Supplementary Information

Conformational polymorphs of 1,1,2,2-tetrachloroethane: pressure vs. temperature

Maciej Bujak,^{*, a} Dieter Bläser,^b Andrzej Katrusiak,^{*, c} and Roland Boese,^{*, b}

^aFaculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland, ^bFachbereich Chemie der Universität Duisburg-Essen, Campus Essen, Universitätstrasse 7, D-45177 Essen, Germany, and ^cFaculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland

E-mail: mbujak@uni.opole.pl; katran@amu.edu.pl; roland.boese@uni-due.de

Commercially available 1,1,2,2-tetrachloroethane (pure, POCh, Poland) was used without further purification. The isobaric low-temperature crystallization was performed on the diffractometer at a temperature of 215 K with a miniature zone melting procedure using focused infrared-laser- radiation according to: Boese, R.; Nussbaumer, M. *In Situ Crystallization Techniques*, in: Organic Crystal Chemistry, Jones, D. W., Ed., Oxford University Press, Oxford, England, 1994, 20–37.

A single crystal of 1122TCE, for the high-pressure measurement, was grown *in-situ* in a modified Merrill-Bassett diamond-anvil cell, DAC [Merrill, L.; Bassett, W. A. *Rev. Sci. Instrum.* **1974**, *45*, 290–294; Bassett, W. A. *High Press. Res.*, **2009**, *29*, 163–186] in isochoric conditions (Fig. S1). A general experimental procedure for the high-pressure crystallization method was previously reported [R. Fourme, *J. Appl. Crystallogr.*, 1968, **1**, 23–30; W. L. Vos, L. W. Finger, R. J. Hemley and H. Mao, *Phys. Rev. Lett.*, 1993, **71**, 3150–3153; D. R. Allan, S. J. Clark, M. J. P. Brugmans, G. J. Ackland and W. L. Vos, *Phys. Rev. B, Condens. Mat.*, 1998, **58**, R11809–R11812; M. Bujak, A. Budzianowski and A. Katrusiak, *Z. Kristallogr.*, 2004, **63**, 573–579]. The ruby-fluorescence line shift measured with BETSA PRL spectrometer was used for measuring the pressure in the DAC [Barnett, J. D.; Block, S.; Piermarini, G. J. *Rev. Sci. Instrum.* **1973**, *44*, 1–9; Piermarini, G. J.; Block, S.; Barnett, J. D.; Forman, R. A. *J. Appl. Phys.* **1975**, *46*, 2774–2780] with the accuracy of *ca.* 0.05 GPa.

Fig. S1. The isochoric single-crystal growth stages (a \rightarrow e) of 1122TCE in a diamond-anvil cell at 0.65 GPa. The pressure chamber is 0.48 mm in diameter and ruby chips for the pressure calibration are scattered close to the gasket edges.

The analysis of intermolecular interactions was performed with program CrystalExplorer [Wolff, S. K.; Grimwood, D. J.; McKinnon, J. J.; Jayatilaka, D.; Spackman, N. A. *CrystalExplorer* 2.0 (r 313). University of Western Australia, Perth, Australia, 2007; http://hirshfeldsurface.net/CrystalExplorer/; McKinnon, J. J.; Spackman, M. A.; Mitchell, A. S. *Acta Cryst.* **2004**, *B60*, 627–668].

The compressibility measurement, between ambient pressure and *ca.* 1 GPa, was performed in the cylinder-and-piston apparatus [Baranowski, B.; Moroz, A. *Polish J. Chem.* **1982**, *56*, 379–391]. The pressure was changed at the rate of *ca.* 0.02 GPa. The initial volume of the reaction chamber was 9.8 cm³.

