Oxidative Photoredox Catalysis: Mild and Selective Deprotection of PMB Ethers Mediated by Visible Light

Joseph W. Tucker, Jagan M. R. Narayanam, Pinkey S. Shah, and Corey R. J. Stephenson

Department of Chemistry and Center for Chemical Methodology and Library Development (CMLD-BU), Boston University, Boston, Massachusetts 02215

Supporting Information

Table of Contents:

1. General Information / Reaction Apparatus: S2
2. General Procedure for PMB Deprotection Mediated by Photoredox Catalysis: S3
3. Data for Compounds Afforded by Photoredox Catalysis: S4-S15
4. Procedures for Preparation of Starting Materials: S16-S21
5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra for All New Compounds: S22-S33

General Information:

Chemicals were either used as received or purified according to Purification of Common Laboratory Chemicals. All reactions were performed using common dry, inert atmosphere techniques. Reactions were monitored by TLC and visualized by a dual short wave/long wave UV lamp and stained with an ethanolic solution of potassium permanganate or p-anisaldehyde. Column flash chromatography was performed using 230-400 mesh silica gel. NMR spectra were recorded on Varian Mercury 300, Varian Unity Plus 400 , and Varian Mercury 400 spectrometers. Chemical shifts for ${ }^{1} \mathrm{H}$ NMR were reported as δ, parts per million, relative to the signal of CHCl_{3} at 7.26 ppm . Chemical shifts for ${ }^{13} \mathrm{C}$ NMR were reported as δ, parts per million, relative to the center line signal of the CDCl_{3} triplet at 77.0 ppm . Proton and carbon assignments were established using spectral data of similar compounds. The abbreviations s, br. s, d, dd, br. d , ddd, $\mathrm{t}, \mathrm{q}, \mathrm{br}$. q, m, and br. m stand for the resonance multiplicity singlet, broad singlet, doublet, doublet of doublets, broad doublet, doublet of doublet of doublets, triplet, quartet, broad quartet, multiplet and broad multiplet, respectively. IR spectra were recorded on an Avatar 360 FT-IR spectrometer. Mass spectra were recorded at the Mass Spectrometry Facility at the Department of Chemistry of the Boston University in Boston, MA on a Waters Q-Tof API-US with ESI high resolution mass spectrometer. Concentration refers to removal of solvent under reduced pressure (house vacuum at ca. 20 mmHg).

Reaction Apparatus:

Photocatalyzed reactions were carried out under visible light irradiation by a 15 cm blue LED strip (available from http://www.creativelightings.com/, $\lambda_{\max }=435 \mathrm{~nm}$) surrounding the reaction vessel.

General Procedure A: Typical PMB Deprotection Mediated by Photoredox Catalysis

A 25 mL round bottom flask was equipped with a rubber septum and magnetic stir bar and was charged with PMB ether ($1.0 \mathrm{mmol}, 1.0$ equiv), $\mathrm{BrCCl}_{3}(2.0 \mathrm{mmol}, 2.0$ equiv), $\mathrm{H}_{2} \mathrm{O}$ ($10 \mathrm{mmol}, 10$ equiv), $\mathrm{MeCN}(10 \mathrm{~mL})$, and $\operatorname{Ir}\left(\mathrm{dF}_{(}\left(\mathrm{CF}_{3}\right) \text { ppy }\right)_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}, \mathbf{X X}$, (10 $\mu \mathrm{mol}, 0.01$ equiv). The flask was degassed (3 x freeze/pump/thaw). The heterogeneous mixture was then irradiated by a 1 W blue LED strip under an atmosphere of Ar for 6 24 h . After the reaction was complete (as judged by TLC analysis), the mixture was poured into a separatory funnel containing 25 mL of EtOAc and 10 mL of $\mathrm{H}_{2} \mathrm{O}$. The layers were separated and the aqueous layer was extracted with EtOAc (2 X 50 mL). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by chromatography on silica gel, using the solvent system indicated, to afford the desired deprotected product.

