Supporting Information

One-pot synthesis of benzofused heteroaryl azoles via tandem C-heteroatom coupling/C-H activation of azoles

Xurong Qin, Xuefeng Cong, Dongbing Zhao, Jingsong You and Jingbo Lan*

Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China Fax: 86-28-85412203; E-mail: jingbolan@scu.edu.cn

Table of contents

I. General remarks		
 II. General procedure for one-pot synthesis of benzofused heteroaryl azoles III. Experimental data for the described substances IV. Procedure for one-pot synthesis of 2-(indol-2-yl)-benzothiazole 4l 		
		V. References
		VI. Copies of ¹ H and ¹³ C NMR spectra

I. General Remarks

NMR spectra were obtained on a Bruker AMX-400 or a Bruker AMX-600. The ¹H NMR (400 MHz or 600 MHz) chemical shifts were measured relative to CDCl₃ as the internal reference (CDCl₃: δ = 7.26 ppm). The ¹³C NMR (100 MHz or 150 MHz) chemical shifts were given using CDCl₃ as the internal standard (CDCl₃: δ = 77.16 ppm). The following abbreviations were used to designate the multiplicities: s = singlet, d = doublet, t = triplet, bs = broad signal, m = multiplet. High-resolution mass spectra (HR-MS) were obtained with a Waters-Q-TOF-Premier (ESI). Melting points were determined with XRC-1 and are uncorrected.

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. 2-gem-dibromovinylphenols,¹ 2-gem-dibromovinylthiophenols,^{1,2} n-benzylictheophylline,⁴ n-butyl theophylline, and 1-methylbenzimidazole⁵ were prepared according to the literature procedures. Solvents were dried over CaH₂ (NMP, DMF or DMSO) or sodium (dioxane or toluene), and freshly distilled prior to use. Unless otherwise indicated, all syntheses and manipulations were carried out under N₂ atmosphere.

II. General procedure for one-pot synthesis of benzofused heteroaryl azoles

A flame-dried Schlenk test tube with a magnetic stirring bar was charged with CuI (9.5 mg, 0.05 mmol), 1,10-phenanthroline (9.0 mg, 0.05 mmol), *t*-BuOLi (120 mg, 1.5 mmol), azole (0.25 mmol), *gem*-dihaloolefin (0.5 mmol), and dioxane (1.0 mL) under N₂. The reaction mixture was stirred for 10 min at room temperature, and then heated at 140 °C for 30 h. The reaction mixture was then cooled to ambient temperature, diluted with 20 mL of CH₂Cl₂, filtered through a celite pad, and washed with 10-20 mL of CH₂Cl₂. The combined organic extracts were concentrated and the resulting residue was purified by column chromatography on silica gel to provide the desired product.

III. Experimental data for the described substances

2-(Benzofuran-2-yl)-benzothiazole (3a)

Following the general procedure, the reaction mixture was stirred for 10 min at room temperature, and then heated at 140 °C for 30 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 20/1, v/v) afforded the desired product as a yellow solid (83%). mp: 222-224 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.29 (t, *J* = 7.6 Hz, 1H), 7.39-7.44 (m, 2H), 7.51-7.54 (m, 2H), 7.61 (d, *J* = 8.4 Hz, 1H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.93 (d, *J* = 7.6 Hz, 1H), 8.12 (d, *J* = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 107.7, 112.0, 121.8, 122.3, 123.6, 123.9, 125.8, 126.6, 126.8, 128.3, 134.8, 149.9, 154.0, 155.6, 157.7 ppm. HRMS (ESI): calcd for C₁₅H₁₀NOS [M+H]⁺ 252.0483, found 252.0486.

