NMR (400 MHz, CDCl₃): δ 9.27 (s, 1 H), 7.58 (t, *J* = 2.0 Hz, 1 H), 7.52 (d, *J* = 7.7 Hz, 1 H), 7.50 –

7.46 (m, 2 H), 7.32 (t, J = 7.9 Hz, 1 H), 7.11 (dd, J = 8.3 Hz, J = 2.7 Hz, 1 H), 6.96 – 6.93 (m, 2 H), 4.22 (q, J = 7.1 Hz, 2 H), 3.86 (s, 3 H), 1.17 (t, J = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 192.0, 186.0, 166.8, 159.9, 152.5, 142.9, 138.7, 137.5, 129.5, 125.6, 122.0, 121.8, 120.1, 120.0, 112.6, 111.9, 107.9, 61.6, 55.4, 14.0; Anal. Calcd. for C₂₀H₁₇NO₅: C, 68.37; H, 4.88; N, 3.99; Found: C, 67.87; H, 5.09; N, 3.65.

(Z)-ethyl 3-(3-cyanophenyl)-3-oxo-2-(3-

oxoindolin-2-ylidene)propanoate

Following the general procedure, using 30% ether in petroleum ether as the eluant afforded a red solid (62% yield). ¹H NMR (400 MHz, CDCl₃): δ 9.30 (s, 1 H), 8.22 – 8.20 (m, 2 H), 7.83 (d, J = 7.7 Hz, 1 H), 7.60 (t, J= 7.7 Hz, 1 H), 7.53 – 7.50 (m, 2 H), 6.99 – 6.96 (m, 2 H), 4.23 (q, J = 7.1 Hz, 2 H), 1.17 (t, J = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 190.5, 186.2, 166.2, 152.6, 143.5, 138.2, 138.0, 136.1, 132.6, 132.4, 129.7, 125.8, 122.4, 119.6, 119.6, 118.1, 113.1, 112.1, 106.1, 61.8, 14.0 .Anal. Calcd. for C₂₀H₁₄NO₄: C, 69.36; H, 4.07; N, 8.09; Found: C, 68.96; H, 4.39; N, 7.85.

(Z)-ethyl 3-(naphthalen-2-yl)-3-oxo-2-(3-

oxoindolin-2-ylidene)propanoate

Following the general procedure, using 20% ether in petroleum ether as the eluant afforded a red solid (64% yield). ¹H NMR (400 MHz, CDCl₃): δ 9.35 (s, 1 H), 8.39 (s, 1 H), 8.14 (dd, J = 8.6 Hz, J = 1.6 Hz, 1 H), 7.93 – 7.86 (m, 3 H), 7.60 – 7.47 (m, 4 H), 6.98 – 6.92 (m, 2 H), 4.23 (q, J = 7.1 Hz, 2 H), 1.15 (t, J = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 192.2, 186.1, 166.9, 152.5, 143.1, 137.6, 136.0, 134.9, 132.6, 130.8, 129.6, 128.6, 128.5, 127.9, 126.6, 125.7, 124.3, 122.0, 119.9, 111.9, 107.9, 61.7, 14.0. Anal. Calcd. for C₂₃H₁₇NO₄: C, 74.38; H, 4.61; N, 3.77; Found: C, 74.20; H, 4.71; N, 3.73.

(Z)-propyl 3-oxo-2-(3-oxoindolin-2-ylidene)-3-phenylpropanoate

Following the general procedure, using 20% ether in petroleum ether as the eluant afforded a red solid (61% yield). ¹H NMR (400 MHz, CDCl₃): δ 9.28 (s, 1 H), 7.95 (d, J = 7.8 Hz, 2 H), 7.57 – 7.42 (m, 5 H), 6.96 – 6.93 (m, 2 H), 5.12 (m, 1 H), 1.16 (d, J = 6.3 Hz, 6 H), .¹³C NMR (100 MHz, CDCl₃): δ 192.2, 186.0, 166.4, 152.5, 142.8, 137.5, 137.4, 133.2, 128.8, 128.5, 125.6, 121.9, 119.9, 111.8, 108.5, 69.5, 21.5. Anal. Calcd. for C₂₀H₁₇NO₄: C, 71.63; H, 5.11; N, 4.18; Found: C, 71.55; H, 5.06; N, 4.09.

