Supporting Information

Manganese(III) acetate-mediated radical reaction of [60]fullerene

with phosphonate esters affording unprecedented separable

singly-bonded [60]fullerene dimers

Guan-Wu Wang,*^a Cong-Zhou Wang,^a San-E Zhu,^a Yasujiro Murata^{*b}

^a Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Mater Chemistry, Joint Laboratory of Green Synthesis and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China; E-mail: gwang@ustc.edu.cn
^b Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan;

nstitute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan, E-mail: yasujiro@scl.kyoto-u.ac.jp

S2
S2
S 3
S4
S4
S4
S5
S13
S14
S18
S19
S20
S21
S22
S27
S28
S29
S30
S31
S35
S36
S37

Synthesis of 2a in chlorobenzene: A mixture of C_{60} (36.0 mg, 0.05 mmol), 1a (9.2 µL, 0.10 mmol) and Mn(OAc)₃·2H₂O (26.8 mg, 0.10 mmol) was dissolved in chlorobenzene (10 mL) and stirred at 135 °C (oil bath temperature) under argon atmosphere for 50 min. The reaction mixture was poured onto a silica gel column and eluted with CS₂ to afford recovered C₆₀ (24.1 mg, 67%), then with CS₂/AcOEt (10:1) to give dimer 2a (11.9 mg, 29%). The meso and racemic mixture of dimer 2a was further separated on a silica gel column wrapped by aluminum foil. Elution with cold CS₂/AcOEt (100:5) afforded the minor isomer and then major isomer. ¹H NMR (400 MHz, CDCl₃) δ 4.10 (d, J = 11.2 Hz, OCH₃, major), 4.11 (d, J = 11.2 Hz, OCH₃, minor), 4.17 (d, J = 11.2 Hz, OCH₃, major), 4.23 (d, J = 11.2 Hz, OCH₃, minor); ¹³C NMR (75.5 MHz, CS₂-CDCl₃) δ 55.03-55.33 (m, OCH₃, major and minor), 61.68 (d, $J_{P-C} = 146.9 \text{ Hz}, \text{ sp}^3\text{-C of } C_{60}, 67.82\text{-}68.03 \text{ (m, sp}^3\text{-C of } C_{60}, 137.42 \text{ (d, } J_{P-C} = 5.8 \text{ sp}^3\text{-}C \text{ of } C_{60})$ Hz), 137.49 (d, $J_{P-C} = 5.6$ Hz), 138.07 (d, $J_{P-C} = 3.1$ Hz), 138.21, 138.40 (d, $J_{P-C} = 2.1$ Hz) 138.68, 139.05 (d, $J_{P-C} = 2.6$ Hz), 139.15 (d, $J_{P-C} = 2.7$ Hz), 140.90, 140.92, 141.53, 141.82, 142.23, 142.38, 142.44, 142.48, 142.59, 142.71, 142.74, 142.89, 142.96, 143.06, 143.13, 143.16, 143.31, 143.38, 143.45, 143.48, 143.58, 143.67, 143.72, 143.76, 143.88, 143.99, 144.09, 144.13, 144.19, 144.25, 144.33, 144.45, 144.48, 144.54, 144.58, 144.91, 145.02, 145.11, 145.17, 145.43, 145.46, 145.51, 145.64, 145.70, 145.76, 146.83, 146.96, 147.07, 147.09, 147.11, 147.33, 147.49, 147.51, 147.70 (d, $J_{P-C} = 7.4$ Hz), 147.88, 148.07 (d, $J_{P-C} = 7.7$ Hz), 148.62, 148.66, 148.83, 148.87, 148.93, 148.95, 149.14 (d, $J_{P-C} = 4.3$ Hz), 149.33, 149.55, 149.99 (d, $J_{P-C} = 2.7$ Hz), 150.29, 150.73, 154.29, 154.38, 154.47, 155.52 (d, $J_{P-C} = 3.1$ Hz), 156.00 (d, $J_{P-C} = 3.6$ Hz); ³¹P NMR (162 MHz, CDCl₃) δ 16.49 (major), 16.51 (minor); FT-IR v/cm⁻¹ (KBr) 2947, 2847, 1511, 1458, 1428, 1268, 1187, 1048, 1024, 905, 842, 762, 670, 630, 558, 526; UV-vis λ_{max}/nm (log ε) (CHCl₃) 257 (5.28), 325 (4.82), 446 (4.21); HRMS (-ESI): calcd. for C₆₂H₆PO₃ [M/2] 829.0055, found 829.0068. 2a (major isomer): ¹H NMR (400 MHz, CDCl₃) δ 4.10 (d, 6H, J = 11.2 Hz, OCH₃), 4.17 (d, 6H, J = 11.2 Hz, OCH₃). **2a** (minor isomer): ¹H NMR (400 MHz, CDCl₃) δ 4.11 (d, 6H, *J* = 11.2 Hz, OC*H*₃), 4.23 (d, 6H, *J* = 11.2 Hz, OC*H*₃).