2-(Benzofuran-2-yl)-4,5-dimethylthiazole (3b)

Following the general procedure, the reaction mixture was stirred for 10 min at room temperature, and then heated at 140 °C for 30 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 20/1, v/v) afforded the desired product as a yellow solid (77%). mp: 118-120 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.38 (s, 6H), 7.19 (s, 1H), 7.21 (d, J = 7.2 Hz, 1H), 7.27 (t, J = 7.8 Hz, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.56 (d, J = 7.6 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 11.6, 15.0, 104.0, 111.7, 121.7, 123.6, 125.5, 127.6, 128.6, 150.1, 150.4, 153.3, 155.0 ppm. HRMS (ESI): calcd for C₁₃H₁₂NOS [M+H]⁺ 230.0640, found 230.0636.

2-(Benzofuran-2-yl)-benzoxazole (3c)

Following the general procedure, the reaction mixture was stirred for 10 min at room temperature, and then heated at 140 °C for 30 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 20/1, v/v) afforded the desired product as a yellow solid (68%). mp: 168-170 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.30 (t, J = 7.6 Hz, 1H), 7.38-7.41 (m, 2H), 7.43 (d, J = 7.6 Hz, 1H), 7.59-7.61 (m, 2H), 7.63 (d, J

= 8.4 Hz, 1H), 7.69 (d, J = 7.6 Hz, 1H), 7.80-7.82 (m, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 110.4, 110.9, 112.2, 120.6, 122.4, 124.1, 125.2, 126.0, 127.1, 127.7, 141.8, 143.8, 150.6, 155.5, 156.0 ppm. HRMS (ESI): calcd for C₁₅H₁₀NO₂ [M+H]⁺ 236.0712, found 236.0709.

2-(Benzofuran-2-yl)-5-phenyloxazole (3d)

Following the general procedure, the reaction mixture was stirred for 10 min at room temperature, and then heated at 140 °C for 30 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 10/1, v/v) afforded the desired product as a yellow solid (92%). mp: 87-89 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.28 (t, *J* = 7.4 Hz, 1H), 7.32-7.38 (m, 2H), 7.40-7.44 (m, 2H), 7.46 (d, *J* = 7.6 Hz, 1H), 7.51 (s, 1H), 7.60 (d, *J* = 8.4 Hz, 1H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.73 (d, *J* = 7.6 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 107.5, 112.0, 122.0, 123.7, 123.8, 124.5, 126.3, 127.5, 127.9, 128.9, 129.1, 144.1, 151.8, 154.0, 155.5 ppm. HRMS (ESI): calcd for C₁₇H₁₂NO₂ [M+H]⁺ 262.0868, found 262.0863.

2-(Benzofuran-2-yl)-5-(4-fluorophenyl)-oxazole (3e)

Following the general procedure, the reaction mixture was stirred for 10 min at room temperature, and then heated at 140 °C for 30 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 6/1, v/v) afforded the desired product as a yellow solid (91%). mp: 116-118 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.13 (t, *J* = 8.6 Hz, 2H), 7.28 (t, *J* = 7.4 Hz, 1H), 7.37-7.41 (m, 2H), 7.44 (s, 1H), 7.59 (d, *J* = 8.4 Hz, 1H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.69-7.71 (m, 2H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 107.6, 112.0, 116.2, 116.4, 122.0, 123.4, 123.8, 123.88, 123.90, 126.37, 126.40, 126.5, 127.9, 144.0, 151.0, 154.0, 155.5, 162.2, 163.8 ppm. HRMS (ESI): calcd for C₁₇H₁₁FNO₂ [M+H]⁺ 280.0774, found 280.0781.

2-(Benzofuran-2-yl)-5-(4-nitrophenyl)-oxazole (3f)

Following the general procedure, the reaction mixture was stirred for 10 min at room temperature, and then heated at 140 °C for 30 h. Purification via silica gel column chromatography (petroleum ether /EtOAc = 4/1, v/v) afforded the desired product as a yellow solid (72%). mp: 188-190 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.31 (t, *J* = 7.4 Hz, 1H), 7.42 (t, *J* = 7.6 Hz, 1H), 7.52 (s, 1H), 7.62 (d, *J* = 8.4 Hz, 1H), 7.69 (d, *J* = 8.0 Hz, 2H), 7.89 (d, *J* = 8.4 Hz, 2H), 8.32 (d, *J* = 8.4 Hz, 2H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 108.9, 112.1, 112.3, 124.1, 124.7, 124.9, 126.9, 127.2, 127.7, 133.3, 143.5, 147.5, 149.6, 155.5, 155.7 ppm. HRMS (ESI): calcd for C₁₇H₁₁N₂O₄ [M+H]⁺ 307.0719, found 307.0711.