(Z)-benzyl 3-oxo-2-(3-oxoindolin-2-ylidene)-3-phenylpropanoate

Following the general procedure, using 30% ether in petroleum ether as the eluant afforded a red solid (68% yield). ¹H NMR (400 MHz, CDCl₃): δ 9.30 (s, 1 H), 7.99 (d, J = 7.6 Hz, 2 H), 7.61 – 7.44 (m, 5 H), 7.28 – 7.26 (m, 3 H), 7.14 – 7.12 (m, 2 H), 6.99 – 6.94 (m, 2 H), 5.22 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ 192.1, 186.0, 166.5, 152.4, 143.2, 137.6, 137.3, 135.4, 133.4, 128.9, 128.6, 128.4, 128.1, 127.3, 125.7, 122.1, 119.8, 111.9, 107.4, 66.8. Anal. Calcd. for C₂₄H₁₇NO₄: C, 75.19; H, 4.47; N, 3.65; Found: C, 75.58; H, 4.55; N, 3.39. (**Z**)-methyl **3-oxo-2-(3-oxoindolin-2-ylidene)-3-phenylpropanoate**

3n

Following the general procedure, using 20% ether in petroleum ether as the eluant afforded a red solid (69% yield). ¹H NMR (400 MHz, CDCl₃): δ 9.28 (s, 1 H), 7.98 (d, J = 7.8 Hz, 2 H), 7.59 – 7.43 (m, 5 H), 6.98 – 6.94(m, 2 H), 3.75(s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 192.2, 186.0, 167.2, 152.5, 143.0, 137.6, 137.2, 133.5, 128.9, 128.6, 125.7, 122.1, 119.9, 111.9, 107.3, 52.6. Anal. Calcd. for C₁₈H₁₃NO₄: C, 70.35; H, 4.26; N, 4.56; Found: C, 70.09; H, 4.25; N, 4.40.

(Z)-methyl 2-(1-(ethoxycarbonyl)-2-oxo-2-phenylethylidene)-3

oxoindoline-5-carboxylate

30

Following the general procedure, using 30% ether in petroleum ether as the eluant afforded a red solid (45% yield). ¹H NMR (400 MHz, CDCl₃): δ 9.56 (s, 1 H), 8.25 – 8.23 (m, 2 H), 7.98 (d, *J* = 7.6 Hz, 2 H), 7.60 (t, *J* = 7.4 Hz, 1 H), 7.48 (t, *J* = 7.7 Hz, 2 H), 7.03 (d, *J* = 8.9 Hz, 1 H), 4.25 (q, *J* = 7.1 Hz, 2 H), 3.90(s, 3 H), 1.18 (t, *J* = 7.1 Hz, 3 H),; ¹³C NMR (100 MHz, CDCl₃): δ 191.6, 185.0, 166.5, 165.8, 155.1, 142.6, 139.0, 137.0, 133.6, 128.8, 128.6, 127.5, 124.2, 119.7, 111.6, 109.7, 61.9, 52.2, 13.9. Anal. Calcd. for C₂₁H₁₇NO₆: C, 66.49; H, 4.52; N, 3.69; Found: C, 66.38; H, 4.28; N, 3.62.

