Supporting Information

Copper-Mediated Methylthiolation of Aryl Halides with DMSO

Fang Luo, Changduo Pan, Liping Li, Fan Chen,* and Jiang Cheng*

E-mail: jiangcheng@wzu.edu.cn; fanchen@wzu.edu.cn

1. General experimental details	.S2
2. Experimental characterization data for products	
3. Copies of product ¹ H NMR and ¹³ C NMR	

Experimental

1. General experimental details

Chemicals were either purchased or purified by standard techniques without special instructions. ¹H NMR and ¹³C NMR spectra were measured on a 500 MHz spectrometer (¹H 500 MHz, ¹³C 125 MHz), using CDCl₃ as the solvent with tetramethylsilane (TMS) as the internal standard at room temperature. Chemical shifts (δ) are given in ppm relative to TMS, the coupling constants *J* are given in Hz.

General procedure for CuBr-catalyzed methylthiolation of aryl iodines with DMSO: Under air, a sealed tube was charged with aryl iodine (0.4 mmol), CuBr (5.8 mg, 10 mol %), ZnF_2 (0.8 mmol, 2 equiv.), and DMSO (2 mL). The reaction tube was kept stirring at 150 °C for 36 h. After the completion of the reaction, as monitored by TLC, brine was added (10 mL), and the reaction mixture was extracted with ethyl acetate (3×5 mL). The ethyl acetate extracts were concentrated in vacuo, and the residue was purified by flash column chromatography on silica gel to give the product.

2. Experimental characterization data for compounds (4-methoxyphenyl)(methyl)sulfane (3a)¹

SMe

¹H NMR (CDCl₃, 500 MHz): δ 7.27 (d, *J* = 8.5 Hz, 2H), 6.85 (d, *J* = 9.0 Hz, 2H), 3.78 (s, 3H), 2.44 (s, 3H).

¹³C NMR (CDCl₃, 125 MHz): δ 158.2, 130.2, 128.8, 114.6, 55.4, 18.1.

(2-methoxyphenyl)(methyl)sulfane (3b)²

MeO

¹H NMR (CDCl₃, 500 MHz): δ 7.16-7.12 (m, 2H), 6.97-6.94 (m, 1H), 6.83 (d, *J* = 8.0 Hz, 1H), 3.88 (s, 3H), 2.42 (s, 3H).

¹³C NMR (CDCl₃, 125 MHz): δ 156.3, 126.8, 126.2, 125.9, 121.2, 110.1, 55.8, 14.7.

methyl(p-tolyl)sulfane (3c)³

¹H NMR (CDCl₃, 500 MHz): δ 7.18 (d, *J* = 8.5 Hz, 2H), 7.09 (d, *J* = 8.0 Hz, 2H), 2.46 (s, 3H), 2.31 (s, 3H).

¹³C NMR (CDCl₃, 125 MHz): δ 135.1, 134.7, 129.6, 127.4, 20.9, 16.6.

methyl(o-tolyl)sulfane (3d)⁴

SMe

1H NMR (CDCl₃, 500 MHz): δ 7.22-7.12 (m, 3H), 7.07-7.03 (m, 1H), 2.45 (s, 3H), 2.33 (s, 3H).

¹³C NMR (CDCl₃, 125 MHz): δ 137.7, 135.8, 129.8, 126.5, 124.6, 19.9, 15.3.

¹ Y. Jiang, Y. Qin, S. Xie, X. Zhang, J. Dong and D. Ma, Org. Lett., 2009, 11, 5250.

² J. P. Dunne, M. Bockmeyer, M. Tacke, J. P. Dunne, M. Bockmeyer and M. Tacke, *Eur. J. Inorg. Chem.*, 2003, 458.

³ G. Hua and J. D. Woollins, *Tetrahedron Lett.*, 2007, **48**, 3677.

⁴ T. Klis, J. Serwatowski, G. Wesela-Bauman and M. Zadrozna, *Tetrahedron Lett.*, 2010, **51**, 1685.

methyl(*m*-tolyl)sulfane (3e)⁵

¹H NMR (CDCl₃, 500 MHz): δ 7.19-7.15 (m, 1H), 7.07-7.05 (m, 2H), 6.94 (d, *J* = 7.5 Hz, 1H), 2.47 (s, 3H), 2.32 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 138.6, 138.2, 128.7, 127.3, 125.9, 123.7, 21.4, 15.9.

