Supplementary information

Chiral inversion of 2-arylpropionoyl-CoA esters by human α -methylacyl-CoA racemase 1A (P504S) – a potential mechanism for the anti-cancer effects of ibuprofen

Timothy J. Woodman, Pauline J. Wood, Andrew S. Thompson, Thomas J. Hutchings, Georgina R. Steel, Ping Jiao, Michael D. Threadgill and Matthew D. Lloyd*

Medicinal Chemistry, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom

Table of contents

Synthesis of substrates	p2
Experimental methods	pp3-9
Kinetic plots for ±-fenoprofenoyl-CoA	pp10-12
Kinetic plots for ±-flurbiprofenoyl-CoA	pp13-15
Kinetic plots for ±-ibuprofenoyl-CoA	pp16-18
Kinetic plots for S-ketoprofenoyl-CoA	pp19-21
Kinetic plots for S-naproxenoyl-CoA	pp22-24
Kinetic plots for S-2-methyldecanoyl-CoA	pp25-27
Sequence alignment of MCR and AMACR	p28
References for Supplementary Information	p29

Synthesis of substrates

The required acyl-CoA esters were synthesized by reaction of the 2-APA with carbonyl diimidazole,^{1,2} with the formation of the acyl-imidazole intermediates confirmed by ¹H NMR. These intermediates were immediately reacted with the reduced thiol form of coenzyme A, to afford the desired esters on \sim 10 mg scales.

Scheme S1: Synthesis of acyl-CoA esters from their corresponding acids. Reagents and conditions: i) N,N'-carbonyldiimidazole, CH_2Cl_2 , N₂, ambient temperature, 1 hr; CoA-SH (Li^+)₃, 0.1 M aq. NaHCO₃, ambient temperature, 16 h.

Experimental details

Sources of materials:

All chemicals were obtained from the Sigma-Aldrich Chemical Co. or Fisher Ltd and were used without further purification unless otherwise stated. Experiments were conducted at ambient temperature, unless noted otherwise. Organic extracts were dried over MgSO4 and filtered. Solvents were evaporated under reduced pressure. NMR spectra were obtained on Varian Mercury (400 MHz), Varian Inova (600 MHz), or Bruker Avance III (400 and 500 MHz) spectrometers, in CDCl₃ solution, except where noted. Spectra were referenced to the residual solvent peak, or externally via the solvent lock signal. Coupling constants (*J*) are reported in Hz to the nearest 0.1 Hz. Melting points were determined using a Reichert-Jung Thermo Galen Kofler block. Coenzyme A tri-lithium salt was purchased from Calbiochem. Rosetta2 (DE3) cells and benzonase were from Novagen. *S*-2-Methyldecanoic acid was synthesized as previously described.³ Recombinant human AMACR 1A was expressed in *E. coli* Rosetta2 (DE3) cells (Novagen). Cells (in 30 mL buffer) were pretreated with 250 U of benzonase before lysis, and the crude extract was treated with *N*-lauroyl-sarcosine and purified as previously described.³

\pm -Ibuprofenoyl-imidazole (\pm -1-(2-(4-(2-methylpropyl)phenyl)propanoyl)imidazole) (14).

±-Ibuprofen 1 (20 mg, 97 μmol) was stirred with N,N'-carbonyldiimidazole (25 mg, 154 μmol) in CH₂Cl₂ (2.0 mL) under N₂ for 1 h. The solution was washed repeatedly with water (2 mL portions) until the organic layer was no longer cloudy. Drying and evaporation gave 14 (24 mg, 94.1 μmol, 97%) as a colourless solid: ¹H NMR (500.13 MHz) δ 8.13 (1 H, t, J = 1.1 Hz, imidazole-*H*), 7.44 (1 H, t, J = 1.5 Hz, imidazole-*H*), 7.16 (2 H, d, J = 8.2 Hz, arom-*H*), 7.11 (2 H, d, J = 8.2 Hz, arom-*H*), 6.99 (1 H, dd, J = 1.1, 1.5 Hz, imidazole-*H*), 4.26 (1 H, q, J = 6.6 Hz, C*H*Me), 2.42 (2 H, d, J = 8.2 Hz, C*H*₂), 1.82 (1 H, nonet, J = 7.0 Hz, C*H*Me₂), 1.60 (3 H, d, J = 7.0 Hz, CHC*H*₃), 0.87 (6 H, d, J = 6.6 Hz, CH(C*H*₃)₂); ¹³C NMR (125.77 MHz) δ 170.56, 141.48, 136.53, 136.32, 130.41, 130.11, 126.73, 116.43, 46.00, 44.83, 29.99, 22.23, 19.59.

±-Ibuprofenoyl-CoA (2).