phase α phase β pressure0.65(5) GPa0.1 MPatemperature, K295(2)215(1)formula $C_2H_2Cl_4$ $C_2H_2Cl_4$ fw, g/mol167.84167.84crystal size, mm0.48 x 0.48 x 0.220.3 x 0.3 x 0.3crystal systemmonoclinicorthorhombicspace group, Z $P2_1/c$, 2 $P2_12_12_1$, 8a, Å6.1941(9)8.8687(19)b, Å6.186(2)10.501(2)c, Å7.361(3)12.835(3) β , °104.90(2)90.0V, Å ³ 272.57(15)1195.3(4) ρ , g/cm ³ 2.0451.865 μ , mm ⁻¹ 2.0081.831 θ range, °3.40–25.342.51–28.42index ranges $-7 \le h \le 7$ $-8 \le h \le 7$ $-5 \le k \le 5$ $-8 \le k \le 14$ $-7 \le l \le 7$ $-17 \le l \le 17$ reflns collected11574746 R_{int} 0.10280.0159data/parameters198/312372/111GOF on F^2 1.1741.039 $R_1 [I > 2\sigma(I)]$ 0.05980.0273 R_1 (all data) ^a 0.06200.0298 wR_2 (all data) ^a 0.14690.0656Irgst diff peak, $e/Å^3$ 0.2800.386Irgst diff hole, $e/Å^3$ -0.245 -0.260			
pressure $0.65(5)$ GPa 0.1 MPatemperature, K $295(2)$ $215(1)$ formula $C_2H_2Cl_4$ $C_2H_2Cl_4$ fw, g/mol 167.84 167.84 crystal size, mm $0.48 \ge 0.48 \ge 0.22$ $0.3 \ge 0.3 \ge 0.3 \ge 0.3$ crystal systemmonoclinicorthorhombicspace group, Z $P2_1/c$, 2 $P2_12_12_1$, 8a, Å $6.1941(9)$ $8.8687(19)$ b, Å $6.186(2)$ $10.501(2)$ c, Å $7.361(3)$ $12.835(3)$ β , ° $104.90(2)$ 90.0 V, Å ³ $272.57(15)$ $1195.3(4)$ ρ , g/cm ³ 2.045 1.865 μ , mm ⁻¹ 2.008 1.831 θ range, ° $3.40-25.34$ $2.51-28.42$ index ranges $-7 \le h \le 7$ $-8 \le h \le 7$ $-5 \le k \le 5$ $-8 \le k \le 14$ $-7 \le l \le 7$ $-17 \le l \le 17$ reflns collected 1157 4746 R_{int} 0.1028 0.0159 data [$I > 2\sigma(I)$] 191 2243 data/parameters $198/31$ $2372/111$ GOF on F^2 1.174 1.039 R_1 [$I > 2\sigma(I)$] 0.0598 0.0273 R_1 (all data) ^a 0.0280 0.386 Irgst diff peak, $e/Å^3$ 0.280 0.386		phase α	phase β
temperature, K295(2)215(1)formula $C_2H_2Cl_4$ $C_2H_2Cl_4$ fw, g/mol167.84167.84crystal size, mm0.48 x 0.48 x 0.220.3 x 0.3 x 0.3crystal systemmonoclinicorthorhombicspace group, Z $P2_1/c$, 2 $P2_12_12_1$, 8a, Å6.1941(9)8.8687(19)b, Å6.186(2)10.501(2)c, Å7.361(3)12.835(3) β , °104.90(2)90.0V, Å^3272.57(15)1195.3(4) ρ , g/cm ³ 2.0451.865 μ , mm ⁻¹ 2.0081.831 θ range, °3.40-25.342.51-28.42index ranges $-7 \le h \le 7$ $-8 \le h \le 7$ $-5 \le k \le 5$ $-8 \le k \le 14$ $-7 \le l \le 7$ $-17 \le l \le 17$ reflns collected11574746 R_{int} 0.10280.0159data/parameters198/312372/111GOF on F^2 1.1741.039 R_1 [$I > 2\sigma(I)$]0.05980.0273 R_1 (all data) ^a 0.06200.0298 wR_2 (all data) ^a 0.2800.386Irgst diff peak, $e/Å^3$ 0.2800.386Irgst diff hole, $e/Å^3$ -0.245-0.260	pressure	0.65(5) GPa	0.1 MPa