Synthesis of 2b in chlorobenzene: A mixture of C₆₀ (36.0 mg, 0.05 mmol), 1b (12.9 µL, 0.10 mmol) and Mn(OAc)₃·2H₂O (26.8 mg, 0.10 mmol) was dissolved in chlorobenzene (10 mL) and stirred at 135 °C (oil bath temperature) under argon atmosphere for 50 min. The reaction mixture was poured onto a silica gel column and eluted with CS₂ to afford recovered C₆₀ (24.6 mg, 68%), then with CS₂/AcOEt (20:1) to give dimer 2b (12.0 mg, 28%). The meso and racemic mixture of dimer 2b was further separated on a silica gel column wrapped by aluminum foil. Elution with cold CS₂/AcOEt (100:4) afforded the minor isomer and then major isomer. Spectral data of 2b: ¹H NMR (300 MHz, CS₂-CDCl₃) δ 1.37 (t, *J* = 7.0 Hz, *CH*₃, major), 1.38 (t, *J* = 6.9 Hz, *CH*₃, minor), 1.52 (t, *J* = 6.9 Hz, *CH*₃, major and minor), 4.40-4.50 (m, *CH*₂, major and minor), 4.54-4.64 (m, *CH*₂, major and minor); ¹³C NMR (75.5 MHz, CS₂-CDCl₃ with Cr(acac)₃ as relaxation reagent) δ 16.43 (d, *J*_{P-C} = 6.1 Hz, OCH₂*C*H₃, major), 16.46 (d, *J*_{P-C} = 6.1 Hz, OCH₂*C*H₃, minor), 16.59 (d, *J*_{P-C} = 6.1 Hz, OCH₂*C*H₃, major and minor), 62.22 (d, *J*_{P-C} = 144.9 Hz, sp³-C of C₆₀, major and minor), 62.30 (d, *J*_{P-C} = 144.9 Hz, sp³-C of C₆₀, major and minor), 62.30 (d, *J*_{P-C} = 144.9 Hz, sp³-C of C₆₀, major and minor), 62.30 (d, *J*_{P-C} = 144.9 Hz, sp³-C of C₆₀, major and minor), 62.30 (d, *J*_{P-C} = 144.9 Hz, sp³-C of C₆₀, major and minor), 62.30 (d, *J*_{P-C} = 144.9 Hz, sp³-C of C₆₀, major and minor), 62.30 (d, *J*_{P-C} = 144.9 Hz, sp³-C of C₆₀, minor), 64.55 (d, *J*_{P-C} = 7.0 Hz, OCH₂CH₃, major and minor), 62.30 (d, *J*_{P-C} = 144.9 Hz, Sp³-C of C₆₀, major), 62.30 (d, *J*_{P-C} = 144.9 Hz, Sp³-C of C₆₀, major), 62.30 (d, *J*_{P-C} = 144.9 Hz, Sp³-C of C₆₀, major), 62.30 (d, *J*_{P-C} = 144.9 Hz, Sp³-C of C₆₀, major), 62.30 (d, *J*_{P-C} = 144.9 Hz, Sp³-C of C₆₀, major), 62.30 (d, *J*_{P-C} = 144.9 Hz, Sp³-C of C₆₀, major), 62.30 (d, *J*_{P-C} = 144.