Compound 14 (21 mg, 82 μ mol) in dry THF (1.5 mL) was treated with CoA-SH tri-lithium salt (11 mg, 14 μ mol) in aq. NaHCO₃ (0.1 M, 1.0 mL). The mixture was then stirred for 16 h at room temperature. The mixture was washed with EtOAc (2 × 2 mL). The aqueous layer was acidified with Dowex X50 (H⁺ form) to *ca.* pH 4-5, then repeatedly extracted with EtOAc (2 mL portions) until no

more free acid remained (as shown by NMR). The aqueous layer was then lyophilized overnight to give **2** (9.1 mg) as a colourless solid: ¹H NMR (400.04 MHz, D₂O) δ 8.46 (1 H, s, adenosine C*H*), 8.13 (1 H, s, adenosine C*H*), 7.13 (2 H, d, *J* = 7.8 Hz, arom-*H*), 7.06 (2 H, d, *J* = 7.8 Hz, arom-*H*), 6.06 (1 H, d, *J* = 7.0 Hz, adenosine C*H*), 4.47 (1 H, m, adenosine C*H*), 4.13 (2 H, m, adenosine C*H*₂), 3.90 (1 H, s, adenosine C*H*), 3.88 (1 H, q, *J* = 7.4 Hz, C*H*Me), 3.72 (1 H, m, CoA-C(CH₃)CH*H*O), 3.44 (1 H, m, CoA-C(CH₃)C*H*HO), 3.33 (1 H, m, CoA-C(OH)*H*), 3.19 (4 H, m, 2 x CoA-CH₂C*H*₂N), 2.94 (1 H, m, SCH), 2.83 (1 H, m, SCH), 2.31 (1 H, d, *J* = 7.0 Hz, C*H*₂CHMe₂), 2.13 (2 H, m, CoA NHC(=O)C*H*₂CH₂), 1.66 (1 H, nonet, *J* = 7.1 Hz, CH₂C*H*Me₂), 1.36 (3 H, d, *J* = 7.0 Hz, CHC*H*₃), 0.76 (3 H, s, CoA Me), 0.72 (6 H, d, *J* = 6.3 Hz, CH₂CH(C*H*₃)₂), 0.60 (3 H, s, CoA Me). ESI-MS *m*/*z* calcd. for [M-H]⁻ C₃₄H₅₁N₇O₁₇P₃S: 954.2280, found: 954.2316.

\pm -Fenoprofenoyl-imidazole (\pm -1-(2-(3-phenoxyphenyl)propanoyl)imidazole) (15).

Fenoprofen **3** (19.4 mg, 75 µmol) was treated with carbonyldiimidazole, as for the synthesis of **14**, to give **15** (22 mg, 71.4 µmol, 95%) as a colourless solid: ¹H NMR (400.04 MHz) δ 8.13 (1 H, br s, imidazole-*H*), 7.44 (1 H, t, *J* = 1.5 Hz, imidazole-*H*), 7.34 (1 H, t, *J* = 7.4 Hz, arom-*H*), 7.28 (1 H, t, *J* = 7.4 Hz, arom-*H*), 7.12 (1 H, t, *J* = 7.1 Hz, arom-*H*), 7.03-6.93 (5 H, m, 4 × arom-*H*, 1 × imidazole-*H*), 6.87 (1 H, dd, *J* = 8.2, 2.3 Hz, arom-*H*), 4.26 (1 H, q, *J* = 7.0 Hz, C*H*Me), 1.60 (3 H, d, *J* = 7.0 Hz, CHC*H*₃); ¹³C (125.77 MHz, CDCl₃) δ 170.04, 158.21, 156.44, 141.06, 136.54, 130.77, 130.73, 129.84, 123.72, 121.55, 119.09, 117.70, 117.41, 116.36, 46.20, 19.52.

±-Fenoprofenoyl-CoA (7).

Compound **15** (22 mg) was treated with CoA-SH tri-lithium salt (10 mg), as for the synthesis of **2**, to give **7** (9.0 mg) as a colourless solid: ¹H NMR (400.04 MHz, D₂O) δ 8.44 (1 H, s, adenosine *CH*), 8.10 (1 H, s, adenosine *CH*), 7.29 (2 H, t, *J* = 7.8 Hz, arom-*H*), 7.25 (1 H, t, *J* = 8.3 Hz, arom-*H*), 7.08 (2 H, t, *J* = 7.5 Hz, arom-*H*), 7.04 (1 H, s, arom-*H*), 6.99 (1 H, d, *J* = 7.8 Hz, arom-*H*), 6.91 (2 H, d, *J* = 8.2 Hz, arom-*H*), 6.84 (1 H, d, *J* = 7.8 Hz, arom-*H*), 6.04 (1 H, d, *J* = 7.0 Hz, adenosine *CH*), 4.46 (1 H, m, adenosine *CH*), 4.13 (2 H, m, adenosine *CH*₂), 3.90 (1 H, s, adenosine *CH*), 3.89 (1 H, m, *CH*CH₃), 3.72, 3.42 (2 H, both m, CoA-C(CH₃)C*H*₂O), 3.33 (1 H, m, CoA-C(OH)*H*), 3.26-3.13 (4 H, m, CoA-CH₂C*H*₂N), 2.92, 2.83 (2 H, both m, CoA-S *CH*₂CH₂), 2.15 (2 H, m, CoA-NHC(=O)*CH*₂CH₂), 1.35 (3 H, d, *J* = 7.0 Hz, CHC*H*₃), 0.75 (3 H, s, CoA-CH₃), 0.59 (3 H, s, CoA-CH₃). ESI-MS *m*/z calcd. for [M-H]⁻C₃₆H₄₇N₇O₁₈P₃S: 990.1917, found: 990.1907.