2-(Benzofuran-2-yl)-1-methylbenzoimidazole (3g)

Following the general procedure, the reaction mixture was stirred for 10 min at room temperature, and then heated at 140 °C for 30 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 6/1, v/v) afforded the desired product as a white solid (68%). mp: 132-134 °C. ¹H NMR (400 MHz, CDCl₃): δ = 4.06 (s, 3H), 7.23-7.29 (m, 3H), 7.33-7.36 (m, 2H), 7.45 (s, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.63 (d, J = 8.0 Hz, 1H), 7.79-7.82 (m, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 31.9, 108.7, 109.6, 111.8, 120.2, 122.0, 123.1, 123.6, 123.8, 125.9, 128.0, 136.5, 143.1, 144.3, 147.1, 155.3 ppm. HRMS (ESI): calcd for C₁₆H₁₃N₂O [M+H]⁺ 249.1028, found 249.1033.

8-(Benzofuran-2-yl)-1,3,7-trimethylxanthine (3h)⁶

Following the general procedure, the reaction mixture was stirred for 10 min at room

temperature, and then heated at 140 °C for 30 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 2/1, v/v) afforded the desired product as a yellow solid (86%). mp: 230-233 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.43 (s, 3H), 3.64 (s, 3H), 4.38 (s, 3H), 7.30 (t, J = 7.6 Hz, 1H), 7.40 (t, J = 7.8 Hz, 1H), 7.45 (s, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 28.2, 30.0, 34.1, 108.7, 109.8, 111.9, 122.1, 124.1, 126.5, 127.6, 142.8, 145.6, 148.5, 151.7, 155.4, 155.5 ppm. HRMS (ESI): calcd for C₁₆H₁₅N₄O₃ [M+H]⁺ 311.1144, found 311.1140.

8-(Benzofuran-2-yl)-7-benzyl-1,3-dimethylxanthine (3i)

Following the general procedure, the reaction mixture was stirred for 10 min at room temperature, and then heated at 140 °C for 30 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 3/1, v/v) afforded the desired product as a yellow solid (91%). mp: >250 °C; ¹H NMR (400 MHz, CDCl₃): δ = 3.44 (s, 3H), 3.68 (s, 3H), 6.09 (s, 2H), 7.28 (m, 5H), 7.33 (t, *J* = 7.8 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 2H), 7.57 (d, *J* = 8.0 Hz, 1H), 7.66 (d, *J* = 7.6 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 28.3, 30.0, 49.9, 108.3, 110.3, 111.8, 122.2, 124.1, 126.6, 127.2, 127.6, 128.2, 129.0, 136.6, 142.6, 145.5, 148.9, 151.8, 155.2, 155.4 ppm. HRMS (ESI): calcd for C₂₂H₁₉N₄O₃ [M+H]⁺ 387.1457, found 387.1460.

8-(Benzofuran-2-yl)-7-butyl-1,3-dimethylxanthine (3j)

Following the general procedure, the reaction mixture was stirred for 10 min at room temperature, and then heated at 140 °C for 30 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 5/1, v/v) afforded the desired product as a yellow solid (78%). mp: 155-157 °C; ¹H NMR (400 MHz, CDCl₃): δ = 0.97 (t, *J* = 7.4 Hz, 3H), 1.44-1.49 (m, 2H), 1.88-1.96 (m, 2H), 3.44 (s, 3H), 3.65 (s, 3H), 4.79 (t, *J* =

7.6 Hz, 2H), 7.31 (t, J = 7.4 Hz, 1H), 7.40 (t, J = 7.8 Hz, 1H), 7.47 (s, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.68 (d, J = 7.8 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta = 13.8$, 19.9, 28.2, 29.9, 33.4, 46.9, 108.3, 109.9, 111.7, 122.1, 124.1, 126.4, 127.6, 142.1, 145.8, 148.6, 151.7, 155.1, 155.3 ppm. HRMS (ESI): calcd for C₁₉H₂₁N₄O₃ [M+H]⁺ 353.1614, found 353.1605.