64.65 (d, $J_{P-C} = 6.8$ Hz, OCH₂CH₃, major and minor), 67.61–67.85 (sp³-C of C₆₀, major and minor), 137.17 (d, $J_{P-C} = 5.0$ Hz), 137.20 (d, $J_{P-C} = 4.5$ Hz), 137.95 (d, J_{P-C} = 3.8 Hz), 138.14, 138.40 (d, J_{P-C} = 3.0 Hz), 138.57, 138.94 (d, J_{P-C} = 3.0 Hz), 139.03 $(d, J_{P-C} = 2.7 \text{ Hz}), 140.66, 141.40, 141.64, 142.11, 142.15, 142.23, 142.27, 142.34,$ 142.37, 142.41, 142.50, 142.55, 142.57, 142.70, 142.77, 142.81, 142.90, 142.92, 142.98, 143.05, 143.17, 143.22, 143.26, 143.40 (d, $J_{P-C} = 1.8$ Hz), 143.48, 143.78, 143.88, 143.92, 143.97, 144.07, 144.12, 144.19, 144.24, 144.29, 144.33, 144.38, 144.60, 144.64, 144.80, 144.88, 144.92, 145.03, 145.30, 145.35, 145.43, 145.47, 145.55, 145.61, 146.13, 146.65, 146.80, 146.83, 146.89, 146.93, 147.07, 147.31, 147.53, 147.85 (d, $J_{P-C} = 7.1$ Hz), 148.18 (d, $J_{P-C} = 7.2$ Hz), 148.43, 148.46, 148.66, 148.70, 148.85 (d, $J_{P-C} = 5.5$ Hz), 148.88 (d, $J_{P-C} = 5.4$ Hz), 149.30, 149.48, 149.97 (d, $J_{P-C} = 1.9 \text{ Hz}$, 150.67 (d, $J_{P-C} = 2.2 \text{ Hz}$), 154.99, 155.16, 155.51 (d, $J_{P-C} = 3.1 \text{ Hz}$), 155.94 (d, $J_{P-C} = 3.6 \text{ Hz}$); ³¹P NMR (162 MHz, CDCl₃) δ 13.39 (major), 13.50 (minor); FT-IR v/cm⁻¹ (KBr) 2974, 1510, 1428, 1388, 1365, 1265, 1188, 1159, 1093, 1043, 1016, 968, 843, 821, 760, 733, 669, 643, 630, 567, 526; UV-vis λ_{max}/nm (log ϵ) (CHCl₃) 260 (5.25), 326 (4.78), 446 (4.18); HRMS (-ESI): calcd. for C₆₄H₁₀PO₃ [M/2] 857.0368, found 857.0324. **2b** (major isomer): ¹H NMR (400 MHz, CDCl₃) δ 1.38 (t, 6H, J = 7.0 Hz, CH_3), 1.52 (t, 6H, J = 7.2 Hz, CH_3), 4.47 (dg, 4H, J = 7.2 Hz, OCH₂), 4.54-4.65 (m, 4H, OCH₂). **2b** (minor isomer): ¹H NMR (400 MHz, CDCl₃) δ 1.39 (t, 6H, J = 7.0 Hz, CH₃), 1.53 (t, 6H, J = 7.0 Hz, CH₃), 4.43-4.53 (m, 4H, OCH₂), 4.55-4.71 (m, 4H, OCH₂).