formula $C_2H_2Cl_4$ $C_2H_2Cl_4$ $C_2H_2Cl_4$ fw, g/mol167.84167.84crystal size, mm0.48 x 0.48 x 0.220.3 x 0.3 x 0.3crystal systemmonoclinicorthorhombicspace group, Z $P_{2_1/c}$, 2 $P_{2_12_12_1}$, 8a, Å6.1941(9)8.8687(19)b, Å6.186(2)10.501(2)c, Å7.361(3)12.835(3) β , °104.90(2)90.0V, Å ³ 272.57(15)1195.3(4) ρ , g/cm ³ 2.0451.865 μ , mm ⁻¹ 2.0081.831 θ range, °3.40–25.342.51–28.42index ranges $-7 \le h \le 7$ $-8 \le h \le 7$ $-5 \le k \le 5$ $-8 \le k \le 14$ $-7 \le l \le 7$ $-17 \le l \le 17$ reflns collected11574746 R_{int} 0.10280.0159data $[I > 2\sigma(I)]$ 1912243data/parameters198/312372/111GOF on F^2 1.1741.039 R_1 (all data) ^a 0.06200.0298 wR_2 (all data) ^a 0.2800.386Irgst diff peak, $e/Å^3$ 0.2800.386Irgst diff hole, $e/Å^3$ -0.245 -0.260	temperature, K	295(2)	215(1)
fw, g/mol167.84167.84crystal size, mm $0.48 \ge 0.48 \ge 0.22$ $0.3 \ge 0.3 \ge 0.3 \ge 0.3$ crystal systemmonoclinicorthorhombicspace group, Z $P2_1/c$, 2 $P2_12_12_1$, 8a, Å $6.1941(9)$ $8.8687(19)$ b, Å $6.186(2)$ $10.501(2)$ c, Å $7.361(3)$ $12.835(3)$ β , ° $104.90(2)$ 90.0 V, Å ³ $272.57(15)$ $1195.3(4)$ ρ , g/cm ³ 2.045 1.865 μ , mm ⁻¹ 2.008 1.831 θ range, ° $3.40-25.34$ $2.51-28.42$ index ranges $-7 \le h \le 7$ $-8 \le h \le 7$ $-5 \le k \le 5$ $-8 \le k \le 14$ $-7 \le l \le 7$ $-17 \le l \le 17$ reflns collected 1157 4746 R_{int} 0.1028 0.0159 data $[I > 2\sigma(I)]$ 191 2243 data/parameters $198/31$ $2372/111$ GOF on F^2 1.174 1.039 R_1 (all data) ^a 0.0620 0.0298 wR_2 (all data) ^a 0.280 0.386 Irgst diff peak, $e/Å^3$ 0.280 0.386	formula	$C_2H_2Cl_4$	$C_2H_2Cl_4$
crystal size, mm $0.48 \ge 0.48 \ge 0.22$ $0.3 \ge 0.3 \ge 0.3$ crystal systemmonoclinicorthorhombicspace group, Z $P2_1/c$, 2 $P2_12_12_1$, 8a, Å $6.1941(9)$ $8.8687(19)$ b, Å $6.186(2)$ $10.501(2)$ c, Å $7.361(3)$ $12.835(3)$ β , ° $104.90(2)$ 90.0 V, Å ³ $272.57(15)$ $1195.3(4)$ ρ , g/cm ³ 2.045 1.865 μ , mm ⁻¹ 2.008 1.831 θ range, ° $3.40-25.34$ $2.51-28.42$ index ranges $-7 \le h \le 7$ $-8 \le h \le 7$ $-5 \le k \le 5$ $-8 \le k \le 14$ $-7 \le l \le 7$ $-17 \le l \le 17$ reflns collected 1157 4746 R_{int} 0.1028 0.0159 data $[I > 2\sigma(I)]$ 191 2243 data/parameters $198/31$ $2372/111$ GOF on F^2 1.174 1.039 R_1 (all data) ^a 0.0620 0.0298 wR_2 (all data) ^a 0.280 0.386 Irgst diff peak, $e/Å^3$ 0.280 0.386	fw, g/mol	167.84	167.84
crystal systemmonoclinicorthorhombicspace group, Z $P2_1/c$, 2 $P2_12_12_1$, 8 $a, Å$ $6.1941(9)$ $8.8687(19)$ $b, Å$ $6.186(2)$ $10.501(2)$ $c, Å$ $7.361(3)$ $12.835(3)$ $\beta, °$ $104.90(2)$ 90.0 $V, Å^3$ $272.57(15)$ $1195.3(4)$ $\rho, g/cm^3$ 2.045 1.865 μ, mm^{-1} 2.008 1.831 θ range, ° $3.40-25.34$ $2.51-28.42$ index ranges $-7 \le h \le 7$ $-8 \le h \le 7$ $-5 \le k \le 5$ $-8 \le k \le 14$ $-7 \le l \le 7$ $-17 \le l \le 17$ reflns collected 1157 4746 R_{int} 0.1028 0.0159 data $[I > 2\sigma(I)]$ 191 2243 data/parameters $198/31$ $2372/111$ GOF on F^2 1.174 1.039 $R_1 (all data)^a$ 0.0620 0.0298 wR_2 (all data)^a 0.1469 0.0656 Irgst diff peak, $e/Å^3$ 0.280 0.386	crystal size, mm	0.48 x 0.48 x 0.22	0.3 x 0.3 x 0.3