(3,5-dimethylphenyl)(methyl)sulfane (3f)⁶

SMe

¹H NMR (CDCl₃, 500 MHz): δ 6.88 (s, 2H), 6.77 (s, 1H), 2.45 (s, 3H), 2.28 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz): δ 138.4, 137.9, 127.0, 124.3, 21.2, 15.8.

biphenyl-4-yl(methyl)sulfane (3g)⁷

¹H NMR (CDCl₃, 500 MHz): δ 7.58-7.56 (m, 2H), 7.54-7.52 (m, 2H), 7.45-7.42 (m, 2H), 7.35-7.32 (m, 3H), 2.53 (s, 3H).

¹³C NMR (CDCl₃, 125 MHz): δ 138.1, 137.6, 128.8, 127.5, 127.2, 126.9, 126.8, 15.9.

methyl(naphthalen-1-yl)sulfane (3h)⁸

SMe

¹H NMR (CDCl₃, 500 MHz): δ 8.27 (d, *J* = 8.5 Hz, 1H), 7.82-7.80 (m, 1H), 7.64 (d, *J* = 8.5 Hz, 1H), 7.54-7.47 (m, 2H), 7.42-7.35 (m, 2H), 2.54 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 135.8, 133.7, 131.7, 128.6, 126.3, 126.2, 125.9, 125.7, 124.3, 123.7, 16.2.

⁵ M. G. Cabiddu, S. Cabiddu, E. Cadoni, S. D. Montis, C. Fattuoni and S. Melis, *Tetrahedron*, 2004, **60**, 3915.

⁶ R. E. del Río, B. Wang, S. Achab and L. Bohé, *Org. Lett.*, 2007, **9**, 2265.

⁷ P. Nun, J. Martinez and F. Lamaty, *Synlett*, 2009, 1761.

⁸ L. C. Schmidt, J. E. Argüello and A. B. Peńeńory, J. Org. Chem., 2007, 72, 2936.

<u>methyl(naphthalen-2-yl)sulfane (3i)⁹</u>

¹H NMR (CDCl₃, 500 MHz): δ 7.77 (d, *J* = 8.0 Hz, 1H), 7.73 (d, *J* = 8.5 Hz, 2H), 7.60-7.59 (m, 1H), 7.47-7.44 (m, 1H), 7.42-7.36 (m, 2H), 2.58 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 136.1, 133.9, 131.3, 128.2, 127.7, 126.8, 126.6, 125.7, 125.2, 123.4, 15.8.

methyl(4-nitrophenyl)sulfane (3j)¹⁰

¹H NMR (CDCl₃, 500 MHz): δ 8.14 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 2.56 (s, 3H).

¹³C NMR (CDCl₃, 125 MHz): δ 148.9, 144.8, 125.0, 123.9, 14.8.

(4-fluorophenyl)(methyl)sulfane (3k)¹¹

¹H NMR (CDCl₃, 500 MHz): δ 7.26-7.24 (m, 2H), 7.01-6.98 (m, 2H), 2.46 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 161.1 (d, *J* = 243.4 Hz), 133.3 (d, *J* = 3.2 Hz), 129.3 (d, *J* = 7.7 Hz), 115.9 (d, *J* = 21.9 Hz), 17.4.

(4-chlorophenyl)(methyl)sulfane (31)¹²

¹H NMR (CDCl₃, 500 MHz): δ 7.26-7.24 (m, 2H), 7.19-7.16 (m, 2H), 2.47 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 137.0, 130.9, 128.9, 127.9, 16.1.

methyl(3-(trifluoromethyl)phenyl)sulfane (3m)¹³

⁹ J. S. Yadav, B. V. Subba Reddy, C. Srinivas and P. Srihari, *Synlett*, 2001, 854.

¹⁰ S. C. Sousa and A. A. C. Fernandes, *Tetrahedron Lett.*, 2009, **50**, 6872.

¹¹ J. Ermert, T. Ludwig, R. Gail and H. H. Coenen, J. Organometal. Chem., 2007, 692, 4084.

