Supporting Information

10

Unravelling phenomenon of internal rotation in B₁₃⁺ through chemical bonding analysis

⁵ Gerardo Martínez-Guajardo,^{1,3} Alina P. Sergeeva,² Alexander I. Boldyrev,^{2,*} Thomas Heine,^{3,*} Jesus M. Ugalde,^{4,*} and Gabriel Merino.^{1,*}

Figure 1-SI. Chemical bonding pattern revealed for 1 and 2 using Adaptive Natural Density Partitioning method. The delocalized σ -bonds are enclosed in green rectangles, while the delocalized π -bonds are enclosed in

²⁰ The AdNDP analysis revealed ten 2c-2e B-B σ -bonds on the periphery of **1** with occupation number (ON) of 1.9 |e| (See Figure 2). There is also one 3c-2e σ -bond with ON of 1.9 |e|, which is delocalized over the central boron triangle. The AdNDP search also recovered five 3c-2e σ -bonds with ON ranging from 1.6 |e| to 1.8 |e|, which are responsible for the bonding between the central triangular unit and the peripheral B₁₀ ring. So, there are two concentric σ -systems, which both satisfy the 4n+2 Hückel rule separately. Therefore, the global ²⁵ minimum is doubly concentric σ -aromatic. Concurrently, there are six π -electrons satisfying the Hückel rule, which form three delocalized 5c-2e π -bonds. Thus, B₁₃⁺ is also π -aromatic. Similar results are found for the transition state **2**, which are presented side by side with those for **1** in Figure 1-SI. So, both the global minimum **1** and the transition state **2** are doubly σ - and π -aromatic.

The positions of the boron atoms in **1** (Figure 1-SI) correspond to the 1_4 global minimum presented in ³⁰ Figure 2-SI, whereas positions of the boron atoms in **2** (Figure 1-SI) correspond to the 2_{3-4} transition state.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Figure 2-SI. The schematic representation of the 3c-2e σ -bonds migration during the internal rotation of B₁₃⁺.

Let's envision the fluxionality of B_{13}^+ as a clockwise rotation of the outer B_{10} ring with respect to inner B_3 triangle, whose atoms positions are held fixed (Figure 2-SI). The internal rotation can be then presented as the following process: $\Rightarrow \mathbf{1}_1 \Leftrightarrow \mathbf{2}_{12} \Leftrightarrow \mathbf{1}_2 \Leftrightarrow \mathbf{2}_{2.3} \Leftrightarrow \mathbf{1}_3 \Leftrightarrow \dots \Leftrightarrow \mathbf{1}_{29} \Leftrightarrow \mathbf{2}_{29.30} \Leftrightarrow \mathbf{1}_{30} \Leftrightarrow \mathbf{2}_{30.1} \Leftrightarrow \mathbf{1}_1 \Leftrightarrow$, where $\mathbf{1}_i$ represent the global minima (i = 1-30), which differ in relative arrangement of the outer ring with respect to the fixed inner ring. Each $\mathbf{2}_{i,j}$ species stands for the transition state connecting global minima $\mathbf{1}_i$ and $\mathbf{1}_j$ (i, j = 1-30). In global minimum $\mathbf{1}_1$ the B7-B8 edge of the inner B_3 triangle is coordinated to the B12-B13 peripheral bond, whereas the B7-B8 edge of the inner triangle is coordinated to the B13-B11 peripheral bond in $\mathbf{1}_4$. On the way from $\mathbf{1}_1$ to $\mathbf{1}_4$ the outer B_{10} ring is slowly and gradually rotating clockwise by one peripheral bond through the transitional species $\Rightarrow \mathbf{2}_{1.2} \Leftrightarrow \mathbf{1}_2 \Leftrightarrow \mathbf{2}_{2.3} \Leftrightarrow \mathbf{1}_3 \Leftrightarrow \mathbf{2}_{3.4} \Leftrightarrow$ with respect to the inner triangle, whose atoms positions are held fixed. If we consider the outer ten-atomic ring as a concentric circle, then the rotation by one peripheral bond of the ten-atomic ring is the same as rotation by $360^\circ/10 = 36$ degrees. In other words, the outer B_{10} ring makes a 36° -turn going from $\mathbf{1}_1$ to $\mathbf{1}_4$. To make a full 360° -turn of the outer B_{10} ring with respect to the fixed B_3 triangle, one needs 30 different global minima ($\mathbf{1}_i, i = 1$ -30) and 30 different transition states ($\mathbf{2}_{ij}, i, j = 1$ -30). The atoms of the global minima and the transition states throughout the rotation were numerated on the basis of careful exploration of potential energy surface around the transition state.