space group, Z $P2_1/c$, 2 $P2_12_12_1$, 8 $a, Å$ $6.1941(9)$ $8.8687(19)$ $b, Å$ $6.186(2)$ $10.501(2)$ $c, Å$ $7.361(3)$ $12.835(3)$ $\beta, °$ $104.90(2)$ 90.0 $V, Å^3$ $272.57(15)$ $1195.3(4)$ $\rho, g/cm^3$ 2.045 1.865 μ, mm^{-1} 2.008 1.831 θ range, ° $3.40-25.34$ $2.51-28.42$ index ranges $-7 \le h \le 7$ $-8 \le h \le 7$ $-5 \le k \le 5$ $-8 \le k \le 14$ $-7 \le l \le 7$ $-17 \le l \le 17$ reflns collected 1157 4746 R_{int} 0.1028 0.0159 data $[I > 2\sigma(I)]$ 191 2243 data/parameters $198/31$ $2372/111$ GOF on F^2 1.174 1.039 $R_1 [I > 2\sigma(I)]$ 0.0598 0.0273 $R_1 (all data)^a$ 0.1469 0.0656 Irgst diff peak, $e/Å^3$ 0.280 0.386	crystal system	monoclinic	orthorhombic
a, Å6.1941(9)8.8687(19)b, Å6.186(2)10.501(2)c, Å7.361(3)12.835(3) β , °104.90(2)90.0V, Å ³ 272.57(15)1195.3(4) ρ , g/cm ³ 2.0451.865 μ , mm ⁻¹ 2.0081.831 θ range, °3.40–25.342.51–28.42index ranges $-7 \le h \le 7$ $-8 \le h \le 7$ $-5 \le k \le 5$ $-8 \le k \le 14$ $-7 \le l \le 7$ $-17 \le l \le 17$ reflns collected11574746 R_{int} 0.10280.0159data $[I > 2\sigma(I)]$ 1912243data/parameters198/312372/111GOF on F^2 1.1741.039 $R_1 [I > 2\sigma(I)]$ 0.05980.0273 $R_1 (all data)^a$ 0.06200.0298 wR_2 (all data) ^a 0.2800.386Irgst diff peak, e/Å ³ -0.245 -0.260	space group, Z	$P2_1/c, 2$	$P2_12_12_1, 8$
b, Å6.186(2)10.501(2)c, Å7.361(3)12.835(3) β , °104.90(2)90.0V, Å ³ 272.57(15)1195.3(4) ρ , g/cm ³ 2.0451.865 μ , mm ⁻¹ 2.0081.831 θ range, °3.40–25.342.51–28.42index ranges $-7 \le h \le 7$ $-8 \le h \le 7$ $-5 \le k \le 5$ $-8 \le k \le 14$ $-7 \le l \le 7$ $-17 \le l \le 17$ reflns collected11574746 R_{int} 0.10280.0159data $[I > 2\sigma(I)]$ 1912243data/parameters198/312372/111GOF on F^2 1.1741.039 R_1 (all data) ^a 0.06200.0298 wR_2 (all data) ^a 0.14690.0656Irgst diff peak, e/Å ³ 0.2800.386Irgst diff bole, e/Å ³ -0.245 -0.260	<i>a</i> , Å	6.1941(9)	8.8687(19)
c, Å7.361(3)12.835(3) β , °104.90(2)90.0 V , Å ³ 272.57(15)1195.3(4) ρ , g/cm ³ 2.0451.865 μ , mm ⁻¹ 2.0081.831 θ range, °3.40–25.342.51–28.42index ranges $-7 \le h \le 7$ $-8 \le h \le 7$ $-5 \le k \le 5$ $-8 \le k \le 14$ $-7 \le l \le 7$ $-17 \le l \le 17$ reflns collected11574746 R_{int} 0.10280.0159data $[I > 2\sigma(I)]$ 1912243data/parameters198/312372/111GOF on F^2 1.1741.039 R_1 [$I > 2\sigma(I)$]0.05980.0273 R_1 (all data) ^a 0.06200.0298 wR_2 (all data) ^a 0.14690.0656Irgst diff peak, e/Å ³ 0.245 -0.260	b, Å	6.186(2)	10.501(2)
