Supporting Information

A nanostructured skeleton catalyst: Suzuki-coupling with a reusable and sustainable nanoporous metallic glass Pd-catalyst

Shinya Tanaka,^a Tetsuro Kaneko,^b Naoki Asao,^{*,c} Yoshinori Yamamoto,^{*,c} Mingwei Chen,^c Wei Zhang^d and Akihisa Inoue^d

Table of Contents

1.	General	S1
2.	Reagent and solvent	S1
3.	Fabrication of nanoporous metallic glass Pd	S2
4.	General procedure of Suzuki-coupling	S2
5.	ICP analysis	S 3
6.	Leaching test for nanoporous metallic glass Pd	S 3
7.	Fabrication of nanoporous Pd fabricated from $Pd_{20}Co_{80}$	S 3
8.	SEM of nanoporous Pd fabricated from $Pd_{20}Co_{80}$ before/after reaction	S4
9.	Leaching test for nanoporous Pd fabricated from Pd ₂₀ Co ₈₀	S4
10.	References	S 5

1. General

NMR spectra were measured at 400 MHz for ¹H and 100 MHz for ¹³C by JEOL JNM-AL 400 spectrometer. Chemical shifts of ¹H NMR were expressed in parts per million downfield from tetramethylsilane with reference to tetramethylsilane ($\delta = 0.00$) in CDCl₃. Chemical shifts of ¹³C NMR were expressed in parts per million downfield from CDCl₃ as an internal standard ($\delta = 77.0$) in CDCl₃. For thin layer chromatography (TLC) analysis throughout this work, Merck precoated TLC plates (Kieselgel 60 F254, 0.2 mm) were used. The products were purified by flash column chromatography on silica gel 60 N (KANTO, 40-50 mm). SEM observation was carried out using HITACHI FE-SEM S4300 operated at an accelerating voltage of 10 kV. EDX analysis was carried out using EDAX Genesis with HITACHI FE-SEM S4300 operated at an accelerating voltage of 20 kV. ICP-AES analysis was performed with Shimadzu ICPS-7510.

2. Reagent and solvent

Aryl iodides, aryl bromides, and KOH were purchased and used as received. Arylboronic acids were synthesized by literature procedure¹ or purchased and used as received. MeOH was purchased from Kanto Chemical co.,inc. for HPLC grade and used as received without further purification.

S2

3. Fabrication of nanoporous metallic glass Pd

Mother alloy $Pd_{30}Ni_{50}P_{20}$ was prepared by arc melting a mixture of pure Ni and Pd metals and pre-alloyed Pd-P ingots in an argon atmosphere. The rapidly solidified ribbon sample with a thickness of about 15 µm was prepared by the single-roller melt spinning technique.²

A classical three-electrode setup (Iviumstat electrochemical analyzer, Ivium Technology) was employed to dealloy the $Pd_{30}Ni_{50}P_{20}$ glassy ribbons using Ag/AgCl electrode as the reference. A section of $Pd_{30}Ni_{50}P_{20}$ ribbon (length = abt. 5 cm, width = abt. 1 mm, thickness = abt. 15 µm) was placed as the working electrode and a pure platinum sheet positioned parallel to the $Pd_{30}Ni_{50}P_{20}$ sample was used as the counter electrode. The electrolyte is 500

mL of 1 mol/L H_2SO_4 which was prepared from conc. H_2SO_4 and deionized water and was used immediately. The optimized condition for dealloying the $Pd_{30}Ni_{50}P_{20}$ metallic glasses is 0.8 V for 2 h at room temperature. The dealloyed samples were taken out of the solution and rinsed with deionized water and acetone for several times, then dried (see: right picture).

4. General procedure of Suzuki-coupling

To a solution of KOH (140 mg, 2.5 mmol) in MeOH (2 mL) were added 1a (101 mg, 0.50 mmol)

and 2a (103 mg, 0.75 mmol) at room temperature. The resulting homogeneous solution was added V-shaped vial reactor containing nanoporous Pd (1.0 mg, 2 mol%), and the reaction mixture was stirred for 3 h at 50 °C with bulky round-shaped magnetic stirring bar to avoid the contact between the catalyst and stirring bar (see: right figures). The liquid moiety was transferred to the separation funnel by a pipette and was extracted with ethyl acetate three times. The combined extracts were evaporated to leave the crude product, which was purified by silica gel column chromatography with hexane to give **3a** (83.4 mg) in 99% yield.

The recovered catalyst was washed with MeOH several times, and it was reused without further purification.

Spectral data of the following compounds are consistent with previously published literature values: **3a**, ³ **3b**, ⁴ **3c**, ⁴ **3d**, ⁵ **3e**, ⁶ **3f**, ⁷ **3g**, ⁸ **3h**, ³ **3i**, ⁹ **3j**, ¹⁰ **3k**. ¹¹

5. ICP analysis

Two sets of the reaction of **1a** with **2a** were carried out for 1 and 3 h at 50 °C by the general Suzuki-coupling procedure respectively. Then, a half amount of the clear solution (1 mL) was picked up and the solvent was evaporated under reduced pressure. The residue was dissolved in aqua regia (1 mL), then it was diluted with distilled water up to 100 mL. The precipitate was filtered off, and the filtrate was analyzed by ICP-AES.