Menthol, 3 (Table 1, entry 1):

According to General Procedure A, $\mathbf{2}^{1}(120 \mathrm{mg}, 0.24 \mathrm{mmol}), \mathrm{BrCCl}_{3}(88 \mu \mathrm{~L}, 0.88 \mathrm{mmol})$, and $1(5.0 \mathrm{mg}, 2.4 \mu \mathrm{~mol}), \mathrm{H}_{2} \mathrm{O}(20 \mu \mathrm{~L}, 2.4 \mathrm{mmol})$ in $\mathrm{MeCN}(5 \mathrm{~mL})$ afforded $3(26 \mathrm{mg}$, 69%) as a colorless solid after purification by chromatography on SiO_{2} (4:1, hexanes/EtOAc) (16 h reaction time).
R_{f} (EtOAc/hexane 15:85): 0.28;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 3.40($ ddd, $J=10.7,10.7,4.3 \mathrm{~Hz} .1 \mathrm{H}), 2.17$ (d sept., $J=$ $6.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.37(\mathrm{~m}, 2 \mathrm{H}) 1.14-$ $1.07(\mathrm{~m}, 1 \mathrm{H}), 0.99-0.93(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{dd}, J=6.8,6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.81(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3$ H).

[^0]2-Phenylethanol, 5 (Table 1, entry 2):

According to General Procedure A, $4^{2}(200 \mathrm{mg}, 0.83 \mathrm{mmol}), \mathrm{BrCCl}_{3}(160 \mu \mathrm{~L}, 1.7 \mathrm{mmol})$, $1(9.0 \mathrm{mg}, 8.3 \mu \mathrm{~mol})$, and $\mathrm{H}_{2} \mathrm{O}(150 \mu \mathrm{~L}, 8.3 \mathrm{mmol})$ in $\mathrm{MeCN}(8.3 \mathrm{~mL})$ afforded $5(87 \mathrm{mg}$, 86%) as a colorless oil after purification by chromatography on SiO_{2} ($85: 15$ to 4:1, petroleum ether $/ \mathrm{Et}_{2} \mathrm{O}$) (12 h reaction time).
R_{f} (EtOAc/hexane 15:85): 0.18;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 3 \mathrm{H}), 3.88(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 2.89(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$.

[^1]6-(Benzyloxy)hexan-1-ol, ${ }^{3} 7$ (Table 1, entry 3):

According to General Procedure A, $\mathbf{6}^{4}(110 \mathrm{mg}, 0.34 \mathrm{mmol}), \mathrm{BrCCl}_{3}(68 \mu \mathrm{~L}, 0.68 \mathrm{mmol})$, $7(3.8 \mathrm{mg}, 3.4 \mu \mathrm{~mol})$, and $\mathrm{H}_{2} \mathrm{O}(61 \mu \mathrm{~L}, 3.4 \mathrm{mmol})$ in $\mathrm{MeCN}(3.4 \mathrm{~mL})$ afforded $1(64 \mathrm{mg}$, 92%) as a colorless oil after purification by chromatography on SiO_{2} (1:3, hexanes/EtOAc) (12 h reaction time).
R_{f} (EtOAc/hexane 1:4): 0.13;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.29-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 2 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H})$, $3.58(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.61-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.39-1.31(\mathrm{~m}, 4$ H).

[^2]Octan-1-ol, 11 (Table 1, entry 4):

According to General Procedure A, $\mathbf{8}^{5}(220 \mathrm{mg}, 0.86 \mathrm{mmol}), \mathrm{BrCCl}_{3}(170 \mu \mathrm{~L}, 1.7 \mathrm{mmol})$, $1(9.6 \mathrm{mg}, 8.6 \mu \mathrm{~mol})$, and $\mathrm{H}_{2} \mathrm{O}(150 \mu \mathrm{~L}, 8.6 \mathrm{mmol})$ in $\mathrm{MeCN}(8.6 \mathrm{~mL})$ afforded $9(92 \mathrm{mg}$, 82%) as a colorless oil after purification by chromatography on SiO_{2} (7:3, petroleum ether $/ \mathrm{Et}_{2} \mathrm{O}$) (18 h reaction time).
R_{f} (EtOAc/hexane 1:4): 0.31;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 3.34(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.36-$ $1.35(\mathrm{~m}, 12 \mathrm{H}), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.