±-Flurbiprofenoyl-imidazole (RS-1-(2-(2-fluoro-4-phenyl)phenyl)propanoyl)imidazole) (16).

Flurbiprofen **4** (21.6 mg, 88 µmol) was treated with carbonyldiimidazole, as for the synthesis of **14**, to give **16** (24 mg, 81.6 µmol, 92%) as a colourless solid: ¹H NMR (400.04 MHz) δ 8.17 (1 H, br s, imidazole-*H*), 7.53-7.35 (7 H, m, arom-*H*, 1 × imidazole-*H*), 7.16-7.08 (2 H, m, arom-*H*), 7.05 (1 H, dd, *J* = 0.9, 1.5 Hz, imidazole-*H*), 4.34 (1 H, q, *J* = 6.7 Hz, C*H*Me), 1.67 (3 H, d, *J* = 6.6 Hz, CHC*H*₃); ¹³C NMR (125.77 MHz₃) δ 169.99 (*J*_{CF} = 248.4 Hz), 169.86, 140.19 (d, *J*_{CF} = 7.3 Hz), 136.47, 134.87, 131,77 (d, *J*_{CF} = 4.0 Hz), 131.00, 128.87 (d, *J*_{CF} = 2.8 Hz), 128.79, 128.48, 127.92, 123.14 (d, *J*_{CF} = 3.5 Hz), 116.36, 114.95 (d, *J*_{CF} = 24.1 Hz), 47.76, 19.55.

±-Flurbiprofenoyl-CoA (8).

Compound **16** (24 mg) was treated with CoA-SH tri-lithium salt (11 mg), as for the synthesis of **2**, to give **8** (8.7 mg) as a colourless solid: ¹H NMR (400.04 MHz, D₂O) δ 8.34 (1 H, s, adenosine C*H*), 7.98 (1 H, s, adenosine C*H*), 7.38-7.22 (5 H, m, arom-*H*), 7.06-6.97 (3 H, m, arom-*H*), 5.94 (1 H, d, *J* = 5.8 Hz, adenosine C*H*), 4.40 (1 H, m, adenosine C*H*), 4.08 (2 H, m, adenosine C*H*₂), 3.92 (1 H, m, C*H*CH₃), 3.80 (1 H, m, adenosine C*H*), 3.64, 3.35 (2 H, both m, CoA-C(CH₃)C*H*₂O), 3.14 (4 H, m, 2 x CoA-CH₂C*H*₂N), 2.92, 2.80 (2 H, both m, CoA-SC*H*₂CH₂), 2.07 (2 H, m, CoA-NHC(=O)C*H*₂CH₂), 1.35 (3 H, d, *J* = 7.0 Hz, CHCH₃), 0.65 (3 H, s, CoA-CH₃), 0.50 (3 H, s, CoA-CH₃). ESI-MS *m*/*z* calcd. for [M-H]⁻C₃₆H₄₆N₇O₁₇FP₃S: 992.1873, found: 992.1840.

S-Ketoprofenoyl-imidazole (S-1-(2-(3-benzoylphenyl)propanoyl)imidazole) (17).

Ketoprofen **5** (17 mg, 66.5 mmol) was treated with carbonyldiimidazole, as for the synthesis of **14**, to give **17** (19 mg, 62.5 μ mol, 94%) as a colourless solid: ¹H NMR (400.04 MHz) δ 8.15 (1 H, br s, imidazole-*H*), 7.73 (1 H, br s, imidazole-*H*), 7.68 (2 H, d, *J* = 8.0 Hz, arom-*H*), 7.63 (1 H, t, *J* = 7.6 Hz, arom-*H*), 7.54 (1 H, t, *J* = 7.6 Hz, arom-*H*), 7.49 (1 H, d, *J* = 7.6 Hz, arom-*H*), 7.46-7.39 (4 H, m, arom-*H*), 6.98 (1 H, br d, *J* = 1.5 Hz, imidazole-*H*), 4.40 (1 H, q, *J* = 7.2 Hz, *CH*Me), 1.61 (3 H, d, *J* = 6.8 Hz, CHC*H*₃); ¹³C NMR (125.77 MHz) δ 195.91, 170.00, 139.54, 138.67, 137.10, 136.46, 132.72, 131.01, 139.87, 129.97, 129.73, 129.40, 128.73, 128.38, 116.35, 46.12, 19.64.

S-Ketoprofenoyl-CoA (9).