¹² R.Tang, P. Zhong and Q. Lin, *Synthesis*, 2007, 85.

¹³ P. Hanson, R. A. A. J. Hendrickx and J. R. Lindsay Smith, Org. Biomol. Chem. 2008, 6, 745.

F₃C SMe

¹H NMR (CDCl₃, 500 MHz): δ 7.46 (s, 1H), 7.40-7.37 (m, 3H), 2.51 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 131.3 (q, J = 32.0 Hz), 129.4, 129.1, 123.9 (q, J = 270.9 Hz), 122.7 (q, J = 3.8 Hz), 121.6 (q, J = 3.7 Hz), 15.5.

methyl 2-(methylthio)benzoate (3n)¹⁴

¹H NMR (CDCl₃, 500 MHz): δ 8.0 (d, *J* = 7.5 Hz, 1H), 7.49-7.46 (m, 1H), 7.28-7.26 (m, 1H), 7.17-7.14 (m, 1H), 3.92 (s, 3H), 2.46 (s, 3H).

¹³C NMR (CDCl₃, 125 MHz): δ 166.9, 143.3, 132.5, 131.3, 126.8, 124.4, 123.4, 52.0, 15.6.

1-methyl-4-(methylthio)-1H-pyrazole (30)

¹H NMR (CDCl₃, 500 MHz): δ 7.48 (s, 1H), 7.38 (s, 1H), 3.88 (s, 3H), 2.32 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 142.1, 132.4, 113.1, 39.1, 21.1. IR (prism, cm⁻¹): 3055, 2950, 1669, 1519, 1436, 1266, 968. HRMS (EI) Calcd for C₅H₈N₂S (M⁺) 128.0410, found 128.0408.

<u>1,4-bis(methylthio)benzene (3p)¹⁵</u>

MeS⁻¹H NMR (CDCl₃, 300 MHz): δ 7.20 (s, 4H), 2.47 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz): δ 135.2, 127.7, 16.4.

(4-methoxyphenyl)(methyl)sulfane (3a')¹

¹⁴ S. C. A. Sousa and A. C. Fernandes, *Organometallics*, 2010, **29**, 1479.

¹⁵ P. Gao, X. Feng, X. Yang, V. Enkelmann, M. Baumgarten and K. Müllen, *J. Org. Chem.*, 2008, **73**, 9207.

MeO

¹H NMR (CDCl₃, 500 MHz): δ 7.27 (d, *J* = 8.5 Hz, 2H), 6.85 (d, *J* = 8.5 Hz, 2H), 3.78 (s, 3H), 2.44 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 158.2, 130.2, 128.8, 114.6, 55.4, 18.1.

(3,5-dimethylphenyl)(methyl)sulfane (3f')⁶

¹H NMR (CDCl₃, 500 MHz): δ 6.88 (s, 2H), 6.77 (s, 1H), 2.45 (s, 3H), 2.28 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz): δ 138.4, 137.9, 127.0, 124.3, 21.2, 15.8.

methyl(naphthalen-1-yl)sulfane (3h')⁸

¹H NMR (CDCl₃, 500 MHz): δ 8.27 (d, *J* = 8.0 Hz, 1H), 7.83-7.81 (m, 1H), 7.64 (d, *J* = 8.5 Hz, 1H), 7.54-7.47 (m, 2H), 7.42-7.35 (m, 2H), 2.55 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 135.8, 133.7, 131.7, 128.6, 126.3, 126.2, 125.9, 125.7, 124.3, 123.7, 16.2.

methyl(4-nitrophenyl)sulfane (3j')¹⁰

¹H NMR (CDCl₃, 500 MHz): δ 8.13 (d, *J* = 9.0 Hz, 2H), 7.29 (d, *J* = 9.0 Hz, 2H), 2.56 (s, 3H).

¹³C NMR (CDCl₃, 125 MHz): δ 148.9, 144.7, 125.0, 123.9, 14.8.

methyl(3-(trifluoromethyl)phenyl)sulfane (3m')¹³

F₃C SMe

¹H NMR (CDCl₃, 500 MHz): δ 7.46 (s, 1H), 7.40-7.37 (m, 3H), 2.51 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 131.3 (q, *J* = 32.0 Hz), 129.4, 129.1, 123.9 (q, *J* = 270.9 Hz), 122.7 (q, *J* = 3.8 Hz), 121.6 (q, *J* = 3.7 Hz), 15.5.