[^3]6-((Tetrahydro-2H-pyran-2-yl)oxy)hexan-1-ol, ${ }^{6} \mathbf{1 1}$ (Table 1, entry 5):

According to General Procedure A, $\mathbf{1 0}^{7}(150 \mathrm{mg}, 0.46 \mathrm{mmol}), \mathrm{BrCCl}_{3}(92 \mu \mathrm{~L}, 0.93$ mmol), 2,6-lutidine ($110 \mu \mathrm{~L}, 0.93 \mathrm{mmol}$), $\mathbf{1}(5.6 \mathrm{mg}, 4.6 \mu \mathrm{~mol})$, and $\mathrm{H}_{2} \mathrm{O}(120 \mu \mathrm{~L}, 4.6$ $\mathrm{mmol})$ in $\mathrm{MeCN}(4.5 \mathrm{~mL})$ afforded $\mathbf{1 1}(75 \mathrm{mg}, 80 \%)$ as a colorless oil after purification by chromatography on SiO_{2} (1:1, hexanes/EtOAc) (12 h reaction time).
R_{f} (EtOAc/hexane 1:1): 0.32;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 4.58(\mathrm{dd}, J=4.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88$ (ddd, $J=10.7,7.0$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dt}, J=9.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.54-3.50(\mathrm{~m}, 1$ H), $3.47-3.39(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.52(\mathrm{~m}, 8 \mathrm{H})$, $1.44-1.40(\mathrm{~m}, 4 \mathrm{H})$.

[^4]6-((Tert-butyldimethylsilyl)oxy)hexan-1-ol, ${ }^{8} 6$ (Table 1, entry 6):

According to General Procedure A, $\mathbf{1 4}^{9}(200 \mathrm{mg}, 0.51 \mathrm{mmol}), \mathrm{BrCCl}_{3}(100 \mu \mathrm{~L}, 1.0$ mmol), 2,6-lutidine ($120 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), $1(5.6 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$, and $\mathrm{H}_{2} \mathrm{O}(92 \mu \mathrm{~L}, 5.1$ $\mathrm{mmol})$ in $\mathrm{MeCN}(7 \mathrm{~mL})$ afforded $\mathbf{1 5}(96 \mathrm{mg}, 81 \%)$ as a colorless oil after purification by chromatography on SiO_{2} ($15: 85$, hexanes/EtOAc) (14 h reaction time).
R_{f} (EtOAc/hexane 1:3): 0.27;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 3.64(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.59-$ 1.43 (m, 4 H), $1.37-1.35(\mathrm{~m}, 4 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.04$ (s, 6 H$)$.

[^5]6-Hydroxyhexyl pivalate, ${ }^{10} \mathbf{1 5}$ (Table 1, entry 7):

According to General Procedure A, $14(250 \mathrm{mg}, 0.75 \mathrm{mmol}), \mathrm{BrCCl}_{3}(150 \mu \mathrm{~L}, 1.5$ $\mathrm{mmol})$, $\mathbf{1}(8.4 \mathrm{mg}, 7.5 \mu \mathrm{~mol})$, and $\mathrm{H}_{2} \mathrm{O}(140 \mu \mathrm{~L}, 7.5 \mathrm{mmol})$ in $\mathrm{MeCN}(7.5 \mathrm{~mL})$ afforded $15(110 \mathrm{mg}, 75 \%)$ as a colorless oil after purification by chromatography on SiO_{2} (3:1, hexanes $/ \mathrm{EtOAc}$) (12 h reaction time).
R_{f} (EtOAc/hexane 1:4): 0.15;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 4.05(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-$ 1.61 (m, 3 H), $1.59-1.55$ (m, 2 H), 1.41 - 1.37 (m, 4 H), 1.19 (s, 9 H$)$.

[^6]6-Methylhept-5-en-2-ol, 17 (Table 1, entry 9):

According to General Procedure A, 16 ($130 \mathrm{mg}, 0.52 \mathrm{mmol}$), $\mathrm{BrCCl}_{3}(100 \mu \mathrm{~L}, 1.1$ $\mathrm{mmol}), \mathbf{1}(5.6 \mathrm{mg}, 5.2 \mu \mathrm{~mol})$, and $\mathrm{H}_{2} \mathrm{O}(94 \mu \mathrm{~L}, 5.2 \mathrm{mmol})$ in $\mathrm{MeCN}(7 \mathrm{~mL})$ afforded $\mathbf{1 7}$ $(55 \mathrm{mg}, 84 \%)$ as a colorless oil after purification by chromatography on $\mathrm{SiO}_{2}(7: 3$ petroleum ether $/ \mathrm{Et}_{2} \mathrm{O}$) (12 h reaction time).
R_{f} (EtOAc/hexane 1:4): 0.33;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 5.17-5.15(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.76(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.02$ (m, 2 H), $1.69(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.45(\mathrm{~m}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$.
tert-Butyl (3-hydroxypropyl)carbamate, ${ }^{11} 19$ (Table 1, entry 9):