Compound 17 (19 mg) was treated with CoA-SH tri-lithium salt (11 mg), as for the synthesis of **2**, to give **9** (9.2 mg) as a colourless solid: ¹H NMR (400.04 MHz, D₂O) δ 8.37 (1 H, s, adenosine C*H*), 8.03 (1 H, s, adenosine C*H*), 7.58-7.46 (6 H, m, arom-*H*), 7.42-7.30 (3 H, m, arom-*H*), 5.95 (1 H, d, *J* = 5.8 Hz, adenosine C*H*), 4.42 (1 H, m, adenosine C*H*), 4.09 (2 H, m, adenosine C*H*₂), 3.96 (1 H, q, *J* = 7.0 Hz, C*H*CH₃), 3.86, (1 H, s, adenosine C*H*), 3.69, 3.40 (2 H, both m, CoA-C(CH₃)C*H*₂O), 3.30 (1 H, m, CoA-C(OH)*H*), 3.15 (4 H, m, 2 x CoA-CH₂C*H*₂N), 2.90, 2.81 (2 H, both m, CoA-S C*H*₂CH₂), 2.10 (2 H, m, CoA-NHC(=O)C*H*₂CH₂), 1.35 (3 H, d, *J* = 7.4 Hz, CHC*H*₃), 0.72 (3 H, s, CoA-CH₃), 0.57 (3 H, s, CoA-CH₃). ESI-MS *m*/*z* calcd. for [M-H]⁻C₃₇H₄₇N₇O₁₈P₃S: 1002.1917, found: 1002.1896.

S-Naproxenoyl-imidazole (1-(2-(6-methoxynaphthalen-2-yl))imidazole) (18).

Naproxen **6** (18 mg, 78 µmol) was treated with carbonyldiimidazole, as for the synthesis of **14**, to give **18** (19 mg, 67.8 µmol, 87%) as a colourless solid: ¹H NMR (400.04 MHz) δ 8.18 (1 H, t, J = 0.9 Hz, imidazole-H), 7.73 (1 H, d, J = 8.6 Hz, arom-H), 7.68 (1 H, d, J = 9.0 Hz, arom-H), 7.65 (1 H, s, arom-H), 7.46 (1 H, t, J = 1.6 Hz, imidazole-H), 7.34 (1 H, dd, J = 8.6, 2.0 Hz, arom-H), 7.15 (1 H, dd, J = 9.0, 2.3 Hz, arom-H), 6.97 (1 H, dd, J = 0.9, 1.6 Hz, imidazole-H), 4.43 (1 H, q, J = 7.0 Hz, CHMe), 1.68 (3 H, d, J = 6.6 Hz, CHCH₃); ¹³C NMR (125.77 MHz) δ 170.55, 158.07, 136.61, 134.96, 134.27, 130.69, 129.20, 129.06, 128.31, 125.93, 125.20, 119.61, 116.44, 105.62, 55.33, 46.42, 19.71.

S-Naproxenoyl-CoA(10)

Compound **18** (19 mg) was treated with CoA-SH tri-lithium salt (10 mg), as for the synthesis of **2**, to give **10** (9.3 mg) as a colourless solid: ¹H NMR (400.04 MHz, D₂O) δ 8.37 (1 H, s, adenosine *CH*), 8.03 (1 H, s, adenosine *CH*), 7.58-7.46 (6 H, m, arom-*H*), 7.42-7.30 (3 H, m, arom-*H*), 5.95 (1 H, d, *J* = 5.8 Hz, adenosine *CH*), 4.47 (1 H, m, adenosine *CH*), 4.14 (2 H, m, adenosine *CH*₂), 4.05 (1 H, m, *CH*CH₃), 3.91 (1 H, s, adenosine *CH*), 3.72, 3.45 (2 H, both m, CoA-C(CH₃)C*H*₂O), 3.40-3.30 (5 H, m, CoA-C(OH)*H* and 2 x CoA-CH₂C*H*₂N), 2.96, 2.82 (2 H, both m, CoA-SC*H*₂CH₂), 2.34 (2 H, m, CoA-NHC(=O)C*H*₂CH₂), 1.46 (3 H, d, *J* = 7.2 Hz, CHC*H*₃), 0.66 (3 H, s, CoA-CH₃), 0.52 (3 H, s, CoA-CH₃). ESI-MS *m*/*z* calcd. for [M-H] C₃₅H₄₇N₇O₁₈P₃S: 978.1917, found: 9978.1956.

S-1-(2-Methyldecanoyl)imidazole (19).