β , °104.90(2)90.0 V , Å ³ 272.57(15)1195.3(4) ρ , g/cm ³ 2.0451.865 μ , mm ⁻¹ 2.0081.831 θ range, °3.40–25.342.51–28.42index ranges $-7 \le h \le 7$ $-8 \le h \le 7$ $-5 \le k \le 5$ $-8 \le k \le 14$ $-7 \le l \le 7$ $-17 \le l \le 17$ reflns collected11574746 R_{int} 0.10280.0159data $[I > 2\sigma(I)]$ 1912243data/parameters198/312372/111GOF on F^2 1.1741.039 $R_I [I > 2\sigma(I)]$ 0.05980.0273 $R_I (all data)^a$ 0.06200.0298 wR_2 (all data) ^a 0.14690.0656Irgst diff peak, e/Å ³ 0.245 -0.260	<i>c</i> , Å	7.361(3)	12.835(3)
V, $Å^3$ 272.57(15)1195.3(4) ρ , g/cm ³ 2.0451.865 μ , mm ⁻¹ 2.0081.831 θ range, °3.40–25.342.51–28.42index ranges $-7 \le h \le 7$ $-8 \le h \le 7$ $-5 \le k \le 5$ $-8 \le k \le 14$ $-7 \le l \le 7$ $-17 \le l \le 17$ reflns collected11574746 R_{int} 0.10280.0159data $[I > 2\sigma(I)]$ 1912243data/parameters198/312372/111GOF on F^2 1.1741.039 R_1 (all data) ^a 0.06200.0298 wR_2 (all data) ^a 0.14690.0656Irgst diff peak, e/Å ³ 0.2800.386	<i>β</i> , °	104.90(2)	90.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$V, Å^3$	272.57(15)	1195.3(4)
μ , mm ⁻¹ 2.008 1.831 θ range, ° 3.40–25.34 2.51–28.42 index ranges $-7 \le h \le 7$ $-8 \le h \le 7$ $-5 \le k \le 5$ $-8 \le k \le 14$ $-7 \le l \le 7$ $-17 \le l \le 17$ reflns collected 1157 4746 R_{int} 0.1028 0.0159 data $[I > 2\sigma(I)]$ 191 2243 data/parameters 198/31 2372/111 GOF on F^2 1.174 1.039 R_I $[I > 2\sigma(I)]$ 0.0598 0.0273 R_I (all data) ^a 0.0620 0.0298 wR_2 (all data) ^a 0.1469 0.0656 Irgst diff peak, e/Å^3 0.280 0.386	ρ , g/cm ³	2.045	1.865
$\begin{array}{llllllllllllllllllllllllllllllllllll$	μ , mm ⁻¹	2.008	1.831
index ranges $-7 \le h \le 7$ $-8 \le h \le 7$ $-5 \le k \le 5$ $-8 \le k \le 14$ $-7 \le l \le 7$ $-17 \le l \le 17$ reflns collected11574746 R_{int} 0.10280.0159data $[I > 2\sigma(I)]$ 1912243data/parameters198/312372/111GOF on F^2 1.1741.039 R_1 $[I > 2\sigma(I)]$ 0.05980.0273 R_1 (all data) ^a 0.06200.0298 wR_2 (all data) ^a 0.14690.0656Irgst diff peak, e/Å^30.2800.386	θ range, °	3.40-25.34	2.51-28.42
$-5 \le k \le 5 \qquad -8 \le k \le 14 \\ -7 \le l \le 7 \qquad -17 \le l \le 17$ reflns collected 1157 4746 $R_{int} \qquad 0.1028 \qquad 0.0159$ data [$I > 2\sigma(I)$] 191 2243 data/parameters 198/31 2372/111 GOF on F^2 1.174 1.039 $R_1 [I > 2\sigma(I)] \qquad 0.0598 \qquad 0.0273$ $R_1 (all data)^a \qquad 0.0620 \qquad 0.0298$ $wR_2 (all data)^a \qquad 0.1469 \qquad 0.0656$ lrgst diff peak, e/Å ³ 0.280 \qquad 0.386 lrgst diff hole, e/Å ³ -0.245 -0.260	index ranges	$-7 \le h \le 7$	$-8 \le h \le 7$