8-(Benzofuran-2-yl)-7-butylpurine (3k)

Following the general procedure, the reaction mixture was stirred for 10 min at room temperature, and then heated at 140 °C for 30 h. Purification via silica gel column chromatography (petroleum ether/EtOAc/acetone= 4/1/1, v/v) afforded the desired product as a yellow solid (77%). mp: 92-95 °C. ¹H NMR (400 MHz, CDCl₃): δ = 0.97 (t, *J* = 7.4 Hz, 3H), 1.41-1.50 (m, 2H), 1.89-2.03 (m, 2H), 4.72 (t, *J* = 7.6 Hz, 2H), 7.33 (t, *J* = 7.4 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 1H), 7.60 (d, *J* = 8.0 Hz, 1H), 7.67 (s, 1H), 7.72 (d, *J* = 7.6 Hz, 1H), 9.12 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 13.8, 20.1, 32.3, 44.1, 100.1, 110.8, 111.9, 122.4, 124.2, 126.9, 127.6, 146.1, 152.6, 152.8, 155.6 ppm. HRMS (ESI): calcd for C₁₇H₁₇N₄O [M+H]⁺ 293.1402, found 293.1403.

2-(Benzofuran-2-yl)-5-phenyl-1,3,4-oxadiazole (3l)

Following the general procedure, the reaction mixture was stirred for 10 min at room temperature, and then heated at 140 °C for 30 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 15/1, v/v) afforded the desired product as a white solid (73%). mp: 170-172 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.32 (t, *J* = 7.4 Hz, 1H), 7.44 (t, *J* = 7.8 Hz, 1H), 7.53-7.57 (m, 3H), 7.59 (s, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 8.17 (d, *J* = 6.8 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 110.3, 112.3, 122.5, 123.5, 124.2, 127.2, 127.3, 127.4, 129.3, 132.2, 140.8, 155.9, 158.0, 164.8 ppm. HRMS (ESI): calcd for C₁₆H₁₁N₂O₂ [M+H]⁺ 263.0821, found 263.0812.

2-(Naphtho[2,1-b]furan-2-yl)-benzothiazole (4a)

Following the general procedure, the reaction mixture was stirred for 10 min at room temperature, and then heated at 140 °C for 30 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 25/1, v/v) afforded the desired product as a white solid (80%). mp: 172-174 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.40 (t, *J* = 7.6 Hz, 1H), 7.51 (t, *J* = 7.8 Hz, 2H), 7.62 (t, *J* = 7.2 Hz, 1H), 7.72 (d, *J* = 8.4 Hz, 1H), 7.81 (d, *J* = 9.2 Hz, 1H), 7.92 (t, *J* = 8.6 Hz, 2H), 8.02 (s, 1H), 8.12 (d, *J* = 8.4 Hz, 1H), 8.17 (d, *J* = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 106.8, 112.5, 121.8, 123.5, 123.6, 124.1, 125.4, 125.6, 126.8, 127.2, 127.8, 127.9, 129.1, 130.7, 134.7, 149.4, 153.7, 154.0, 157.7 ppm. HRMS (ESI): calcd for C₁₉H₁₂NOS [M+H]⁺ 302.0640, found 302.0638.