Synthesis of 2c in chlorobenzene: A mixture of C₆₀ (36.0 mg, 0.05 mmol), 1c (15.0 mg, 0.10 mmol) and Mn(OAc)₃·2H₂O (53.6 mg, 0.20 mmol) was dissolved in chlorobenzene (10 mL) and stirred at 100 °C (oil bath temperature) under argon atmosphere for 90 min. The reaction mixture was poured onto a silica gel column and eluted with CS₂ to afford recovered C₆₀ (23.3 mg, 65%), then with CS₂/AcOEt (10:1) to give dimer 2c (14.6 mg, 34%). The meso and racemic mixture of dimer 2c was further separated on a silica gel column wrapped by aluminum foil. Elution with cold CS₂/AcOEt (100:7) afforded the minor isomer and then major isomer. Spectral data of **2c**: ¹H NMR (300 MHz, CDCl₃) δ 1.11 (s, CH₃, major), 1.13 (s, CH₃, minor), 1.31 (s, CH₃, major), 1.32 (s, CH₃, minor), 4.25-4.57 (m, CH₂, major and minor); ¹³C NMR (75 MHz, CS₂-ODCB-d₄) δ 21.62 (CH₃), 21.68 (CH₃), 21.92 (CH₃), 21.98 (CH₃), 32.96 (d, $J_{P-C} = 6.1$ Hz, CCH₃), 61.61 (d, $J_{P-C} = 144.6$ Hz, sp³-C of C₆₀), 67.83-68.10 (m, sp³-C of C₆₀), 77.36-78.33 (m, CH₂), 137.60 (d, $J_{P-C} = 5.6$ Hz), 137.70 (d, $J_{P-C} = 5.6$ Hz) 5.2 Hz), 138.56, 138.75 (d, J_{P-C} = 3.8 Hz), 138.81, 138.94 (d, J_{P-C} = 3.8 Hz), 139.15 (d, $J_{P-C} = 3.3$ Hz), 141.01, 141.06, 141.83, 141.93, 142.31, 142.35, 142.47, 142.51, 142.55, 142.71, 142.79, 142.86, 143.00, 143.05, 143.14, 143.19, 143.24, 143.27, 143.39, 143.46, 143.49, 143.59, 143.72, 143.86, 144.04, 144.26, 144.32, 144.39, 144.50, 144.57, 144.63, 144.70, 145.07, 145.10, 145.13, 145.25, 145.54, 145.57, 145.60, 145.63, 145.73, 145.88, 146.23, 146.97, 147.07, 147.16, 147.25, 147.39, 147.62, 148.34 (d, $J_{P-C} = 7.3$ Hz), 148.54 (d, $J_{P-C} = 7.6$ Hz), 148.77, 148.97, 149.15 (d, $J_{P-C} = 5.6$ Hz), 149.38, 149.54, 149.69, 150.07 (d, $J_{P-C} = 3.1$ Hz), 150.56 (d, $J_{P-C} = 2.2$ Hz), 153.52, 153.62, 153.70, 153.80, 155.48 (d, $J_{P-C} = 3.7$ Hz), 155.84 (d, $J_{P-C} = 4.1$ Hz); ³¹P NMR (162 MHz, CDCl₃) δ 9.70 (minor), 9.79 (major); FT-IR v/cm⁻¹ (KBr)

2922, 1510, 1462, 1427, 1370, 1270, 1189, 1052, 998, 909, 839, 762, 670, 645, 557, 526; UV–vis λ_{max}/nm (log ε) (CHCl₃) 259 (5.32), 325 (4.93), 447 (4.23); HRMS (-ESI): calcd. for C₆₅H₁₀PO₃ [M/2] 869.0368, found 869.0376. **2c** (major isomer): ¹H NMR (400 MHz, CDCl₃) δ 1.11 (s, 6H, OCH₃), 1.31 (s, 6H, OCH₃) 4.28-4.39 (m, 4H, CH₂), 4.48 (dd, 2H, J = 10.8, 6.8 Hz, CH₂), 4.53 (dd, 2H, J = 10.8, 6.4 Hz, CH₂). **2c** (minor isomer): ¹H NMR (400 MHz, CDCl₃) δ 1.13 (s, 6H, OCH₃), δ 1.32 (s, 6H, OCH₃) 4.35-4.55 (m, 8H, CH₂).

Synthesis of 2a in toluene: A mixture of C_{60} (36.0 mg, 0.05 mmol), 1a (9.2 µL, 0.10 mmol), and Mn(OAc)₃·2H₂O (26.8 mg, 0.10 mmol) was dissolved in toluene (30 mL) and refluxed under argon atmosphere for 3 h. The reaction mixture was poured onto a silica gel column, and eluted with CS₂ to afford recovered C₆₀ (29.4 mg, 82%), then with CS₂/AcOEt (10:1) to give dimer 2a (6.1 mg, 15%).

Heating of 2a in chlorobenzene: 2a (10.6 mg) was dissolved in chlorobenzene (3 mL) and refluxed under argon atmosphere for 12 h. The reaction mixture was poured onto a silica gel column, and eluted with CS₂ to afford C₆₀ (3.2 mg, 35%), then with CS₂/AcOEt (10:1) to give recovered dimer 2a (6.1 mg, 58%).