S-2-Methyldecanoic acid 20 (15.4 mg, 82.9 μ mol) was treated with carbonyldiimidazole, as for the synthesis of 14, to give 19 (18 mg, 76.3 μ mol 92%) as a low melting, colourless solid: ¹H NMR

(500.13 MHz) δ 8.16 (1 H, br s, imidazole-*H*), 7.47 (1 H, t, *J* = 1.5 Hz, imidazole-*H*), 7.09 (1 H, t, *J* = 1.3 Hz, imidazole-*H*), 3.04 (1 H, sextet, *J* = 7.0 Hz, decanoyl 2-H), 1.82 (1 H, m, decanoyl 3-H), 1.54 (1 H, m, decanoyl 3-H), 1.35-1.18 (15 H, m, decanoyl 4,5,6,7,8,9-H₁₂ and 2-Me), 0.87 (3 H, t, *J* = 7.0 Hz, decanoyl 10-H₃). ¹³C NMR (125.77 MHz) δ 173.43, 136.08, 130.94, 116.11, 39.45, 35.18, 33.67, 29.40, 29.26, 29.09, 27.04, 22.54, 17.25, 13.99.

S-Methyldecanoyl-CoA (11).

Compound 19 (18 mg) was treated with CoA-SH tri-lithium salt (11 mg), as for the synthesis of 2, to give 11 (8.7 mg) as a colourless solid. Data were consistent with those previously reported.³

S,S-2-(3-Benzoylphenyl)-N-(1-phenylethyl)propanamide (12).

S-Ketoprofen-imidazole **17** (derived from *S*-ketoprofen **5**, 32 mg, 106 μmol) in CDCl₃ was treated with *S*-1-phenylethylamine (25 mg, 208 μmol). The reaction was followed at 47 °C using ¹H NMR (500.13 MHz). Over *ca.* 16 h, the peaks for the starting material disappeared and new peaks, corresponding to **12** arose. When **17** had been consumed, the solution was diluted with CHCl₃ (2 mL) and washed with aq. HCl (1 M, 3×2 mL). Drying and evaporation gave **12** (34 mg, 95 μmol, 89.7 %) as a colourless oil: ¹H NMR (500.13 MHz) δ 7.75 (2 H, m, arom-*H*), 7.71 (1 H, t, *J* = 1.5 Hz, arom-*H*), 7.66 (1 H, dt, *J* = 7.5, 1.5 Hz, arom-*H*), 7.59 (1 H, tt, *J* = 7.5, 1.5 Hz, arom-*H*), 7.51 (1 H, dt, *J* = 7.5, 1.5 Hz, arom-*H*), 7.25-7.17 (3 H, m, arom-*H*), 7.11 (2 H, m, arom-*H*), 5.65 (1 H, d, *J* = 7.5 Hz, NH), 5.09 (1 H, qn, *J* = 7.5 Hz, PhC*H*MeNH), 3.63 (1 H, q, *J* = 7.0 Hz, C*H*MeC=O), 1.53 (3 H, d, *J* = 7.0 Hz, CH(C*H*₃)C=O), 1.43 (3 H, d, *J* = 7.0 Hz, PhCH(C*H*₃)NH); ¹³C NMR (125.77 MHz) δ 196.48 (C=O), 172.45 (NHC=O), 143.01, 141.79, 138.04, 137.37, 132.53, 131.45, 130.00, 129.06, 129.02, 128.74, 128.55, 128.30, 127.22, 125.81, 48.82 (*C*H(Me)NH), 46.99 (*C*H(Me)C=O), 21.77 (CH(*C*H₃)NH), 18.60 (CH(*C*H₃)C=O). ESI-MS *m*/z calcd. for [M+Na]⁺ C₂₄H₂₃NO₂Na: 380.1621, found: 380.1608. [α]_D²⁰ +32.3 ° (*c* = 1.11, dichloromethane).

S,*S*-2-(6-Methoxynaphthalen-2-yl)-N-(1-phenylethyl)propanamide (13).

S-Naproxenoyl-imidazole **18** (35 mg, 125 µmol) was treated with *S*-1-phenylethylamine (29 mg, 239 µmol), as for the synthesis of **12**, to give **13** (31 mg, 93 µmol, 74.4 %) as a colourless solid: ¹H NMR (500.13 MHz) δ 7.71 (1 H, d, *J* = 8.5 Hz, arom-*H*), 7.67 (1 H, d, *J* = 9.0 Hz, arom-*H*), 7.61 (1 H, s, arom-*H*), 7.33 (1 H, dd, *J* = 8.5, 2.0 Hz, arom-*H*), 7.23-7.05 (7 H, m, 5 × arom-*H* and 2 × arom-*H*), 5.58 (1 H, d, *J* = 7.5 Hz, NH), 5.11 (1 H, qn, *J* = 7.5 Hz, PhC*H*MeNH), 3.92 (3 H, s, OMe), 3.71 (1 H, q, *J* = 7.5 Hz, C*H*(Me)C=O), 1.58 (3 H, d, *J* = 7.0 Hz, CH(C*H*₃)C=O), 1.37 (3 H, d, *J* = 7.0 Hz, PhCH(C*H*₃)NH); ¹³C NMR (125.77 MHz) δ 173.30 (*C*=O), 157.72, 143.24, 136.47, 133.70, 129.20, 128.95, 128.46, 127.50, 127.06, 126.28, 126.12, 125.80, 55.31 (O*Me*), 48.69 (*C*H(Me)NH), 47.03 (*C*H(Me)C=O), 21.87 (CH(*Me*)NH), 18.53 (CH(*Me*)C=O). ESI-MS *m*/*z* calcd. for [M+H]⁺ C₂₂H₂₄NO₂: 334.1802, found: 334.1805. Melting point 176.0-176.5 °C. [α]_D²⁰ +118.7 ° (*c* = 0.79, dichloromethane).