According to General Procedure A, $18(90 \mathrm{mg}, 0.31 \mathrm{mmol}), \mathrm{BrCCl}_{3}(60 \mu \mathrm{~L}, 0.62 \mathrm{mmol})$, 2,6-lutidine ($71 \mu \mathrm{~L}, 0.62 \mathrm{mmol}$), $1(3.4 \mathrm{mg}, 3.1 \mu \mathrm{~mol})$, and $\mathrm{H}_{2} \mathrm{O}(56 \mu \mathrm{~L}, 3.1 \mathrm{mmol})$ in MeCN (3 mL) afforded 19 ($39 \mathrm{mg}, 71 \%$) as a colorless oil after purification by chromatography on $\mathrm{SiO}_{2}(1: 19, \mathrm{MeOH} / \mathrm{DCM})(12 \mathrm{~h}$ reaction time).
R_{f} (MeOH/DCM 1:19): 0.38;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 4.75$ (br. s, 1 H), 3.65 (br. t, $J=3.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.29 (q, $J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.89 (br. s, 1 H), $1.69-1.63$ (m, 2 H), 1.44 (s, 9 H).

[^7]Tert-butyl (6-hydroxyhexyl)carbamate, ${ }^{12} 21$ (Table 1, entry 10):

According to General Procedure A, $20(100 \mathrm{mg}, 0.29 \mathrm{mmol}), \mathrm{BrCCl}_{3}(58 \mu \mathrm{~L}, 0.59$ mmol), 2,6-lutidine ($69 \mu \mathrm{~L}, 0.59 \mathrm{mmol}$), $1(3.2 \mathrm{mg}, 2.9 \mu \mathrm{~mol})$, and $\mathrm{H}_{2} \mathrm{O}(52 \mu \mathrm{~L}, 5.9$ $\mathrm{mmol})$ in $\mathrm{MeCN}(3 \mathrm{~mL})$ afforded $21(49 \mathrm{mg}, 79 \%)$ as a colorless solid after purification by chromatography on $\mathrm{SiO}_{2}(1: 49, \mathrm{MeOH} / \mathrm{DCM})(12 \mathrm{~h}$ reaction time).
R_{f} (MeOH/DCM 1:19): 0.42;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 4.51$ (br. s, 1 H$), 3.63(\mathrm{dt}, J=11.5,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{dt}$, $J=12.9,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.32(\mathrm{~m}, 14 \mathrm{H})$.

[^8](9H-Fluoren-9-yl)methyl (6-hydroxyhexyl)carbamate, ${ }^{13} 23$ (Table X, entry X):

According to General Procedure A, $22(100 \mathrm{mg}, 0.23 \mathrm{mmol}), \mathrm{BrCCl}_{3}(45 \mu \mathrm{~L}, 0.46$ $\mathrm{mmol}), 1(2.6 \mathrm{mg}, 2.3 \mu \mathrm{~mol})$, and $\mathrm{H}_{2} \mathrm{O}(23 \mu \mathrm{~L}, 2.3 \mathrm{mmol})$ in $\mathrm{MeCN}(3 \mathrm{~mL})$ afforded 23 ($59 \mathrm{mg}, 76 \%$) as a colorless solid after purification by chromatography on SiO_{2} (1:19, $\mathrm{MeOH} / \mathrm{DCM}$) (12 h reaction time).
$R_{f}(\mathrm{MeOH} / \mathrm{DCM} 1: 19): 0.35 ;$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.77(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40$ (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $4.22(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{t}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.86-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.49(\mathrm{~m}, 2$ H), 1.43 - 1.34 (m, 4 H).