Crystal structure and refinement details for the minor isomer of 2a: The single crystals of the minor isomer of 2a was grown in $CS_2/CHCl_3$ at about -5 °C. The single crystal was coated with silicone oil and mounted in the 100 K dinitrogen stream of a Bruker SMART APEX CCD diffractometer equipped with low-temperature apparatus and intensity data were collected using graphite-monochromated Mo Ka radiation. The data integration and reduction were processed with the SAINT software. An empirical absorption correction (SADABS) was applied. Structures were solved by the direct method using SHELXS-97 and refined on F^2 by a full-matrix least-squares technique using the SHELXL-97 program package. The independent moiety is the monomer unit of the dimer. The monomer unit has disorder as to the position of C_{60} cage. The major part was refined anisotropically and the minor part was refined isotropically. Crystal structure refinement parameters are given in Table S1. CCDC contains the supplementary crystallographic data for this paper with a deposition number of CCDC 802193 for the minor isomer of 2a. Copies of this information can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK. [Fax: +44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk].

Empirical formula	$C_{64}H_8Cl_6O_3P$	
Formula weight	1068.37	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 9.9401(10) Å	$\alpha = 100.529(2)^{\circ}$
	b = 13.7583(15) Å	$\beta = 96.973(2)^{\circ}$
	c = 14.9042(16) Å	$\gamma = 102.216(2)^{\circ}$

Volume	$1931.2(4) \text{ Å}^3$
Ζ	2
Density (calculated)	1.837 Mg/m ³
Absorption coefficient	0.551 mm ⁻¹
F(000)	1066
Crystal size	$0.28 \ge 0.24 \ge 0.20 \text{ mm}^3$
Theta range for data collection	1.86 to 26.00°.
Index ranges	-12<=h<=11, -16<=k<=16, -18<=l<=12
Reflections collected	10469
Independent reflections	7352 [R(int) = 0.0180]
Completeness to theta = 26.00°	96.8 %
Absorption correction	Empirical (SADABS)
Max. and min. transmission	0.8979 and 0.8611
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	7352 / 6 / 922
Goodness-of-fit on F ²	1.090
Final R indices [I>2sigma(I)]	R1 = 0.0690, wR2 = 0.1686
R indices (all data)	R1 = 0.0848, wR2 = 0.1786
Largest diff. peak and hole	1.326 and -1.143 e.Å ⁻³

Optimized structures of meso and racemic isomers of 2a

Table S2. Cartesian coordinates and energies of meso and racemic isomers of **2a** at the B3LYP/6-31G*//B3LYP/3-21G* level

meso- 2a					
-B3LYP/	-B3LYP/6-31G*//B3LYP/3-21G*-				
С	1.869941	2.158766	-0.904595		
С	2.221766	1.487305	-2.178141		
С	2.008647	0.134476	-2.320996		
С	1.442763	-0.660218	-1.205391		
С	0.796849	0.001086	0.002668		
С	1.333871	1.441918	0.137906		
С	2.879944	3.166628	-0.649763		
С	3.849958	3.129267	-1.736875		
С	3.437783	2.099334	-2.685540		
С	4.399885	1.319509	-3.326801		
С	3.006859	-0.684425	-2.986775		
С	2.065784	-1.878965	-1.183592		
С	2.189094	-2.759345	0.040578		
С	1.992319	-1.883919	1.303697		
С	1.393590	-0.648632	1.275998		
С	1.842282	0.392286	2.171601		
С	1.785626	1.675701	1.479856		
С	2.739752	2.659993	1.748308		
С	3.301684	3.426855	0.654158		
С	5.198570	3.342487	-1.478915		
С	5.644989	3.593159	-0.111550		
С	4.719278	3.630806	0.925687		
С	5.031019	2.994054	2.204060		
С	3.805620	2.389670	2.708787		
С	3.854546	1.170099	3.374537		
С	2.843451	0.150885	3.110576		
С	3.487635	-1.144001	3.132791		
С	3.087585	-2.119459	2.219912		
С	3.053852	-1.950982	-2.281233		
С	6.416730	-2.810649	0.767949		
С	5.974735	-3.030756	-0.537077		
С	6.547101	-2.271087	-1.643568		
С	7.520827	-1.312179	-1.394635		
С	7.970386	-1.065596	-0.026141		
С	7.091617	-1.129247	2.281732		
С	5.864557	-1.729880	2.786809		
С	5.449916	-2.764257	1.844938		
С	4.092548	-2.946087	1.564088		