Kinetic assays

Assays were conducted in aq. 50 mM NaH₂PO₄-NaOH buffer, pH 7.4, and *ca.* 90% (v/v) ²H₂O in a final volume of 550 μ L for 1 h at 30°C.^{3,4} The reaction was terminated by heating at 50°C for 10 min before ¹H NMR analysis. Concentrations of substrates were determined using ¹H NMR; at least six substrate concentrations in duplicate were used. Extents of conversion were calculated based on the integrals for both sides of the asymmetrical doublet for the α -methyl group of the ²H-product at 1.45 p.p.m. (See Figure 1 of communication); The left hand side of the doublet arises from ¹H-containing substrate only, while the right hand side contains the signals for the right-hand side of the methyl group doublets for the ¹H-containing substrate and the unresolved triplet of the ²H-containing product. Rates were calculated based on extents of conversion during the incubation period and corrected for non-enzymatic exchange using negative controls containing heat-inactivated enzyme. Recombinant human AMACR 1A was quantified by absorbance at 280 nm [http://www.expasy.ch/tools/protparam.html; ε = 35785 M⁻¹ cm⁻¹ for the His-tag enzyme³] giving a stock solution of 68.4 μ M (3.22 μ g μ L⁻¹). Between 2 and 10 μ L of enzyme solution were used in kinetic assays. Kinetic parameters were derived using the

Direct Linear Plot^{5,6} in SigmaPlot 11 and the enzyme kinetics module 1.3 (Systat). V_{max} values in nmol min⁻¹ mg⁻¹ protein were calculated assuming a molecular mass of 47146.8 Da.³

Determination of chiral inversion of 2-APA-CoA substrates

Ketoprofenoyl-CoA **9** or naproxenoyl-CoA **10** (*ca.* 10 mg; ~500 μ M final concentration) were incubated with AMACR (*ca.* 3.8 mg) in 50 mM NaH₂PO₄-NaOH buffer, pH 7.4 and ¹H₂O in a total volume of *ca.* 20 mL at 30°C for >16 h. Reactions were quenched with aq. NaOH (10 M, 1 mL) for 30 min and acidified to *ca.* pH 4-5 with aq. HCl. The acid products were extracted with CHCl₃, dried and the solvent evaporated. The residue was taken up in CDCl₃ for ¹H NMR analysis and quantification. The acids were converted into their N-(*S*-1-phenylethyl)amides **12** or **13** by addition of *S*-1-phenylethylamine (1.5 equiv.), followed of N,N'-dicyclohexylcarbodiimide (DCC, 1.5 equiv.). Reactions were typically completed in <30 min. In both cases, two diastereoisomers (*R*,*S* and *S*,*S*) were observed, as shown by the peaks for the α -proton, the methyl protons and, in the case of naproxen **6**, the methoxy protons in the ¹H NMR spectrum.

Models of substrate binding

Models were produced based on the X-ray crystal structure of MCR complexed with \pm ibuprofenoyl-CoA **2**.⁷ Once docked, the 2-APA-CoAs were subjected to molecular mechanics and dynamics calculations to establish optimal docking conformations; during these calculations, the enzyme and coenzyme A moiety were restrained to original conformations. The 2-APA-CoA and binding pocket were subjected to molecular dynamics and finally molecular mechanics calculations to give the final structures. Calculations were performed using the Tripos Associates force fields within the SYBYL-X software suite on an Intel dual core workstation (SUSE LINUX). Gasteiger-Hückel charges were calculated for the complexes.

±-Fenoprofenoyl-CoA 7

Apparent $K_{\rm m}$ (μ M)

 $K_{\rm m} = 2.292 \ \mu {\rm M}$ $V_{\rm max} = 2.415 \ {\rm nmol} \ {\rm h}^{-1}$ Enzyme = 0.2052 nmol assay⁻¹ (9.67 $\mu {\rm g} \ {\rm assay}^{-1}$)

 $V_{\text{max}} = 4.16 \text{ nmol min}^{-1} \text{ mg}^{-1}$ $K_{\text{cat}} = 0.0033 \text{ s}^{-1}$ $K_{\text{cat}}/K_{\text{m}} = 1426.33 \text{ M}^{-1} \text{ s}^{-1}$

Michaelis-Menten

[Substrate] (µM)

Value	<u>±Std. Error</u>		<u>95% Co</u>	onf. Inte	rval
Vmax	2.5400	0.2624	1.9682	to	3.1117
Km	1.8627	2.6299	-3.8676	to	7.5929
Goodness of Fit					
Degrees of Freedon	n	12			
AICc	-14	.449			
R ²	4.81	6e-2			
Sum of Squares	2.	.737			
Sy.x	0.	.478			
Runs Test p Value	0	.500			