$-7 \le l \le 7$ $-17 \le l \le 17$ reflns collected11574746 R_{int} 0.10280.0159data $[I > 2\sigma(I)]$ 1912243data/parameters198/312372/111GOF on F^2 1.1741.039 $R_1 [I > 2\sigma(I)]$ 0.05980.0273 $R_1 (all data)^a$ 0.06200.0298 wR_2 (all data)^a0.14690.0656Irgst diff peak, e/Å^30.2800.386	C	$-5 \le k \le 5$	$-8 \le k \le 14$
reflns collected11574746 R_{int} 0.10280.0159data $[I > 2\sigma(I)]$ 1912243data/parameters198/312372/111GOF on F^2 1.1741.039 $R_I [I > 2\sigma(I)]$ 0.05980.0273 $R_I (all data)^a$ 0.06200.0298 wR_2 (all data)^a0.14690.0656Irgst diff peak, e/Å^30.2800.386Irgst diff hole, e/Å^3-0.245-0.260		$-7 \leq l \leq 7$	$-17 \le l \le 17$
R_{int} 0.10280.0159data $[I > 2\sigma(I)]$ 1912243data/parameters198/312372/111GOF on F^2 1.1741.039 $R_1 [I > 2\sigma(I)]$ 0.05980.0273 $R_1 (all data)^a$ 0.06200.0298 $wR_2 (all data)^a$ 0.14690.0656Irgst diff peak, e/Å^30.2800.386Irgst diff hole, e/Å^3-0.245-0.260	reflns collected	1157	4746
data $[I > 2\sigma(I)]$ 191 2243 data/parameters 198/31 2372/111 GOF on F^2 1.174 1.039 R_I $[I > 2\sigma(I)]$ 0.0598 0.0273 R_I (all data) ^a 0.0620 0.0298 wR_2 (all data) ^a 0.1469 0.0656 Irgst diff peak, e/Å ³ 0.280 0.386 Irgst diff hole, e/Å ³ -0.245 -0.260	R _{int}	0.1028	0.0159
data/parameters198/312372/111GOF on F^2 1.1741.039 $R_1 [I > 2\sigma(I)]$ 0.05980.0273 $R_1 (\text{all data})^a$ 0.06200.0298 $wR_2 (\text{all data})^a$ 0.14690.0656lrgst diff peak, e/Å^30.2800.386lrgst diff hole, e/Å^3-0.245-0.260	data $[I > 2\sigma(I)]$	191	2243
GOF on F^2 1.174 1.039 $R_1 [I > 2\sigma(I)]$ 0.0598 0.0273 $R_1 (all data)^a$ 0.0620 0.0298 $wR_2 (all data)^a$ 0.1469 0.0656 Irgst diff peak, e/Å^3 0.280 0.386 Irgst diff hole, e/Å^3 -0.245 -0.260	data/parameters	198/31	2372/111
$R_1 [I > 2\sigma(I)]$ 0.05980.0273 $R_1 (\text{all data})^a$ 0.06200.0298 $wR_2 (\text{all data})^a$ 0.14690.0656lrgst diff peak, e/Å^30.2800.386lrgst diff hole, e/Å^3-0.245-0.260	GOF on F^2	1.174	1.039
R_1 (all data) ^a 0.0620 0.0298 wR_2 (all data) ^a 0.1469 0.0656 Irgst diff peak, e/Å ³ 0.280 0.386 Irgst diff hole, e/Å ³ -0.245 -0.260	$R_{I}[I > 2\sigma(I)]$	0.0598	0.0273
wR_2 (all data) ^a 0.1469 0.0656 lrgst diff peak, e/Å ³ 0.280 0.386 lrgst diff hole, e/Å ³ -0.245 -0.260	R_1 (all data) ^{<i>a</i>}	0.0620	0.0298
Irgst diff peak, $e/Å^3$ 0.280 0.386 Irgst diff hole, $e/Å^3$ -0.245 -0.260	wR_2 (all data) ^a	0.1469	0.0656
lrgst diff hole, $e/Å^3 = -0.245 = -0.260$	lrgst diff peak, $e/Å^3$	0.280	0.386
	lrgst diff hole, $e/Å^3$	-0.245	-0.260

