Electronic Supplementary Information

Facile formation of *meso-meso* linked porphyrin dimer catalyzed by a manganese(IV)-oxo porphyrin

Atsuro Takai,^{*a*} Benoit Habermeyer^{*b*} and Shunichi Fukuzumi^{**a,c*}

^a Department of Material and Life Science, Graduate School of Engineering, Osaka University and ALCA (JST), Suita, Osaka 565-0871, Japan

^b ICMUB, UMR CNRS 5260, Université de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France

^c Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea

Experimental

Materials. Zinc(II) 5,15-(p-tolyl)-10-(phenyl)porphyrin (ZnP), 5,10,15,20-tetrakis (2,4,6-trimethylphenyl) porphyrin (TMP), zinc(II) TMP (ZnTMP) were synthesized according to the literature.¹ (TMP)Mn^{III}(Cl) was obtained by adding MnCl₂·4H₂O to TMP.² Tris(2,2'-bipyridyl)ruthenium(III) hexafluorophosphate $[Ru(bpy)_3](PF_6)_3$ was prepared from tris(2,2'-bipyridyl)-ruthenium(II) chloride hexahydrate by the oxidation PbO_{2} .³ with Ferrocene was purified by sublimation under vacuum.⁴ *m*-Chloroperbenzoic acid (*m*-CPBA) was purified by washing with phosphate buffer (pH 7.4) and dried under reduced pressure.⁴ Tetra-*n*-butylammonium hydroxide (TBAOH) 37% in methanol (Tokyo Chemical Industry Co., Ltd.), dichloromethane (CH₂Cl₂) and acetonitrile (MeCN) spectroscopic grade (Nacalai Tesque, Inc.) were obtained commercially and used without further purification.

General Procedure. UV–vis–NIR spectra were recorded on a Hewlett Packard 8453 diode array spectrophotometer using 2 mm or 1 cm cuvette. ¹H NMR spectra were recorded on a JEOL AL300 (300 MHz) spectrometer. Chemical shifts are expressed in ppm relative to chloroform (7.26 ppm). MALDI TOF–MS measurements were performed on a AXIMA-CFR (Shimadzu).

Electrochemical Measurements. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were performed with a BAS 100W electrochemical analyzer in a deaerated solvent containing 0.10 M TBAPF₆ as a supporting electrolyte at 298 K. A conventional three-electrode cell was used with a platinum working electrode and a platinum wire as a counter electrode. The redox potentials were measured with respect to the Ag/AgNO₃ (1.0×10^{-2} M) reference electrode. The potential values (vs Ag/AgNO₃) can be converted to those vs ferrocene/ferrocenium.

Electron Paramagnetic Resonance (EPR) Measurements. The EPR spectra were measured at various temperatures with a JEOL X-band spectrometer (JES-RE1XE). The EPR spectra were recorded under nonsaturating microwave power

conditions. The magnitude of the modulation was chosen to optimize the resolution and the signal-to-noise (*S*/*N*) ratio of the observed spectra. The *g* values were calibrated with an Mn^{2+} marker. The solutions containing porphyrins were deaerated by argon purging for 10 min prior to use.

Synthesis of *meso*–(ZnP)₂. To a 60 mL of CH₂Cl₂/MeCN (1:1) solution of 5-phenyl-10,20-di(*p*-tolyl)porphyrin (2.5 mg, 67 μ M) and (TMP)Mn^{III} (0.48 mg, 18 μ M) was added an MeCN solution of *m*-CPBA (72 μ M) and stirred at room temperature for 50 seconds. Then, ferrocene (100 μ M) was added to give orange-brown solution. The solvent was evaporated to dryness and the residue was purified by column chromatography (silica gel, CH₂Cl₂) and recrystallized from CH₂Cl₂/MeCN (1:9) to give *meso*–(ZnP)₂ (2.1 mg, 83%). ¹H NMR (CDCl₃): δ = 9.03 (d, *J* = 4.9 Hz, 4H, β), 9.01 (d, *J* = 4.9 Hz, 4H, β), 8.69 (d, *J* = 4.9 Hz, 4H, β), 8.30 (m, 4H, Ph), 8.11 (m, 12H, β , *p*-Tolyl), 7.80 (m, 6H, Ph), 7.47 (d, *J* = 8.5 Hz, 8H, *p*-Tolyl), 2.61 (s, 12H, Me) ppm; TOF–MS (MALDI): *m*/*z* calcd. for C₈₀H₅₄N₈Zn₂ (+H⁺) 1259.3; found 1259.1; UV–vis (CH₂Cl₂): λ_{max} (ε , M⁻¹ cm⁻¹) = 418 (2.24 × 10⁵), 455 (2.26 × 10⁵), 559 (4.77 × 10⁴), 598 (5.80 × 10³) nm.

