Supporting information

On the mechanism of the *aza*-Morita-Baylis-Hillman reaction: ESI-MS interception of a unique new intermediate

Thais Regiani,^{a,b} Vanessa G. Santos,^b Boniek G. Vaz,^b Marla N. Godoi,^b Marcos N. Eberlin^b* and Fernando Coelho^a*

^a Laboratory of Synthesis of Natural Products and Drugs, UNICAMP, Caixa Postal 6154, Campinas, São Paulo, Brazil. Fax: 55 19 35213023; Tel: 55 19 35213085; E-mail: <u>coelho@iqm.unicamp.br</u>

^b ThoMSon Mass Spectrometry Laboratory, UNICAMP, Caixa Postal 6154, Campinas, São Paulo, Brazil. Fax: 55 19 35213023; Tel: 55 19 35213073; E-mail: <u>eberlin@iqm.unicamp.br</u>

Table of Contents

Experimental procedure	Page
Preparation of tosylimine 4	S3

Spectra	Pages
¹ H- and ¹³ C NMR spectra of compound 4	S4-S5
HRMS (ESI) spectrum of tosylimine 4	S6
ESI(+)-MS(/MS) spectrum of ion of m/z 488	S7
ESI(+)-MS(/MS) spectrum of ion of m/z 665	S8
ESI (+) spectrum of MB reaction with tosylimine 4	S9
ESI(+)-MS(/MS) spectrum of ion of m/z 376	S10
ESI(+)-MS(/MS) spectrum of ion of m/z 487	S11
ESI(+)-MS(/MS) spectrum of ion of m/z 776	S12
General compounds chart of the aza-MBH reaction with tosylimine 4	S13

Table of spectra

MBH reaction between <i>p</i> -nitrobenzaldehyde and hexafluoroisopropyl acrylate $(t = 0)$	S14
MBH reaction between <i>p</i> -nitrobenzaldehyde and hexafluoroisopropyl acrylate ($t = 30$)	S15
ESI(+)-MS(/MS) spectrum of ion of m/z 469	S16
ESI(+)-MS(/MS) spectrum of ion of m/z 357	S17
Dioxanone fragmenttion chart	S18
ESI(+)-MS(/MS) spetrum of <i>aza</i> -MBH reaction between 4 and hexafluoroisopropyl acrylate ($t = 30$)	S19
ESI(+)-MS(/MS) spectrum of ion of m/z 913	S20
ESI(+)-MS(/MS) spectrum of ion of m/z 801	S21
ESI(+)-MS(/MS) spectrum of ion of m/z 512	S22

Experimental procedure for the preparation of N-[(E)-(4-methoxyphenyl)methylidene]-4-methylbenzenesulfonamide (4)

under reduced pressure and the residue was recrystallized from diethyl ether to provide the required imine as a solid in 99% yield.

¹H NMR (250 MHz, DMSO d₆) δ (ppm): 2.38 (s, 3H); 3.85 (s, 3H); 7.09 (d, *J*= 8.79, 2H); 7.42 (d, *J*= 8.13, 2H); 7.79 (d, *J*= 8.32, 2H), 7.98 (d, *J*=8.9, 2H); 9.02 (s, 1H); ¹³C NMR (62.5 MHz, DMSO d₆) δ (ppm): 21.34 (CH₃); 21.51 (CH₃); 56.13 (CH₃); 56.28(CH₃); 114.95 (CH); 115.37(CH); 125.26 (CH); 127.86(CH); 129.73 (CH); 130.08 (CH); 130.44 (CH); 132.25 (CH); 134.26 (CH); 135.95 (CH); 141.86 (CH); 142.28 (CH); 144.69 (CH); 164.65 (C); 165.51 (C); 170.85 (C); 191.76 (CH); HRMS (ESI) Calcd. for C₁₅H₁₆NO₃S 290.0851; Found 290.0909.

Fig. S2 13 C NMR (62.5 MHz, DMSO d₆) spectrum of *p*-tosylimine **4**.

Fig. S3 HRMS ESI(+)-MS of *p*-tosylimine 4.

ESI-MS or MS(/MS) spectra

Aza-MBH reaction using DABCO as base, monitored by ESI-MS

Fig. S4 ESI(+)-MS(/MS) spectrum of the ion of m/z 488.

Fig. S5 ESI(+)-MS(/MS) spectrum of the ion of m/z 665.

Aza-MBH reaction using quinuclidine as base monitored by ESI-MS

Fig. S6 ESI(+)-MS of the aza-MBH reaction between 4 and methyl acrylate (t = 30 min)

Fig. S7 ESI(+)-MS(/MS) spectrum of the *aza*-adduct of *m/z* 376.

Fig. S8 ESI(+)-MS(/MS) spectrum of the ion of m/z 487.

Fig. S9 ESI(+)-MS(/MS) spectrum of the ion of m/z 776.

Scheme 1. Aza-MBH between tosylimine (4) and 1,1,1,3,3,3-hexafluoroisopropyl acrylate monitored by ESI-(+)-MS: General scheme

Fig. S10 (A): ESI(+)-MS spectrum of the MBH reaction between *p*-nitrobenzaldehyde and hexafluoroisopropyl acrylate in the presence of DABCO (t = 0 min).

Fig. S10 (B): ESI(+)-MS spectrum of the MBH reaction between p-nitrobenzaldehyde and hexafluoroisopropyl acrylate in the presence of DABCO (t = 30 min).

Fig. S11 ESI(+)-MS(/MS) spectrum of the ion of m/z 469 (A).

Fig. S12 ESI(+)-MS(/MS) spectrum of the ion of m/z 357 (B).

Fig. S13 Dioxanone (m/z 357) fragmentation chart

Fig.S14 ESI(+)-MS spectrum of the *aza*-MBH reaction between tosylimine (**4**) and hexafluoroisopropyl acrylate in the presence of DABCO (t = 30 min).

Fig. S15 ESI(+)-MS(/MS) spectrum of the ion of m/z 913.

S21

Fig. S16 ESI(+)-MS(/MS) spectrum of the ion of m/z 801.

Fig. S17 ESI(+)-MS(/MS) spectrum of the ion of m/z 512.