[^9]Benzyl (6-hydroxyhexyl)carbamate, ${ }^{14} 25$ (Table 1, entry 12):

According to General Procedure A, $24(180 \mathrm{mg}, 0.48 \mathrm{mmol}), \mathrm{BrCCl}_{3}(96 \mu \mathrm{~L}, 0.96$ mmol), $\mathbf{1}(5.4 \mathrm{mg}, 4.8 \mu \mathrm{~mol})$, and $\mathrm{H}_{2} \mathrm{O}(86 \mu \mathrm{~L}, 4.8 \mathrm{mmol})$ in $\mathrm{MeCN}(6 \mathrm{~mL})$ afforded 25 $(110 \mathrm{mg}, 91 \%)$ as a colorless solid after purification by chromatography on SiO_{2} (1:19, $\mathrm{MeOH} / \mathrm{DCM}$) (18 h reaction time).
$R_{f}(\mathrm{MeOH} / \mathrm{DCM} 1: 19): 0.37 ;$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.37-7.31(\mathrm{~m}, 5 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 4.73(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 3.63$ (br. t, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.20(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.57-1.48(\mathrm{~m}, 5 \mathrm{H}), 1.40-1.32(\mathrm{~m}, 4$ H).

[^10]6-((4-Methoxybenzyl)oxy)hexyl pivalate, 14:

A flame dried 25 mL round bottom flask, equipped with a magnetic stir bar was charged with $26(640 \mathrm{mg}, 2.7 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(810 \mathrm{mg}, 8.0 \mathrm{mmol})$, DMAP ($33 \mathrm{mg}, 0.27 \mathrm{mmol}$), and dry DCM $(15 \mathrm{~mL})$. The mixture was then treated with trimethylacetyl chloride (390 mg , 3.22 mmol) and stirred at room temperature for 2 hours. The mixture was poured into a separatory funnel containing 25 mL of DCM and 25 mL of $\mathrm{H}_{2} \mathrm{O}$. The layers were separated and the aqueous layer was extracted with DCM ($2 \times 30 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by chromatography on silica gel ($9: 1$, hexanes/EtOAc) to afford 14 ($630 \mathrm{mg}, 73 \%$) as a colorless oil (2 h reaction time).
R_{f} (EtOAc/hexane 1:9): 0.29;
IR (neat): 2936, 2860, 1723, 1612, 1513, 1480, 1286, 1247, 1161, 1095, 910, $732 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.26(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.43$ (s, 2 H), $4.04(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.57(\mathrm{~m}$, $4 \mathrm{H}), 1.43-1.31$ (m, 4 H$), 1.19$ (s, 9 H$)$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 178.3,158.9,130.5,129.0,113.5,72.3,69.7,64.1,55.0$, 38.5, 29.5, 28.4, 27.0, 25.7, 25.6;

HRMS (ESI) m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NaO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$345.4042, found 345.2033.

1-Methoxy-4-(((6-methylhept-5-en-2-yl)oxy)methyl)benzene, 16:

A flame dried 50 mL round bottom flask, equipped with a magnetic stir bar was charged with $27(400 \mathrm{mg}, 3.1 \mathrm{mmol})$, KI ($27 \mathrm{mg}, 0.16 \mathrm{mmol}$) and dry DMF $(30 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. The mixture was then treated with a 60% dispersion of NaH in mineral oil (140 $\mathrm{mg}, 3.4 \mathrm{mmol}$) and stirred at room temperature for 30 minutes. $\mathrm{PMB}-\mathrm{Cl}(540 \mathrm{mg}, 3.43$ mmol) was then added dropwise and the mixture stirred at room temperature for 12 hours. The mixture was poured into a separatory funnel containing 25 mL of EtOAc and 25 mL of $\mathrm{H}_{2} \mathrm{O}$. The layers were separated and the aqueous layer was extracted with EtOAc ($2 \times 30 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by chromatography on silica gel (19:1, hexanes/EtOAc) to afford 16 ($640 \mathrm{mg}, 82 \%$) as a colorless oil (12 h reaction time).
R_{f} (EtOAc/hexane 1:19): 0.60;
IR (neat): 2966, 2927, 2858, 1613, 1512, 1454, 1374, 1245, 1171, 1079, 1037, $820 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.27(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.10$ (br. t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3$ H), $3.53-3.46(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 1 \mathrm{H})$, $1.61(\mathrm{~s}, 3 \mathrm{H}), 1.45-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 158.9,131.2,131.1,129.0,124.3,113.5,74.0,69.8$, 55.0, 36.6, 25.5, 24.0, 19.5, 17.5;