(Z)-methyl 2-(1-(ethoxycarbonyl)-2-oxo-2-phenylethylidene)-3-

oxoindoline-4-carboxylate

3р

Following the general procedure, using 30% ether in petroleum ether as the eluant afforded a red solid (50% yield). ¹H NMR (400 MHz, CDCl₃): δ 9.42 (s, 1 H), 7.95 (d, J = 7.6 Hz, 2 H), 7.57 – 7.51 (m, 2 H), 7.44 (d, J= 7.6 Hz, 2 H), 7.26 (d, J = 7.0 Hz, 1 H), 7.07 (d, J = 8.0 Hz, 1 H), 4.21 (q, J = 7.1 Hz, 2 H), 3.83(s, 3 H), 1.14 (t, J = 7.1 Hz, 3 H),; ¹³C NMR (100 MHz, CDCl₃): δ 191.9, 183.1, 166.8, 165.9, 153.0, 142.3, 137.1, 136.8, 133.4, 131.3, 128.9, 128.5, 122.7, 116.9, 114.8, 108.7, 61.7, 52.6, 13.9. Anal. Calcd. for C₂₁H₁₇NO₆: C, 66.49; H, 4.52; N, 3.69; Found: C, 66.43; H, 4.61; N, 3.46.

(Z)-ethyl 2-(5-fluoro-3-oxoindolin-2-ylidene)-3-

oxo-3-phenylpropanoate

Following the general procedure, using 20% ether in petroleum ether as the eluant afforded a red solid (57% yield). ¹H NMR (400 MHz, CDCl₃): δ 9.25 (s, 1 H), 7.96 (d, J = 7.4 Hz, 2 H), 7.57 (t, J = 7.4 Hz, 1 H), 7.45 (t,

J = 7.7 Hz, 2 H), 7.25 – 7.19 (m, 2 H), 6.92 (dd, J = 8.5 Hz, J = 3.6 Hz, 1 H), 4.22 (q, J = 7.1 Hz, 2 H), 1.16 (t, J = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 191.9, 185.4 (d, J = 3.0 Hz), 166.7, 158.2 (d, J = 242.8Hz), 148.8, 143.2, 137.2, 133.5, 128.8, 128.6, 124.6 (d, J = 24.9 Hz), 120.5 (d, J = 8.1 Hz), 112.7 (d, J = 8.1 Hz), 111.7 (d, J = 24.2 Hz), 108.7, 61.7, 14.0; ¹⁹F NMR (377 MHz, CDCl₃): δ -121.1. Anal. Calcd. for C₁₉H₁₄FNO₄: C, 67.25; H, 4.16; N, 4.13; Found: C, 66.97; H, 4.37; N, 4.05.

(Z)-ethyl 2-(5-chloro-3-oxoindolin-2-ylidene)-3-

oxo-3-phenylpropanoate

3r

Following the general procedure, using 20% ether in petroleum ether as the eluant afforded a red solid (56% yield). ¹H NMR (400 MHz, CDCl₃): δ 9.33 (s, 1 H), 7.95 (d, J = 7.6 Hz, 2 H), 7.57 (t, J = 7.5 Hz, 1 H), 7.47 – 7.42 (m, 4 H), 6.91 (d, J = 8.4 Hz, 1 H), 4.21 (q, J = 7.1 Hz, 2 H), 1.15 (t, J = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 191.8, 185.0, 166.6, 150.8, 142.6, 137.1, 137.0, 133.5, 128.8, 128.6, 127.5, 125.2, 120.9, 113.1, 108.9, 61.8, 14.0. Anal. Calcd. for C₁₉H₁₄ClNO₄: C, 64.14; H, 3.97; N, 3.94; Found: C, 64.10; H, 3.95; N, 3.67.

(Z)-ethyl 2-(5-bromo-3-oxoindolin-2-ylidene)-3-

oxo-3-phenylpropanoate

3s

Following the general procedure, using 20% ether in petroleum ether as the eluant afforded a red solid (60% yield). ¹H NMR (400 MHz, CDCl₃): δ 9.32 (s, 1 H), 7.95 (d, J = 7.4 Hz, 2 H), 7.63 – 7.55 (m, 3 H), 7.45 (t, J = 7.7 Hz, 2 H), 6.87 (d, J = 8.4 Hz, 1 H), , 4.22 (q, J = 7.1 Hz, 2 H), 1.16 (t, J = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 191.7, 184.8, 166.6, 151.2, 142.4, 139.8, 137.1, 133.5, 128.8, 128.6, 128.2, 121.4, 114.5, 113.5, 109.0, 61.8, 14.0 Anal. Calcd. for C₁₉H₁₄BrNO₄: C, 57.02; H, 3.53; N, 3.50; Found: C, 56.77; H, 3.55; N, 3.49.