Lineweaver-Burk

±-Flurbiprofenoyl-CoA 8

Direct Linear Plot

 $K_{\rm m} = 25.8 \ \mu {\rm M}$ $V_{\rm max} = 2.97 \ {\rm nmol} \ {\rm h}^{-1}$ Enzyme = 0.2052 nmol assay⁻¹ (9.66 $\mu {\rm g} \ {\rm assay}^{-1}$)

 $V_{\text{max}} = 5.12 \text{ nmol min}^{-1} \text{ mg}^{-1}$ $K_{\text{cat}} = 0.0040 \text{ s}^{-1}$ $K_{\text{cat}}/K_{\text{m}} = 155.83 \text{ M}^{-1} \text{ s}^{-1}$

Michaelis-Menten

±-Ibuprofenoyl-CoA 2

Direct Linear Plot

 $K_{\rm m} = 74.3 \ \mu {\rm M}$ $V_{\rm max} = 18.09 \ {\rm nmol} \ {\rm h}^{-1}$ Enzyme = 0.684 nmol assay⁻¹ (32.2 \ \mu {\rm g} \ {\rm assay}^{-1})

 $V_{\text{max}} = 9.36 \text{ nmol min}^{-1} \text{ mg}^{-1}$ $K_{\text{cat}} = 0.0073 \text{ s}^{-1}$ $K_{\text{cat}}/K_{\text{m}} = 98.87 \text{ M}^{-1} \text{ s}^{-1}$

Michaelis-Menten

Parameters						
-	Value	±Std. Er	<u>ror</u>	<u>95% Co</u>	nf. Inte	erval
Vmax	17.5378	1.81	55	13.5821	to	21.4935
Km	64.5805	24.64	65	10.8793	to	118.2817
Goodness of Fit						
Degrees of Freedom		12				
AICc		21.803				
R ²	0.570					
Sum of Squares		36.468				
Sy.x		1.743				
Runs Test p Value		0.048				

Lineweaver-Burk

S-Ketoprofenoyl-CoA 9

Direct Linear Plot

Apparent $K_{\rm m}$ (μ M)

 $K_{\rm m} = 51.78 \ \mu {\rm M}$ $V_{\rm max} = 22.24 \ {\rm nmol} \ {\rm h}^{-1}$ Enzyme = 0.4104 nmoles assay⁻¹ (19.32 $\mu {\rm g} \ {\rm assay}^{-1}$)

 $V_{\text{max}} = 19.18 \text{ nmol min}^{-1} \text{ mg}^{-1}$ $K_{\text{cat}} = 0.0150 \text{ s}^{-1}$ $K_{\text{cat}}/K_{\text{m}} = 289.68 \text{ M}^{-1} \text{ s}^{-1}$

Michaelis-Menten

<u>Value</u> Vmax Km	<u>±Std. Error</u> 23.7011 72.2996	95% Conf. Interval 2.6864 31.7504	17.7153 1.5538	to to	29.6868 143.0453
Goodness of Fit					
Degrees of Freedom	1	10			

AICC	54.847
R ²	0.691
Sum of Squares	103.419
Sy.x	3.216
Runs Test p Value	0.272

1/[Substrate] (μ M⁻¹)

S-Naproxenoyl-CoA 10

Direct Linear Plot

 $K_{\rm m} = 67.86 \ \mu {\rm M}$ $V_{\rm max} = 18.76 \ {\rm nmoles} \ {\rm h}^{-1}$ Enzyme = 0.5472 nmoles assay⁻¹ (25.76 \mu g assay⁻¹)

 $V_{\text{max}} = 12.14 \text{ nmol min}^{-1} \text{ mg}^{-1}$ $K_{\text{cat}} = 0.0095 \text{ s}^{-1}$ $K_{\text{cat}}/K_{\text{m}} = 140.33 \text{ M}^{-1} \text{ s}^{-1}$

Degrees of Freedom	12
AICc	32.381
R ²	0.579
Sum of Squares	77.635
Sy.x	2.544
Runs Test p Value	0.364

Km

1/[Substrate] (µM⁻¹)

Residuals

S-2-Methyldecanoyl-CoA 11

Direct Linear Plot

 $K_{\rm m} = 276.5 \ \mu {\rm M}$ $V_{\rm max} = 15.19 \ {\rm nmol} \ {\rm h}^{-1}$ Enzyme = 0.1368 nmoles assay⁻¹ (6.45 $\mu {\rm g} \ {\rm assay}^{-1}$)

 $V_{\text{max}} = 39.25 \text{ nmol min}^{-1} \text{ mg}^{-1}$ $K_{\text{cat}} = 0.031 \text{ s}^{-1}$ $K_{\text{cat}}/K_{\text{m}} = 111.5 \text{ M}^{-1} \text{ s}^{-1}$

Michaelis-Menten

[Substrate] (µM)