2-(5-Chlorobenzofuran-2-yl)-benzothiazole (4b)

Following the general procedure, the reaction mixture was stirred for 10 min at room temperature, and then heated at 140 °C for 30 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 20/1, v/v) afforded the desired product as a yellow solid (84%). mp: 203-205 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.35 (d, *J* = 8.0 Hz, 1H), 7.43-7.47 (m, 2H), 7.53-7.56 (m, 2H), 7.66 (s, 1H), 7.94 (d, *J* = 8.0 Hz, 1H), 8.12 (d, *J* = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 106.9, 112.4, 113.0, 121.7, 121.9, 123.8, 126.1, 126.8, 127.0, 129.6, 134.9, 151.3, 153.9, 154.0, 157.1 ppm. HRMS (ESI): calcd for C₁₅H₉ClNOS [M+H]⁺ 286.0093, found 286.0100.

2-(5-Chlorobenzofuran-2-yl)-1-methylbenzoimidazole (4c)

Following the general procedure, the reaction mixture was stirred for 10 min at room temperature, and then heated at 140 °C for 30 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 6/1, v/v) afforded the desired product as a

white solid (64%). mp: 108-110 °C. ¹H NMR (400 MHz, CDCl₃): δ = 4.13 (s, 3H), 7.31-7.35 (m, 3H), 7.40 (d, *J* = 7.2 Hz, 1H), 7.44 (s, 1H), 7.51 (d, *J* = 8.4 Hz, 1H), 7.65 (ds, 1H), 7.83 (d, *J* = 6.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 31.9, 108.0, 109.7, 112.8, 120.3, 121.4, 123.3, 123.9, 126.2, 129.3, 129.5, 136.5, 143.1, 143.7, 148.5, 153.7 ppm. HRMS (ESI): calcd for C₁₆H₁₂ClN₂O [M+H]⁺ 283.0638, found 283.0644.

8-(5-Chlorobenzofuran-2-yl)-1,3,7-trimethylxanthine (4d)

Following the general procedure, the reaction mixture was stirred for 10 min at room temperature, and then heated at 140 °C for 30 h. Purification via silica gel column chromatography (petroleum ether/EtOAc/acetone = 6/1/1, v/v) afforded the desired product as a yellow solid (56%). mp: >250 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.42 (s, 3H), 3.62 (s, 3H), 4.36 (s, 3H), 7.34-7.37 (m, 2H), 7.49 (d, *J* = 7.2 Hz, 1H), 7.63 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 28.2, 30.0, 34.1, 108.8, 109.0, 112.8, 121.5, 126.7, 128.9, 129.8, 142.1, 147.0, 148.4, 151.6, 153.7, 155.4 ppm. HRMS (ESI): calcd for C₁₆H₁₄ClN₄O₃ [M+H]⁺ 345.0754, found 345.0747.

2-(6-Methoxybenzofuran-2-yl)-1-methylbenzoimidazole (4e)

Following the general procedure, the reaction mixture was stirred for 10 min at room temperature, and then heated at 140 °C for 30 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 3/1, v/v) afforded the desired product as a white solid (66%). mp: 136-138 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.89 (s, 3H), 4.12 (s, 3H), 6.93 (d, *J* = 8.4 Hz, 1H), 7.12 (s, 1H), 7.29-7.32 (m, 2H), 7.38-7.40 (m, 1H), 7.43 (s, 1H), 7.53 (d, *J* = 8.4 Hz, 1H), 7.82-7.84 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 31.9, 55.9, 96.0, 108.7, 109.5, 113.3, 120.1, 121.3, 122.1, 123.0, 123.4, 136.5, 143.2, 144.6, 146.3, 156.5, 159.4 ppm. HRMS (ESI): calcd for C₁₇H₁₅N₂O₂ [M+H]⁺ 279.1134, found 279.1138.

2-(6-Methoxybenzofuran-2-yl)-benzothiazole (4f)

Following the general procedure, the reaction mixture was stirred for 10 min at room temperature, and then heated at 140 °C for 30 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 10/1, v/v) afforded the desired product as a white solid (81%). mp: 145-147 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.89 (s, 3H), 7.12 (s, 1H), 7.38 (t, *J* = 7.6 Hz, 1H), 7.45-7.49 (m, 2H), 7.51-7.55 (m, 2H), 7.90 (d, *J* = 8.0 Hz, 1H), 8.09 (d, *J* = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 55.9, 96.0, 107.9, 112.4, 113.6, 121.6, 121.7, 122.5, 123.4, 125.5, 126.7, 134.6, 149.2, 154.0, 156.9, 159.9 ppm. HRMS (ESI): calcd for C₁₆H₁₂NO₂S [M+H]⁺ 282.0589, found 282.0587.