(Z)-ethyl 2-(5-iodo-3-oxoindolin-2-ylidene)-3-

oxo-3-phenylpropanoate

3t

Following the general procedure, using 20% ether in petroleum ether as the eluant afforded a red solid (51% yield). ¹H NMR (400 MHz, CDCl₃): δ 9.32 (s, 1 H), 7.94 (d, J = 7.8 Hz, 2 H), 7.80 (s, 1 H), 7.75 (dd, J = 8.5

Hz, J = 1.8 Hz, 1 H), 7.56 (t, J = 7.5 Hz, 1 H), 7.44 (t, J = 7.7 Hz, 2 H), 6.77 (d, J = 8.4 Hz, 1 H), 4.21 (q, J = 7.1 Hz, 2 H), 1.15 (t, J = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 191.8, 184.5, 166.6, 151.7, 145.5, 142.0, 137.1, 134.1, 133.5, 128.8, 128.6, 121.9, 113.9, 108.8, 83.7, 61.7, 13.9. Anal. Calcd. for C₁₉H₁₄INO₄: C, 51.03; H, 3.16; N, 3.13; Found: C, 50.88; H, 3.01; N, 2.98.

(Z)-ethyl 2-(5-methyl-3-oxoindolin-2-ylidene)-3-

oxo-3-phenylpropanoate

3u

Following the general procedure, using 20% ether in petroleum ether as the eluant afforded a red solid (64% yield). ¹H NMR (400 MHz, CDCl₃): δ 9.19 (s, 1 H), 7.96 (d, J = 7.8 Hz, 2 H), 7.56 (t, J = 7.4 Hz, 1 H), 7.44 (t, J = 7.6 Hz, 2 H), 7.31 – 7.29 (m, 2 H), 6.84 (d, J = 8.6 Hz, 1 H), 4.21 (q, J = 7.1 Hz, 2 H), 2.27 (s, 3 H),1.16 (t, J = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 192.4, 186.2, 166.9, 150.6, 143.4, 138.4, 137.4, 133.3, 131.7, 128.8, 128.5, 125.5, 119.9, 111.6, 107.3, 61.5, 20.6, 14.0. Anal. Calcd. for C₂₀H₁₇NO₄: C, 71.63; H, 5.11; N, 4.18; Found: C, 71.56; H, 5.15; N, 4.11.

(Z)-ethyl 2-(7-methyl-3-oxoindolin-2-ylidene)-3-

oxo-3-phenylpropanoate

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2011

3v

Following the general procedure, using 20% ether in petroleum ether as the eluant afforded a red solid (50% yield). ¹H NMR (400 MHz, CDCl₃): δ 9.20 (s, 1 H), 7.97 (d, J = 7.8 Hz, 2 H), 7.56 (t, J = 7.4 Hz, 1 H), 7.44 (t, J = 7.7 Hz, 2 H), 7.38 (d, J = 7.6 Hz, 1 H), 7.32 (d, J = 7.4 Hz, 1 H), 6.87 (t, J = 7.5 Hz, 1 H), 4.24 (q, J = 7.1 Hz, 2 H), 2.32 (s, 3 H), 1.18 (t, J = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 192.2, 186.4, 167.0, 151.4, 143.2, 138.3, 133.3, 128.8, 128.5, 123.1, 121.9, 120.9, 119.5, 107.9, 61.6, 15.3, 14.0. Anal. Calcd. for C₂₀H₁₇NO₄: C, 71.63; H, 5.11; N, 4.18; Found: C, 71.45; H, 5.02; N, 4.15.