(3-methoxyphenyl)(methyl)sulfane (3q)¹⁶

MeS OMe

¹H NMR (CDCl₃, 500 MHz): δ 7.20-7.17 (m, 1H), 6.84-6.79 (m, 2H), 6.68-6.66 (m, 1H), 3.78 (s, 3H), 2.47 (s, 3H).

¹³C NMR (CDCl₃, 125 MHz): δ 159.9, 139.8, 129.6, 118.8, 112.1, 110.6, 55.2, 15.7.

3-(methylthio)quinoline (3r')¹⁷

¹H NMR (CDCl₃, 500 MHz): δ 8.79 (s, 1H), 8.05 (d, J = 8.5 Hz, 1H), 7.86 (s, 1H), 7.70 (d, J = 8.5 Hz, 1H), 7.64-7.61 (m, 1H), 7.52-7.50 (m, 1H), 2.58 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 149.9, 145.8, 132.7, 131.3, 129.3, 128.6, 128.3, 127.2, 126.7, 15.8.

4-(methylthio)benzaldehyde (3s')¹⁸

¹H NMR (CDCl₃, 500 MHz): δ 9.92 (s, 1H), 7.77 (d, *J* = 8.5 Hz, 1H), 7.32 (d, *J* = 8.5 Hz, 1H), 2.54 (s, 1H). ¹³C NMP (CDCl = 125 MHz): δ 101 2, 147 0, 122 0, 120 0, 125 2, 14.7

¹³C NMR (CDCl₃, 125 MHz): δ 191.3, 147.9, 132.9, 130.0, 125.2, 14.7.

(4-methoxyphenyl)(phenyl)sulfane (5)¹⁹

. Ph

MeO

¹H NMR (CDCl₃, 500 MHz): δ 7.42-7.40 (m, 2H), 7.25-7.21 (m, 2H), 7.17-7.12 (m, 3H), 6.89 (d, *J* = 8.5 Hz, 2H), 3.82 (s, 3H).

¹³C NMR (CDCl₃, 125 MHz): δ 159.8, 138.6, 135.4, 128.9, 128.2, 125.8, 124.3, 115.0, 55.4.

¹H NMR of **3+3'**: please see P59 in supporting information.

¹⁶ C. Savarin, J. Srogl and L. S. Liebeskind, *Org. Lett.*, 2002, **4**, 4309.

¹⁷ Y.-J. Cherng, *Tetrahedron*, 2002, **58**, 1125.

¹⁸ W. Yin, C. Chu, Q. Lu, J. Tao, X. Liang and R. Liu, *Adv. Synth. Catal.*, 2010, **352**, 113.

¹⁹ T. Itoh and T. Mase, *Org. Lett.*, 2004, **6**, 4587.

lf-9 Sup The ¹³ C N	plementary Material (ESI) fr Mernal is (c) The Royal So SMe	or Chemical Communica ciety of Chemistry 2011	₹126.851 support						—14. 767	×
				1						
190 180	170 160	150 140	130 120	110 100	90 f1 (ppm)	80 70	60 50	40 30	20 10	0

I		
	·	

¹H NMR of 3c 135.09 134.72 129.61 127.36 -77.28 -77.03 -76.78

SMe

1

.

	02	¹³ C NMR of 3j	
	125.02 ~123.88	$\overbrace{76.82}^{77.33}$	14.84
- 7			
		ł	

J

1

				.5-5	O₂N´	D				
	124.99	123.89		~77.35	13	CNMR	of 3j'	14.84		
1										
			•••••••••	*****	****	····		 	•••••	

.

Supplementary Material (ESI) for Chemical Communication his journal is (c) The Royal Society of Chemistry 2011	S	lf-9-	MeS ^{OMe} ¹³ C NMR of 3q'		·	
		118.81	₹77.33 ₹77.07			
190 180 170 160 150	140 13	0 120 110	100 90 80 70	60 50 40	0 30 20 10	0 ppm

191.28

2.4.4

14.69

-0.03