HRMS (ESI) m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NaO}_{2}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$271.1674, found 271.1508.
tert-Butyl (3-((4-methoxybenzyl)oxy)propyl)carbamate, 18:

A flame dried 50 mL round bottom flask, equipped with a magnetic stir bar was charged with $29(290 \mathrm{mg}, 2.1 \mathrm{mmol})$, and dry DMF (15 mL) and cooled to $0^{\circ} \mathrm{C}$. The mixture was then treated with a 60% dispersion of NaH in mineral oil ($93 \mathrm{mg}, 2.3 \mathrm{mmol}$) and stirred at room temperature for 30 minutes. $\mathbf{2 8}^{15}$ ($550 \mathrm{mg}, 1.9 \mathrm{mmol}$) in DMF (5 mL) was then added dropwise and the mixture stirred at room temperature for 18 hours. The mixture was poured into a separatory funnel containing 25 mL of EtOAc and 25 mL of $\mathrm{H}_{2} \mathrm{O}$. The layers were separated and the aqueous layer was extracted with EtOAc ($2 \times 30 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by chromatography on silica gel (85:15, hexanes/EtOAc) to afford $\mathbf{1 8}(320 \mathrm{mg}, 57 \%)$ as a colorless oil (18 h reaction time).
R_{f} (EtOAc/hexane 15:85): 0.37;
IR (neat): $3350,2975,2933,2864,1697,1612,1512,1365,1245,1171,1096,1035,820$, $617 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.87$ (br. s, 1 H), 4.42 (s, 2 H), $3.80(\mathrm{~s}, 3 \mathrm{H}$), 3.51 (t, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.23 (br. q, $J=6.0 \mathrm{~Hz}, 2$ H), $1.80-1.75$ (m, 2 H), 1.43 ($\mathrm{s}, 9 \mathrm{H}$);
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 159.1,155.9,130.3,129.1,113.7,78.8,72.6,68.2,55.1$, 38.6, 29.5, 28.3;

HRMS (ESI) m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NNaO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$318.1681, found 318.1675.

[^11]tert-Butyl (6-((4-methoxybenzyl)oxy)hexyl)carbamate, 20:

A flame dried 50 mL round bottom flask, equipped with a magnetic stir bar was charged with $29(2.5 \mathrm{~g}, 19 \mathrm{mmol})$ and dry DMF $(120 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. The mixture was then treated with a 60% dispersion of NaH in mineral oil ($810 \mathrm{mg}, 20 \mathrm{mmol}$) and stirred at room temperature for 30 minutes. $\mathbf{3 0}^{16}(5.5 \mathrm{~g}, 17 \mathrm{mmol})$ in DMF $(40 \mathrm{~mL})$ was then added dropwise and the mixture stirred at room temperature for 12 hours. The mixture was poured into a separatory funnel containing 50 mL of EtOAc and 50 mL of $\mathrm{H}_{2} \mathrm{O}$. The layers were separated and the aqueous layer was extracted with EtOAc ($2 \times 75 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by chromatography on silica gel ($4: 1$, hexanes/EtOAc) to afford $20(3.6 \mathrm{~g}, 63 \%)$ as a colorless oil (12 h reaction time).
R_{f} (EtOAc/hexane 1:3): 0.42;
IR (neat): $3350,2934,2859,1700,1612,1512,1365,1246,1171,1094,908,729 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.48$ (br. s, 1 H), 4.23 (s, 2 H), 3.80 ($\mathrm{s}, 3 \mathrm{H}$), 3.43 (t, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.10 (br. q, $J=6.0 \mathrm{~Hz}, 2$ H), $1.63-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.39-1.29(\mathrm{~m}, 4 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 159.1,155.9,130.7,129.2,113.7,72.5,70.0,55.2,40.5$, 30.0, 29.7, 28.4, 26.6, 25.9;

HRMS (ESI) m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NNaO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 360.2151$, found 360.2145 .