(Z)-ethyl 2-(5-methoxy-3-oxoindolin-2-ylidene)-3-

oxo-3-phenylpropanoate

3w

Following the general procedure, using 30% ether in petroleum ether as the eluant afforded a red solid (61% yield). ¹H NMR (400 MHz, CDCl₃): δ 9.10 (s, 1 H), 7.97 (d, J = 7.4 Hz, 2 H), 7.56 (t, J = 7.4 Hz, 1 H), 7.44 (t, J = 7.6 Hz, 2 H), 7.10 (dd, J = 8.6 Hz, J = 2.6 Hz, 1 H), 7.00 (d, J = 2.6 Hz, 1 H), 6.87 (d, J = 8.6 Hz, 1 H), 4.22 (q, J = 7.1 Hz, 2 H), 3.73(s, 3 H), 1.16 (t, J = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 192.4, 186.2, 166.8, 155.3, 147.2, 143.7, 137.4, 133.3, 128.8, 128.5, 125.8, 120.2, 112.8, 107.9, 107.6, 61.5, 55.9, 14.0. Anal. Calcd. for C₂₀H₁₇NO₅: C, 68.37; H, 4.88; N, 3.99; Found: C, 67.82; H, 4.84; N, 3.73.

(E)-methyl 2-cyano-2-(3-oxoindolin-2-ylidene)acetate

Following the general procedure, using 40% ether in petroleum ether as the eluant afforded a red solid (50% yield). ¹H NMR (400 MHz, (CD₃)₂SO): δ 11.37 (s, 1 H), 7.67 – 7.61 (m, 2 H), 7.35 (d, J = 8.0 Hz, 1 H), 7.13 (t, J = 7.4 Hz, 1 H), 3.85 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 185.1, 165.4, 151.9, 149.9, 138.4, 125.8, 123.9, 119.5, 115.0, 114.3, 75.8, 53.1. Anal. Calcd. for C₁₂H₈N₂O₃: C, 63.16; H, 3.53; N, 12.28; Found: C, 63.07; H, 3.62; N, 12.11.

(E)-2-(1,3-dioxo-1-phenylbutan-2-ylidene)indolin-3-one

Following the general procedure, but in the absence of $Mn(OAc)_2$. Using 20% ether in petroleum ether as the eluant afforded a red solid (45%)

yield). ¹H NMR (400 MHz, CDCl₃): δ 10.34 (s, 1 H), 8.01 (d, J = 7.4 Hz, 2 H), 7.58 (t, J = 7.4 Hz, 1 H), 7.50 - 7.44(m, 4 H), 6.97 - 6.94 (m, 2 H), 2.20(s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 198.3, 195.5, 187.8, 152.9, 141.3, 137.6, 137.5, 133.8, 128.9, 125.6, 122.6, 119.4, 113.9, 112.2, 29.3. Anal. Calcd. for C₁₈H₁₃NO₃: C, 74.22; H, 4.50; N, 4.81; Found: C, 73.88; H, 4.52; N, 4.67.

(E/Z)-ethyl 3-oxo-2-(3-oxoindolin-2-ylidene)butanoate

Following the general procedure, using 20% ether in petroleum ether as the eluant afforded a red solid (40% yield). ¹H NMR [**E**/**Z** = 3.6:1] (400 MHz, CDCl₃): δ **E**: 10.23 (s, 1 H), 7.64 – 7.62 (m, 1 H), 7.51 – 7.47 (m, 1 H), 7.02 (t, *J* = 7.4 Hz, 1 H), 6.98 – 6.90 (m, 1 H), 4.44 (q, *J* = 7.2 Hz, 2 H), 2.35 (s, 3 H), 1.40 (t, *J* = 7.2 Hz, 3 H). **Z**: 9.04 (s, 1 H), 4.29 (q, *J* = 7.1 Hz, 2 H), 2.50 (s, 3 H), 1.32 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ E: 197.6, 187.2, 167.1, 152.3, 141.2, 137.5, 125.6, 122.7, 119.6, 112.1, 108.2, 62.2, 28.5, 13.8. **Z**: 199.8, 186.6, 166.1, 152.6, 141.3, 137.6, 125.6, 122.0, 119.8, 111.8, 110.6, 61.6, 31.3, 14.1. Anal. Calcd. for C₂₀H₁₇NO₄: C, 64.86; H, 5.05; N, 5.40; Found: C, 64.67; H, 5.08; N, 5.21.