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

	1 III3 Jour	iidi is 🖲 The Roye	i Society of Cher
С	3.662047	-3.205372	0.223126
С	4.569214	-3.246358	-0.807565
С	5.486638	-2.007773	-2.611918
С	5.450210	-0.787569	-3.287031
С	6.467488	0.223830	-3.016510
С	7.475877	-0.031243	-2.094608
С	7.889410	1.006298	-1.154022
С	8.194013	0.367537	0.120475
С	7.871348	1.005262	1.316032
С	7.305916	0.238716	2.421323
С	4.906840	-0.939221	3.411574
С	5.132487	0.493797	3.563172
С	6.304512	1.069787	3.079816
С	6.251288	2.349585	2.381844
С	7.220428	2.309166	1.292046
С	6.923142	2.916228	0.074149
С	7.268566	2.250997	-1.176570
С	6.204439	2.516349	-2.140472
С	5.815765	1.531713	-3.040795
С	4.258697	-2.597515	-2.105042
С	4.178103	-0.109486	-3.481123
С	7.432404	-1.796834	1.026771
Р	1.156299	-4.275247	-0.077512
Ο	-0.295232	-4.184012	-0.398068
Ο	2.014176	-5.045274	-1.193560
Ο	1.497991	-4.931804	1.342793
С	0.515569	-5.776993	2.065974
Н	0.622298	-5.539228	3.124028
Н	-0.493879	-5.549636	1.716588
С	1.366994	-5.972406	-2.154316
Н	0.302089	-5.741612	-2.227281
Н	1.863643	-5.821961	-3.112477
С	-0.796849	-0.001086	-0.002668
С	-1.393590	0.648632	-1.275998
С	-1.442763	0.660218	1.205391
С	-1.333871	-1.441918	-0.137906
С	-1.992319	1.883919	-1.303697
С	-1.842282	-0.392286	-2.171601
С	-2.065784	1.878965	1.183592
С	-2.008647	-0.134476	2.320996
С	-1.785626	-1.675701	-1.479856
С	-1.869941	-2.158766	0.904595
С	-2.189094	2.759345	-0.040578
С	-3.087585	2.119459	-2.219912

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

	11113 Jour	nai 13 © The Roya	a boelety of cher
С	-2.843451	-0.150885	-3.110576
С	-3.053852	1.950982	2.281233
С	-3.006859	0.684425	2.986775
С	-2.739752	-2.659993	-1.748308
С	-2.879944	-3.166628	0.649763
С	-3.662047	3.205372	-0.223126
С	-4.092548	2.946087	-1.564088
С	-3.487635	1.144001	-3.132791
С	-3.854546	-1.170099	-3.374537
С	-4.258697	2.597515	2.105042
С	-4.178103	0.109486	3.481123
С	-3.437783	-2.099334	2.685540
С	-3.301684	-3.426855	-0.654158
С	-3.805620	-2.389670	-2.708787
С	-3.849958	-3.129267	1.736875
С	-4.569214	3.246358	0.807565
С	-5.449916	2.764257	-1.844938
С	-4.906840	0.939221	-3.411574
С	-5.132487	-0.493797	-3.563172
С	-5.486638	2.007773	2.611918
С	-4.399885	-1.319509	3.326801
С	-5.450210	0.787569	3.287031
С	-4.719278	-3.630806	-0.925687
С	-5.031019	-2.994054	-2.204060
С	-5.198570	-3.342487	1.478915
С	-5.974735	3.030756	0.537077
С	-6.416730	2.810649	-0.767949
С	-5.864557	1.729880	-2.786809
С	-6.304512	-1.069787	-3.079816
С	-6.547101	2.271087	1.643568
С	-5.815765	-1.531713	3.040795
С	-6.467488	-0.223830	3.016510
С	-5.644989	-3.593159	0.111550
С	-6.251288	-2.349585	-2.381844
С	-6.204439	-2.516349	2.140472
С	-7.432404	1.796834	-1.026771
С	-7.091617	1.129247	-2.281732
С	-7.305916	-0.238716	-2.421323
С	-7.520827	1.312179	1.394635
С	-7.475877	0.031243	2.094608
С	-6.923142	-2.916228	-0.074149
С	-7.220428	-2.309166	-1.292046
С	-7.268566	-2.250997	1.176570
С	-7.970386	1.065596	0.026141