References

- (a) J. S. Lindsey, I. C. Schreiman, H. C. Hsu, P. C. Kearney and A. M. Marguerettaz, *J. Org. Chem.* 1987, **52**, 827; (b) M. O. Senge, Y. M. Shaker, M. Pintea, C. Ryppa, S. S. Hatscher, A. Ryan and Y. Sergeeva, *Eur. J. Org. Chem.* 2010, 237.
- (2) *The Porphyrin Handbook*, ed. K. M. Kadish, K. M. Smith and R. Guilard, Academic Press, San Diego, 2000.
- (3) R. E. DeSimone and R. S. Drago, J. Am. Chem. Soc. 1970, 92, 2343.
- (4) W. L. F. Armarego and C. L. L. Chai, *Purification of Laboratory Chemicals*, 5th ed., Butterworth-Heinemann, Oxford, 2003.

Fig. S1 Time profiles of the absorbance at 418 nm and 459 nm in the reaction of ZnP $(6.7 \times 10^{-5} \text{ M})$ with *m*-CPBA $(1.3 \times 10^{-4} \text{ M})$ in the presence of (TMP)Mn^{III}(Cl) (9.2 × $10^{-6} \text{ M})$ in CH₂Cl₂/MeCN (1:1 ν/ν) at 298 K.

Fig. S2 ¹H NMR spectra of (a) ZnP and (b) *meso*– $(ZnP)_2$ obtained after silica gel column chromatography in CDCl₃ at 298 K.

Fig. S3 MALDI TOF–MS of *meso–*(ZnP)₂, $[M+H^+]$. The calculated isotopic distribution for *meso–*(ZnP)₂ (*m*/*z* = 1259.3 calcd. for $[M+H^+]$) is shown in inset.

Fig. S4 UV–vis–NIR spectral change of ZnP (4.1×10^{-5} M) before and 600 seconds after the addition of *m*-CPBA (4.1×10^{-5} M).

Fig. S5 Dependence of absorbance change (Δ Abs.) at 568 nm due to the formation of *meso*–(ZnP)₂ on [ZnP] in MeCN/CH₂Cl₂ (1:1). Inset: Time profiles of Δ Abs. at 568 nm in the reaction of [ZnP] and *m*-CPBA (1 equivalent to [ZnP]) in the presence of (TMP)Mn^{III}(Cl) (9.2 × 10⁻⁶ M).

Fig. S6 (a) Time profiles of spectra in the reaction between ZnP $(4.1 \times 10^{-5} \text{ M})$ and (TMP)Mn^{III}(Cl) in the presence of *m*-CPBA $(4.1 \times 10^{-5} \text{ M})$ in MeCN/CH₂Cl₂ (1:1) at 298 K. (b) Dependence of the zero-order rate constant (k_{obs}) on [(TMP)Mn^{III}(Cl)].

Fig. S7 (a) UV–vis spectra of (TMP)Mn^{III}(Cl) (dashed black line), (TMP)Mn^{III}(Cl) in the presence of 6 equivalents of TBAOH (blue line), and (TMP)Mn^{IV}(O) obtained upon addition of 0.5 equivalent of *m*-CPBA (red line) in MeCN/CH₂Cl₂ (1:1) at 298 K. (b) Plots of absorbance (Abs.) at 425 nm (solid line with circle) and 472 nm (dashed line with square) *vs.* [*m*-CPBA]/[(TMP)Mn^{III}(Cl)].

Fig. S8 (a) UV–vis–NIR spectral changes of ZnTMP (4.1×10^{-5} M) upon addition of $[\text{Ru}(\text{bpy})_3]^{3+}$ (up to 1 equivalent) in CH₂Cl₂/MeCN (1:1) at 298 K. (b) UV–vis–NIR spectral change of ZnTMP (4.1×10^{-5} M) before and 150 seconds after addition of *m*-CPBA (1.6×10^{-4} M).

Fig. S9 EPR spectrum of ZnP $(1.2 \times 10^{-4} \text{ M})$ in the presence of (TMP)Mn^{III}(Cl) $(3.5 \times 10^{-5} \text{ M})$ 60 seconds after addition of *m*-CPBA $(1.2 \times 10^{-4} \text{ M})$ in CH₂Cl₂/MeCN (1:1) at 298 K (solid line). The dotted line indicates the EPR signal after addition of ferrocene.

Fig. S10 (a) UV–vis–NIR spectral changes upon addition of 1 equivalent of $[Ru(bpy)_3]^{3+}$ to a CH₂Cl₂ solution of ZnP (6.9 × 10⁻⁵ M) at 298 K. (b) UV–vis–NIR spectral changes induced by addition of Fc. (c) UV–vis–NIR spectral changes of *meso*–(ZnP)₂ (1.0 × 10⁻⁵ M) upon addition of $[Ru(bpy)_3]^{3+}$ (0 to 2 equivalents) in CH₂Cl₂ at 298 K.

Fig. S11 (a) EPR spectral changes upon addition of 1 equivalent of $[Ru(bpy)_3]^{3+}$ to a CH_2Cl_2 solution of ZnP (2.5 × 10⁻⁴ M) at 298 K. (b) EPR spectrum of *meso*-(ZnP)₂ upon addition of 2 equivalents of $[Ru(bpy)_3]^{3+}$.