2-(5-Methylbenzofuran-2-yl)-benzoxazole (4g)

Following the general procedure, the reaction mixture was stirred for 10 min at room temperature, and then heated at 140 °C for 30 h. Purification via silica gel column chromatography (petroleum ether /EtOAc = 20/1, v/v) afforded the desired product as a white solid (74%). mp: 117-119 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.47 (s, 3H), 7.24 (d, *J* = 8.4 Hz, 1H), 7.38-7.40 (m, 2H), 7.48 (s, 1H), 7.51-7.54 (m, 2H), 7.60-7.62 (m, 1H), 7.80-7.82 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 21.4, 110.2, 110.8, 111.7, 120.5, 122.0, 125.2, 125.9, 127.8, 128.5, 133.6, 141.8, 143.8, 150.5, 154.5, 155.6 ppm. HRMS (ESI): calcd for C₁₆H₁₂NO₂ [M+H]⁺ 250.0868, found 250.0870.

2-(5-(*tert*-Butyl)benzofuran-2-yl)-1-methylbenzoimidazole (4h)

Following the general procedure, the reaction mixture was stirred for 10 min at room temperature, and then heated at 140 °C for 30 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 6/1, v/v) afforded the desired product as a

white solid (65%). mp: 119-121 °C. ¹H NMR (400 MHz, CDCl₃): δ = 1.41 (s, 9H), 4.15 (s, 3H), 7.32-7.34 (m, 2H), 7.40-7.42 (m, 1H), 7.46 (d, *J* = 8.8 Hz, 1H), 7.52-7.54 (m, 2H), 7.69 (s, 1H), 7.84 (d, *J* = 8.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 31.89, 31.92, 34.9, 109.1, 109.6, 111.1, 118.0, 120.0, 123.1, 123.5, 124.2, 127.7, 136.4, 142.9, 144.4, 146.9, 147.0, 153.6 ppm. HRMS (ESI): calcd for C₂₀H₂₁N₂O [M+H]⁺ 305.1654, found 305.1656.

8-(Benzothiophen-2-yl)-1,3,7-trimethylxanthine (4i)

Following the general procedure, the reaction mixture was stirred for 10 min at room temperature, and then heated at 140 °C for 30 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 2/1, v/v) afforded the desired product as a yellow solid (63%). mp: 293-295 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.44 (s, 3H), 3.65 (s, 3H), 4.30 (s, 3H), 7.43-7.45 (m, 2H), 7.79 (s, 1H), 7.86-7.89 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 28.2, 30.0, 34.0, 122.4, 124.8, 125.29, 125.33, 126.3, 130.8, 139.6, 140.7, 148.3, 151.8, 155.6 ppm. HRMS (ESI): calcd for C₁₆H₁₅N₄O₂S [M+H]⁺ 327.0916, found 327.0922.

2-(Benzothiophen-2-yl)-5-phenyloxazole (4j)

Following the general procedure, the reaction mixture was stirred for 10 min at room temperature, and then heated at 140 °C for 30 h. Purification via silica gel column chromatography (petroleum ether/CH₂Cl₂/EtOAc = 20/2/1, v/v) afforded the desired product as a yellow solid (80%). mp: 101-103 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.37-7.42 (m, 3H), 7.47 (t, *J* = 7.4 Hz, 3H), 7.73 (d, *J* = 7.6 Hz, 2H), 7.87 (s, 2H), 7.97 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 122.7, 123.8, 124.3, 124.4, 124.7, 125.1, 126.0, 127.8, 128.8, 129.1, 129.7, 139.7, 140.6, 151.7, 157.4 ppm. HRMS (ESI): calcd for C₁₇H₁₂NOS [M+H]⁺ 278.0640, found 278.0631.