Labeling experiments:

The ¹⁸O was determined by HRMS. It should be noted that the labeling product undergoes partial oxygen exchange during the purification process. When the reaction was carried out in the presence of 10 equiv of H_2O^{18} , only normal ¹⁶O-product was detected.

The HRMS spectra of **3a** for the reaction in the presence of H_2O^{18} .

The HRMS spectra of **3a** for the reaction under ${}^{18}O_2$ (97%).

References

- [1] V. Gasparotto, I. Castagliuolo, G. Chiarelotto, V. Pezzi, D.Montanaro,
- P. Brun, G. Palù, G. Viola, M. G. Ferlin, J. Med. Chem. 2006, 49,

1910-1915.

- [2] Z. Rappoport, A. Gazit, J. Org. Chem. 1986, 51, 4112-4131.
- [3] K. Yoshizawa, S. Toyota, F. Toda, *Tetrahedron. Lett.* 2001, *42*, 7983-7985.
- [4] S. L. I.-L. Juana, H. J. Anthony, P. Noojaree, V. R. S. Patrick, J.

Chem. Soc. Perkin trans. II 1987, 1221.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

	compound 1		
chemical formula	C ₁₉ H ₁₅ NO ₄		
formula weight (g·mol-1)	321.32		
space group	P2(1)/c		
<i>a</i> (Å)	7.769(5)		
<i>b</i> (Å)	11.658(7)		
<i>c</i> (Å)	18.192(10)		
β (deg)	95.910(12)		
$V(\text{\AA}^3)$	1639.0(16)		
Ζ	4		
$T(\mathbf{K})$	293(2)		
λ (Å)	0.71073 Å		
$D_{\text{calc}} (\text{g·cm}^{-1})$	1.302		
$\mu (\mathrm{mm}^{-1})$	0.092		
F (000)	672		
Crystal size	0.5000 × 0.3000 × 0.2000 mm		
Theta range for data collection	2.08 to 27.50 deg.		
Limiting indices	-10≤h≤10		
	-15≤k≤15		
	-23≤l≤22		
Reflections collected / unique	$12330 / 3726 (R_{int} = 0.0316)$		
Data / restraints / parameters	3726 / 0 / 218		
Goodness-of-fit on F^2	1.004		
Final <i>R</i> indices $(I \ge 2\sigma(I))$	R1 = 0.0666, wR2 = 0.2427		
R indices (all data)	R1 = 0.0892, wR2 = 0.2740		
^{<i>a</i>} <i>R</i> defined as $\Sigma Fo - Fc /\Sigma Fo $ and <i>R</i> w defined as $(\Sigma [w(Fo^2 - Fc^2)^2]/\Sigma [wFo^4])^{1/2}$.			