6. Leaching test for nanoporous metallic glass Pd

To a solution of KOH (136 mg, 2.5 mmol) in methanol-d₄ (2 mL) were added **1a** (104 mg, 0.50 mmol), **2a** (104 mg, 0.75 mmol), diphenylmethane (83.6 mg, 0.50 mmol, internal standard) at room temperature. The resulting homogeneous solution was added to the V-shaped vial reactor containing nanoporous Pd (0.9 mg, 2 mol%), and the reaction mixture was stirred for 0.5 h at 50 °C. After centrifugation of the mixture, 50 μ L of the supernatant was picked up for checking the chemical yield of **3a** with ¹H NMR. Then, 1 mL of the supernatant was transferred to another vial reactor, and it was stirred for 3 h at 50 °C in the absence of the catalyst. The chemical yield of **3a** was checked again by picking up 50 μ L of the resulting solution. On the other hand, the residual reaction mixture having the catalyst continued to stir for 3 h in parallel, then the chemical yield of **3a** in the mixture was observed by ¹H NMR (Scheme S1).

7. Fabrication of nanoporous Pd fabricated from Pd₂₀Co₈₀¹²

Mother alloy $Pd_{20}Co_{80}$ was prepared by arc melting a mixture of pure Co and Pd metals in an argon atmosphere. Then, the alloy ingot sealed in the silica tube under vacuum was heated at 900 °C for 24 h for homogenization. After homogenization, the alloy was water-quenched. The surface oxide scale generated by water quenching was removed mechanically. Then, the alloy was rolled to less than 100 μ m thickness.

A classical three-electrode setup (Iviumstat electrochemical analyzer, Ivium Technology) was employed to dealloy the $Pd_{20}Co_{80}$ ribbons using saturated calomel electrode as the reference. A section of $Pd_{20}Co_{80}$ ribbon (length = abt. 2 cm, width = abt. 3 mm, thickness = abt. 100 µm) was placed as the working electrode and a pure platinum sheet positioned parallel to the $Pd_{20}Co_{80}$ sample was used as the counter electrode. The electrolyte is 500 mL of 0.1 mol/L H_2SO_4 . The condition for dealloying the $Pd_{20}Co_{80}$ alloy is 0.5 V for 12 h at room temperature. The dealloyed Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

samples were taken out of the solution and rinsed with deionized water and acetone for several times, then dried.

8. SEM of nanoporous Pd fabricated from Pd₂₀Co₈₀ before/after reaction

(a) Before reaction

9. Leaching test for nanoporous Pd fabricated from Pd₂₀Co₈₀

To a solution of KOH (128 mg, 2.5 mmol) in methanol-d₄ (2 mL) were added **1a** (103 mg, 0.50 mmol), **2a** (102 mg, 0.75 mmol), diphenylmethane (82.3 mg, 0.50 mmol, internal standard) at room temperature. The resulting homogeneous solution was added to the V-shaped vial reactor (vessel-1) containing nanoporous Pd (1.1 mg, 2 mol%), and the reaction mixture was stirred for 2.5 h at 50 °C. At this stage, 50 μ L of the supernatant was picked up for checking the chemical yield of **3a** with ¹H NMR. Then, 1 mL of the supernatant was transferred to vessel-2, and it was stirred for 21.5 h at 50 °C in the absence of the catalyst. The chemical yield of **3a** was checked again by picking up 50 μ L of the resulting solution. On the other hand, the residual reaction mixture in vessel-1 having the catalyst continued to stir for 21.5 h in parallel, then the chemical yield of **3a** in the mixture was observed by ¹H NMR. Furthermore, the reaction mixture in vessel-2 was transferred to vessel-1 after removal of the reaction solution in vessel-1, and it was stirred for 18 h at 50 °C in the presence of the catalyst. The chemical yield of **3a** was checked again by picking up 50 µL of the resulting solution. (Scheme S2).

⁽b) After reaction

10. References

- 1. C. Glende, M. Klein, H. Schmitt, L. Erdinger and G. Boche, Mutation Research, 2002, 515, 15.
- 2. Y. Zeng, N. Nishiyama, T. Wada, D. Louzguine-Luzgin and A. Inoue, *Mater. Trans.*, 2006, **47**, 175.
- 3. K. Fuchibe, Y. Ohshima, K. Mitomi and T. Akiyama, Org. Lett., 2007, 9, 1497.
- 4. L. Ackermann and A. Althammer, Org. Lett., 2006, 8, 3457.
- 5. G. Cahiez, C. Chaboche, F. Mahuteau-Betzer and M. Ahr, Org. Lett., 2005, 7, 1943.
- 6. D.-G. Yu, M. Yu, B.-T. Guan, B.-J. Li, Y. Zheng, Z.-H. Wu and Z.-J. Shi, Org. Lett., 2009, **11**, 3374.
- 7. C. M. So, W. K. Chow, P. Y. Choy, C. P. Lau and F. Y. Kwong, Chem. Eur. J., 2010, 16, 7996.
- 8. S. A. Moteki and J. M. Takacs, Angew. Chem. Int. Ed., 2008, 47, 894.
- 9. D. Gauthier, S. Beckendorf, T. M. Gøgsig, A. T. Lindhardt and T. Skrydstrup, J. Org. Chem., 2009, 74, 3536.
- (a) M. L. N. Rao, D. N. Jadhav and D. Banerjee, *Tetrahedron*, 2008, 64, 5762; (b) D. Saha, K. Chattopadhyay and B. C. Ranu, *Tetrahedron Lett.*, 2009, 50, 1003.
- 11. O. Kobayashi, D. Uraguchi and T. Yamakawa, Org. Lett., 2009, 11, 2679.
- 12. M. Hakamada and M. Mabuchi, J. Alloys Compd., 2009, 479, 326.