 Table S1. The 1122TCE crystal data and structure determination summary.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|; wR_{2} = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}]/\Sigma [w(F_{o}^{2})^{2}]\}^{1/2}; w = 1/[\sigma^{2}(F_{o}^{2}) + (aP)^{2} + bP], \text{ where } P = (F_{o}^{2} + 2F_{c}^{2})/3$

Pressure/Temperature(K)		0.65(5) GPa/295(2)	0.1 MPa/215(1)			
Cl1–C1	Cl1-C1/Cl3-C2	1 751/11)	1.771(3)/1.774(3)			
	C15-C3/C17-C4	1./51(11)	1.775(3)/1.763(3)			
C1–C1 ^I	C1-C2/C3-C4	1.531(17)	1.504(4)/1.508(4)			
Cl2C1	Cl2-C1/Cl4-C2	1 702(10)	1.777(3)/1.774(3)			
	C16-C3/C18-C4	1.792(10)	1.780(3)/1.782(3)			
Cl1-C1-Cl2	Cl1-C1-Cl2/Cl5-C3-Cl6	110.0(6)	111.14(16)/111.12(15)			
	Cl3-C2-Cl4/Cl7-C4-Cl8	110.0(0)	109.76(16)/110.23(17)			
Cl1-C1-C1 ^I	Cl1-C1-C2/Cl5-C3-C4	111 5(0)	109.02(19)/112.5(2)			
	Cl3-C2-C1/Cl7-C4-C3	111.3(9)	109.59(19)/112.8(2)			
Cl2-C1-C1 ^I	Cl2-C1-C2/Cl6-C3-C4	109 2(0)	111.9(2)/108.88(19)			
	Cl4-C2-C1/Cl8-C4-C3	108.2(9)	112.8(2)/108.23(19)			
Cl1–C1–C1 ^I –Cl1 ^I	Cl1-C1-C2-Cl3/Cl5-C3-C4-Cl7	-180.0(5)	-175.19(18)/-58.1(3)			
Cl1–C1–C1 ^I –Cl2 ^I	Cl1-C1-C2-Cl4/Cl5-C3-C4-Cl8	-58.9(8)	62.2(3)/64.2(3)			
Cl2-C1-C1 ^I -Cl1 ^I	Cl2-C1-C2-Cl3/Cl6-C3-C4-Cl7	58.9(8)	61.5(3)/65.5(3)			
Cl2-C1-C1 ^I -Cl2 ^I	Cl2-C1-C2-Cl4/Cl6-C3-C4-Cl8	180.0(5)	-61.2(2)/-172.22(17)			
Cl1···Cl1 ^{II}	$Cl1\cdots Cl2^{IV}$	3.453(3)	3.434(2)			
$Cl1\cdots Cl1^{II}-C1^{II}$	$Cl1\cdots Cl2^{IV}$ – $C1^{IV}$	123	174			
$C1-Cl1\cdots Cl1^{II}$	$C1-Cl1\cdots Cl2^{IV}$	123	91			
$Cl1\cdots Cl2^{III}$	Cl3····Cl6 ^V	3.453(3)	3.437(1)			
$Cl1\cdots Cl2^{III}$ – $C1^{III}$	$Cl3\cdots Cl6^{V}-C3^{V}$	152	131			
$C1-Cl1\cdots Cl2^{III}$	$C2-Cl3\cdots Cl6^{V}$	111	144			
Symmetry codes: (¹) $-x+2$, $-y+1$, $-z+2$; (¹) $-x+2$, $-y$, $-z+2$; (¹¹) $-x+1$, $y-1/2$, $-z+3/2$; (¹²) $x-1/2$, $-y+1/2$, $-z$; (^V) $x+1/2$; (^V) $x+1/2$, $-z$; (^V) $x+1/2$; (^V) $x+$						

Table S2. Molecular dimensions (Å, °) and intermolecular Cl…Cl distances (Å, °) for 1122TCE

Symmetry codes: (¹) -x+2, -y+1, -z+2; (^{II}) -x+2, -y, -z+2; (^{III}) -x+1, y-1/2, -z+3/2; (^{IV}) x-1/2, -y+1/2, -z; (^V) x+1/2, -y+1/2, -z+1.

Fig. S2 Two-dimensional fingerprint plots for the structures of 1122TCE at (a) 0.65 GPa/295 K, and (b) 215 K/0.1 MPa (note two crystallographically independent 1122TCE molecules).