2-(Benzothiophen-2-yl)-5-phenyl-1,3,4-oxadiazole (4k)

Following the general procedure, the reaction mixture was stirred for 10 min at room temperature, and then heated at 140 °C for 30 h. Purification via silica gel column chromatography (petroleum ether /CH₂Cl₂/EtOAc = 20/2/1, v/v) afforded the desired product as a yellow solid (62%). mp: 144-146 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.43-7.49 (m, 2H), 7.55-7.57 (m, 3H), 7.90 (d, *J* = 7.2 Hz, 2H), 8.08 (s, 1H), 8.15 (d, *J* = 7.2 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 122.8, 123.7, 125.1, 125.4, 126.7, 126.8, 127.2, 129.3, 132.1, 139.2, 141.1, 161.2, 164.7 ppm. HRMS (ESI): calcd for C₁₆H₁₂N₂OS[M+H]⁺ 279.0592, found 279.0592.

IV. Procedure for one-pot synthesis of 2-(indol-2-yl)-benzothiazole 4l⁷

A flame-dried Schlenk test tube with a magnetic stirring bar was charged with Pd(OAc)₂ (2.8 mg, 0.0125 mmol), CuI (4.8 mg, 0.025 mmol), S-phos (10.2 mg, 0.05 t-BuOLi(120 1.5 benzothiazole mmol), mg, mmol), (0.25)mmol), 2-gem-dibromovinylaniline (0.5 mmol), and toluene (1.0 mL) under N₂. The reaction mixture was stirred for 10 min at room temperature, and then heated at 120 °C for 24 h. The reaction mixture was then cooled to ambient temperature, diluted with 20 mL of CH₂Cl₂, filtered through a celite pad, and washed with 10-20 mL of CH₂Cl₂. The combined organic extracts were concentrated and the resulting residue was purified by column chromatography (petroleum ether/ $CH_2Cl_2 = 1/1$, v/v) on silica gel to afforded the desired product as a white solid (52%). mp: 144-146 °C. ¹H NMR (600 MHz, CDCl₃): δ = 7.15 (t, J = 7.2 Hz, 2H), 7.28 (t, J = 7.8 Hz, 1H), 7.38-7.43 (m, 2H), 7.48 (t, J = 8.0 Hz, 1H), 7.68 (d, J = 8.4 Hz, 1H), 7.89 (d, J = 7.8 Hz, 1H), 7.99 (d, J = 8.4 Hz, 1H)Hz, 1H), 9.52 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 105.8$, 111.7, 121.0,

121.80, 121.84, 122.8, 124.9, 125.5, 126.7, 128.5, 137.2, 153.5, 166.5 ppm. HRMS (ESI): calcd for $C_{15}H_{11}N_2S [M+H]^+$ 251.0643, found 251.0643.

V. References

1 S. G. Newman, V. Aureggi, C. S. Bryan and M. Lautens, *Chem. Commun.*, 2009, 5236.

2 C. S. Bryan, J. A. Braunger and M. Lautens, Angew. Chem., Int. Ed., 2009, 48, 7064.

3 Y.-Q. Fang, R. Karisch and M. Lautens, J. Org. Chem., 2007, 72, 1341.

4 J. W. Daly, W. L. Padgett and M. T. Shamim, J. Med. Chem., 1986, 29, 1305.

5 J. P. Petzer, S. Steyn, K. P. Castagnoli, J. -F. Chen, M. A. Schwarzschild, C. J. W. Schyf and N. Castagnoli, *Bio. Med. Chem.*, 2003, **11**, 1299.

6 P. Xi, F. Yang, S. Qin, D. Zhao, J. Lan, G. Gao, C. Hu and J. You, *J. Am. Chem. Soc.*, 2010, **132**, 1822.

7 A. K. Chakraborti, S. Rudrawar, K. B. Jadhav, G. Kaur and S. V. Chankeshwara, *Green Chem.*, 2007, **9**, 1335.

VI. Copies of ¹H and ¹³C NMR spectra

S17