Value	±Std. Error	95% Conf. Interv	al		
Vmax	14.0720	3.4918	6.2915	to	21.8525
Km	277.0270	122.8954	3.1930	to	550.8609
Goodness of F	ĩit				
Degrees of Fre	edom	10			
AICc		2.831			
R ²		0.852			
Sum of Square	S	7.177			
Sy.x		0.847			
Runs Test p Va	alue	0.125			

AMACR MCR	1A	MALQGISVVELSGLAPGPFCAMVLADFGARVVRVDRPGSRYDVSRLGRGKRSLVLD MAGPLSGLRVVELAGIGPGPHAAMILGDLGADVVRIDRPSSVDGISRDAMLRNRRIVTAD .*.*: ****:*:.*****:*****************
AMACR MCR	1A	LKQPRGAAVLRRLCKRSDVLLEPFRRGVMEKLQLGPEILQRENPRLIYARLSGFGQSGSF LKSDQGLELALKLIAKADVLIEGYRPGVTERLGLGPEECAKVNDRLIYARMTGWGQTGPR **. :* : :* ::***:* :* ** *:* **** : * *****::*:*:*:*:
AMACR MCR	1A	CRLAGHDINYLALSGVLSKIGRSGENPYAPLNLLADFAGGGLMCALGIIMALFDRTRTGK SQQAGHDINYISLNGILHAIGRGDERPVPPLNLVGDFGGGSMFLLVGILAALWERQSSGK .: ******::*.*: ****.* .****:.**.**.:: :**: **::* :**:
AMACR MCR	1A	GQVIDANMVEGTAYLSSFLWKTQKSSLWEAPRGQNMLDGGAPFYTTYRTADGEFMAVGAI GQVVDAAMVDGSSVLIQMMWAMRATGMWTDTRGANMLDGGAPYYDTYECADGRYVAVGAI ***:** **:*:: * .::* : ::* .** *********
AMACR MCR	1A	EPQFYELLIKGLGLKSDELPNQMSMDDWPEMKKKFADVFAKKTKAEWCQIFDGTDACVTP EPQFYAAMLAGLGLDAAELPPQNDRARWPELRALLTEAFASHDRDHWGAVFANSDACVTP ***** :: ****.: *** * . ***:: :::.**.: : .* :* .:*****
AMACR MCR	1A	VLTFEEVVHHDHNKERGSFITSEEQDVSPRPAPLLLNTPAIPSFKRDPFIGEHTEEILEE VLAFGEVHNEPHIIERNTFYEANGGWQPMPAPRFSRTASSQPRPPAATIDIEAVLTD **:* ** :. * **.:* :: . :* * : . * * * . * :* :
AMACR MCR	1A	FGFSREEIYQLNSDKIIESNKVKASL WDG :.

Figure S1: Alignment of AMACR 1A (UniProtKB accession number Q9UHK6) with 2-methylacyl-CoA racemase from *M. tuberculosis* (UniProtKB accession number tr|O06543|O06543). Residues are colour coded: binding to side-chain of S-ibuprofenoyl-CoA; binding to side-chain of R-ibuprofenoyl-CoA; Methionine rich surface binding acyl side-chain during chiral inversion reaction (Leu-46 and Phe-194 from S-isomer binding site also involved); Catalytic residues. Residues are identified based on $MCR.^{7}$ of and structure sequences were aligned using ClusterW (http://www.ch.embnet.org/software/ClustalW.html) with default parameters. Residue numbers refer to AMACR 1A sequence.

References

- 1 N. J. Kershaw, M. Mukherji, C. H. MacKinnon, T. D. W. Claridge, B. Odell, A. S. Wierzbicki, M. D. Lloyd, and C. J. Schofield, *Bioorg. Med. Chem. Lett.*, 2001, **11**, 2545-2548.
- 2 A. J. Carnell, I. Hale, S. Denis, R. J. A. Wanders, W. B. Isaacs, B. A. Wilson, and S. Ferdinandusse, *J. Med. Chem.*, 2007, **50**, 2700-2707.
- 3 D. J. Darley, D. S. Butler, S. J. Prideaux, T. W. Thornton, A. D. Wilson, T. J. Woodman, M. D. Threadgill, and M. D. Lloyd, *Org. Biomol. Chem.*, 2009, 7, 543-552.
- 4 F. A. Sattar, D. J. Darley, F. Politano, T. J. Woodman, M. D. Threadgill, and M. D. Lloyd, *Chem. Commun.*, 2010, 46, 3348-3350.
- 5 A. Cornish-Bowden, and R. Eisenthal, Biochem. J., 1974, 139, 721-730.
- 6 R. Eisenthal, and A. Cornish-Bowden, Biochem. J., 1974, 139, 715-720.
- 7 P. Bhaumik, W. Schmitz, A. Hassinen, J. K. Hiltunen, E. Conzelmann, and R. K. Wierenga, *J. Mol. Biol.*, 2007, **367**, 1145-1161.