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

	This Jour		a boelety of eller
С	-7.871348	-1.005262	-1.316032
С	-7.889410	-1.006298	1.154022
С	-8.194013	-0.367537	-0.120475
С	-2.221766	-1.487305	2.178141
Р	-1.156299	4.275247	0.077512
0	0.295232	4.184012	0.398068
0	-2.014176	5.045274	1.193560
0	-1.497991	4.931804	-1.342793
С	-1.366994	5.972406	2.154316
Н	-0.302089	5.741612	2.227281
Н	-1.863643	5.821961	3.112477
С	-0.515569	5.776993	-2.065974
Н	0.493879	5.549636	-1.716588
Н	-0.622298	5.539228	-3.124028
Η	-1.513176	6.999489	1.811664
Н	-0.752315	6.829007	-1.890795
Н	0.752315	-6.829007	1.890795
Н	1.513176	-6.999489	-1.811664
		0.010*	

-B3LYP/6-31G*// B3LYP/3-21G*-

E(RB+HF-LYP) = -5866.11319277 a.u.

racemic-2a

-B3LYP/6-31G*//B3LYP/3-21G*-

С	1.837220	-2.072598	1.088526
С	2.146498	-1.293149	2.311742
С	1.931403	0.067180	2.333119
С	1.408469	0.763465	1.137451
С	0.797459	0.001067	-0.023899
С	1.340163	-1.443696	-0.028061
С	2.857243	-3.092838	0.952923
С	3.789560	-2.960887	2.066978
С	3.344254	-1.855951	2.910712
С	4.282967	-1.020680	3.516631
С	2.902001	0.943798	2.963469
С	2.018216	1.984651	1.036055
С	2.186145	2.753512	-0.257337
С	2.038098	1.771207	-1.443637
С	1.428596	0.546093	-1.334127
С	1.914824	-0.563894	-2.122745
С	1.838000	-1.784146	-1.329878
С	2.801790	-2.784276	-1.482604
С	3.324357	-3.456812	-0.310356
С	5.146669	-3.188074	1.872955
С	5.640017	-3.548674	0.546871

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

	T IIIS JOUL	nai is © The Roye	il Society of Chen
С	4.751055	-3.677647	-0.514718
С	5.106740	-3.148719	-1.830463
С	3.899381	-2.591506	-2.424777
С	3.969588	-1.431081	-3.186722
С	2.948233	-0.398063	-3.043971
С	3.592995	0.892066	-3.154141
С	3.161401	1.938298	-2.339993
С	2.970010	2.149657	2.157991
С	6.436075	2.761410	-0.836320
С	5.949890	3.088867	0.429704
С	6.483308	2.425991	1.614617
С	7.465858	1.452701	1.479992
С	7.961689	1.094220	0.153386
С	7.164518	0.962251	-2.180433
С	5.955483	1.514053	-2.776555
С	5.507416	2.622143	-1.939258
С	4.141678	2.820685	-1.720266
С	3.664257	3.188490	-0.420386
С	4.534352	3.320833	0.633528
С	5.390414	2.240233	2.565150
С	5.332461	1.079743	3.336999
С	6.359542	0.053480	3.187218
С	7.398507	0.234754	2.282075
С	7.844755	-0.876494	1.446538
С	8.193002	-0.344956	0.134415
С	7.912081	-1.081396	-1.014125
С	7.384567	-0.411762	-2.198001
С	5.021122	0.670483	-3.366798
С	5.252638	-0.769075	-3.389420
С	6.407811	-1.298620	-2.819610
С	6.331663	-2.516260	-2.019379
С	7.262216	-2.381011	-0.904041
С	6.922852	-2.884864	0.349356
С	7.224632	-2.117004	1.551696
С	6.128381	-2.306106	2.498018
С	5.708048	-1.250537	3.298329
С	4.180141	2.782607	1.970400
С	4.055547	0.415840	3.543930
С	7.460882	1.733711	-0.974764
Р	1.147475	4.263817	-0.372476
0	-0.338485	4.167620	-0.396270
0	1.745917	5.043035	0.892970
0	1.782912	4.915774	-1.691612
С	0.955335	5.687616	-2.651608