Table S2. Crystallographic Data for compound $3a^a$

Bond lengths [Å]			
O(1)-C(7)	1.216(3)	O(2)-C(10)	1.333(3)
O(2)-C(11)	1.451(3)	O(3)-C(10)	1.215(3)
O(4)-C(13)	1.208(3)	N(1)-C(8)	1.366(3)
N(1)-C(1)	1.394(3)	C(1)-C(2)	1.381(4)
C(1)-C(6)	1.396(4)	C(2)-C(3)	1.380(4)
C(3)-C(4)	1.377(4)	C(4)-C(5)	1.368(4)
C(5)-C(6)	1.393(4)	C(6)-C(7)	1.457(4)
C(7)-C(8)	1.518(3)	C(8)-C(9)	1.350(3)
C(9)-C(10)	1.474(3)	C(9)-C(13)	1.514(3)
C(11)-C(12)	1.482(5)	C(13)-C(14)	1.484(3)
C(14)-C(19)	1.383(4)	C(14)-C(15)	1.397(4)
C(15)-C(16)	1.386(4)	C(16)-C(17)	1.377(6)
C(17)-C(18)	1.382(6)	C(18)-C(19)	1.378(4)
Bond angles [deg]			
C(10)-O(2)-C(11)	116.5(2)	C(8)-N(1)-C(1)	110.9(2)
C(2)-C(1)-N(1)	128.5(2)	C(2)-C(1)-C(6)	121.3(2)
N(1)-C(1)-C(6)	110.2(2)	C(3)-C(2)-C(1)	117.1(3)
C(4)-C(3)-C(2)	122.3(3)	C(5)-C(4)-C(3)	120.7(3)
C(4)-C(5)-C(6)	118.5(3)	C(5)-C(6)-C(1)	120.1(2)
C(5)-C(6)-C(7)	132.7(2)	C(1)-C(6)-C(7)	107.3(2)
O(1)-C(7)-C(6)	129.8(2)	O(1)-C(7)-C(8)	125.0(2)
C(6)-C(7)-C(8)	105.2(2)	C(9)-C(8)-N(1)	128.7(2)
C(9)-C(8)-C(7)	124.9(2)	N(1)-C(8)-C(7)	106.4(2)
C(8)-C(9)-C(10)	120.0(2)	C(8)-C(9)-C(13)	122.4(2)
C(10)-C(9)-C(13)	117.6(2)	O(3)-C(10)-O(2)	123.7(2)
O(3)-C(10)-C(9)	124.4(2)	O(2)-C(10)-C(9)	111.9(2)
O(2)-C(11)-C(12)	107.7(3)	O(4)-C(13)-C(14)	122.2(2)
O(4)-C(13)-C(9)	119.1(2)	C(14)-C(13)-C(9)	118.63(19)
C(19)-C(14)-C(15)	119.9(2)	C(19)-C(14)-C(13)	119.0(2)
C(15)-C(14)-C(13)	121.1(2)	C(16)-C(15)-C(14)	119.7(3)
C(17)-C(16)-C(15)	119.7(3)	C(16)-C(17)-C(18)	120.7(3)
C(19)-C(18)-C(17)	119.9(3)	C(18)-C(19)-C(14)	120.0(3)

Table S3. Bond lengths [Å] and angles [deg] for compound 3a

	Х	у	Z	U(eq)
O(1)	944(3)	5297(2)	8029(1)	72(1)
O(2)	2980(2)	2717(2)	10272(1)	60(1)
O(3)	2825(3)	4463(2)	10784(1)	73(1)
O(4)	121(2)	2929(2)	8809(1)	70(1)
N(1)	1910(3)	6247(2)	9836(1)	55(1)
C(1)	1518(3)	7279(2)	9469(1)	53(1)
C(2)	1551(4)	8376(2)	9757(2)	67(1)
C(3)	1135(5)	9263(3)	9269(2)	78(1)
C(4)	683(4)	9080(3)	8527(2)	79(1)
C(5)	651(4)	7995(3)	8240(2)	69(1)
C(6)	1075(3)	7079(2)	8716(1)	55(1)
C(7)	1174(3)	5846(2)	8599(1)	54(1)
C(8)	1712(3)	5343(2)	9357(1)	50(1)
C(9)	1977(3)	4216(2)	9498(1)	49(1)
C(10)	2634(3)	3837(2)	10248(1)	53(1)
C(11)	3723(4)	2263(3)	10976(2)	70(1)
C(12)	3958(6)	1010(3)	10887(2)	104(1)
C(13)	1577(3)	3301(2)	8916(1)	51(1)
C(14)	3018(3)	2835(2)	8530(1)	50(1)
C(15)	4615(3)	3393(3)	8567(2)	69(1)
C(16)	5947(4)	2921(4)	8214(2)	89(1)
C(17)	5692(5)	1897(4)	7842(2)	97(1)
C(18)	4100(6)	1358(3)	7790(2)	87(1)
C(19)	2761(4)	1830(2)	8129(2)	64(1)

Table S4. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($\mathbb{A}^2 \times 10^3$)

for compound **3a**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

S55

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2011

Figure 1. ORTEP diagram of compound 3a (ellipsoids at 30% probability.)