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

	i ilis jour	iidi is 🖲 The Roye	in Boelety of Cher
Н	1.282438	5.396809	-3.649721
Н	-0.100031	5.448994	-2.503264
С	0.912421	5.976557	1.690671
Н	1.206099	5.840220	2.731054
Н	-0.144144	5.737662	1.550574
С	-0.797465	-0.001038	-0.023898
С	-1.340180	1.443721	-0.028060
С	-1.408469	-0.763440	1.137452
С	-1.428599	-0.546069	-1.334125
С	-1.837243	2.072619	1.088527
С	-1.838022	1.784166	-1.329876
С	-1.931408	-0.067160	2.333121
С	-2.018205	-1.984631	1.036058
С	-1.914837	0.563913	-2.122743
С	-2.038090	-1.771189	-1.443634
С	-2.146515	1.293167	2.311743
С	-2.857276	3.092849	0.952924
С	-2.801821	2.784287	-1.482602
С	-2.901998	-0.943787	2.963472
С	-2.969996	-2.149646	2.157994
С	-2.948245	0.398072	-3.043968
С	-3.161392	-1.938291	-2.339989
С	-3.344275	1.855959	2.910714
С	-3.789591	2.960890	2.066980
С	-3.324394	3.456819	-0.310355
С	-3.899412	2.591507	-2.424775
С	-4.055548	-0.415838	3.543933
С	-4.180121	-2.782607	1.970404
С	-3.664235	-3.188488	-0.420381
С	-3.592995	-0.892063	-3.154138
С	-3.969608	1.431081	-3.186720
С	-4.141659	-2.820687	-1.720261
С	-4.282981	1.020679	3.516634
С	-5.146702	3.188065	1.872958
С	-4.751094	3.677640	-0.514715
С	-5.106775	3.148710	-1.830460
С	-5.332456	-1.079753	3.337003
С	-4.534328	-3.320838	0.633533
С	-5.390399	-2.240244	2.565155
С	-5.021124	-0.670493	-3.366794
С	-5.252652	0.769063	-3.389416
С	-5.507400	-2.622157	-1.939253
С	-5.708064	1.250523	3.298332
С	-6.128407	2.306089	2.498021

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

	1115 Jour		a boelety of elle
С	-5.640055	3.548660	0.546873
С	-6.331692	2.516239	-2.019375
С	-6.359547	-0.053500	3.187222
С	-5.949868	-3.088884	0.429710
С	-6.483292	-2.426012	1.614622
С	-5.955477	-1.514071	-2.776550
С	-6.407830	1.298598	-2.819606
С	-6.436057	-2.761431	-0.836315
С	-7.224656	2.116977	1.551700
С	-6.922883	2.884838	0.349360
С	-7.262244	2.380982	-0.904037
С	-7.398510	-0.234783	2.282080
С	-7.465851	-1.452731	1.479998
С	-7.164517	-0.962279	-2.180428
С	-7.384578	0.411731	-2.197996
С	-7.460873	-1.733742	-0.974758
С	-7.844768	0.876461	1.446542
С	-7.912097	1.081361	-1.014120
С	-7.961686	-1.094255	0.153391
С	-8.193012	0.344919	0.134420
С	-2.186127	-2.753495	-0.257334
Р	-1.147436	-4.263786	-0.372471
0	0.338523	-4.167568	-0.396262
0	-1.782862	-4.915751	-1.691609
0	-1.745870	-5.043013	0.892974
С	-0.955271	-5.687582	-2.651602
Н	0.100091	-5.448947	-2.503255
Н	-1.282376	-5.396779	-3.649716
С	-0.912363	-5.976523	1.690676
Н	-1.206044	-5.840190	2.731059
Н	0.144199	-5.737614	1.550581
Н	1.132315	6.753811	-2.493339
Н	1.118114	7.001095	1.372076
Н	-1.132238	-6.753780	-2.493334
Н	-1.118042	-7.001064	1.372082
-B3LYP/6-31G*// B3LYP/3-21G*-			

E(RB+HF-LYP) = -5866.11415505 hartree

¹³C NMR (75 MHz, CDCI₃/CS₂) of compound 2a

S26

S27

 13 C NMR (75 MHz, CDCl $_3$ /CS $_2$) of compound 2c