[^12](9H-Fluoren-9-yl)methyl (6-((4-methoxybenzyl)oxy)hexyl)carbamate, 22:

A 25 mL round bottom flask, equipped with a magnetic stir bar was charged with $\mathbf{3 1}$ (450 $\mathrm{mg}, 1.9 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(200 \mathrm{mg}, 1.9 \mathrm{mmol})$, THF (8 mL) and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and treated with $\mathrm{Fmoc}-\mathrm{Cl}(490 \mathrm{mg}, 1.9 \mathrm{mmol})$. The mixture was stirred at room temperature for 2 hours. The mixture was poured into a separatory funnel containing 50 mL of EtOAc and 50 mL of $\mathrm{H}_{2} \mathrm{O}$. The layers were separated and the aqueous layer was extracted with EtOAc ($2 \times 50 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by chromatography on silica gel (3:1, hexanes/EtOAc) to afford 22 ($770 \mathrm{mg}, 89 \%$) as a colorless oil (12 h reaction time).
R_{f} (EtOAc/hexane 1:3): 0.23;
IR (neat): $3337,3066,2935,2858,1708,1512,1449,1245,1034,907,272,647 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.76(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40$ (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.31 (dt, $J=7.0,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 4.73 (br. s, 1 H), 4.43 (s, 3 H), 4.40 (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 4.22 (t, $J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{q}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.57(\mathrm{~m}, 2$ H), $1.54-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.30(\mathrm{~m}, 4 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 159.0,156.3,144.0,141.2,130.6,129.2,127.6,127.0$, 125.0, 119.9, 113.7, 72.5, 69.9, 66.4, 55.2, 47.2, 40.9, 29.8, 29.6, 26.5, 25.8;

HRMS (ESI) m / z calculated for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{NNaO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$482.2307, found 482.2292.

Benzyl (6-((4-methoxybenzyl)oxy)hexyl)carbamate, 24:

A 50 mL round bottom flask, equipped with a magnetic stir bar was charged with $\mathbf{X X}$ $(290 \mathrm{mg}, 1.2 \mathrm{mmol})$, sat. aq. $\mathrm{NaHCO}_{3}(16 \mathrm{~mL})$, EtOAc (29 mL) and cooled to $0{ }^{\circ} \mathrm{C}$. The biphasic mixture was treated with benzyl chloroformate ($450 \mathrm{mg}, 2.7 \mathrm{mmol}$) and stirred at $0^{\circ} \mathrm{C}$ for 1.5 hours and warmed to room temperature for 5 hours. The layers were then separated. The aqueous layer was extracted with EtOAc ($2 \times 50 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by chromatography on silica gel (3:7, hexanes/EtOAc) to afford $24(340 \mathrm{mg}, 76 \%)$ as a colorless oil (6.5 h reaction time).
R_{f} (EtOAc/hexane 1:3): 0.35;
IR (neat): $3326,2934,2857,1700,1611,1512,1454,1245,1094,1033,822,697 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.36-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.26(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 4.73(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{t}, J=6.4$ $\mathrm{Hz}, 2 \mathrm{H}), 3.18$ (q, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.46$ (m, 2 H), $1.41-$ 1.30 (m, 4 H),
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 159.0,156.3,136.6,130.6,129.2,128.4,128.0,128.0$, 113.7, 72.5, 69.9, 66.5, 55.2, 40.9, 29.8, 29.6, 26.5, 25.8;

HRMS (ESI) m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NNaO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 394.1994$, found 394.2012.

[^0]: ${ }^{1}$ G. V. M. Sharma, C. G. Reddy and P. R. Krishna, J. Org. Chem., 2003, 68, 4574.

[^1]: ${ }^{2}$ G. V. M. Sharma, C. G. Reddy and P. R. Krishna, J. Org. Chem., 2003, 68, 4574.

[^2]: ${ }^{3}$ J. E. Wilson, A. D. Casarez, D. W. C. MacMillan, J. Am. Chem. Soc., 2009, 131, 11332.
 ${ }^{4}$ M. A. rahim, S. Matsumura, K. Toshima, Tetrahedron Lett. 2005, 46, 7307.

[^3]: ${ }^{5}$ G. V. M. Sharma, C. G. Reddy and P. R. Krishna, J. Org. Chem., 2003, 68, 4574.

[^4]: ${ }^{6}$ Y. Hayashi, H. Gotoh, T. Tamura, H. Yamaguchi, R. Masui and M. Shoji, J. Am. Chem. Soc., 2005, 127, 16028.
 ${ }^{7}$ G. V. M. Sharma, C. G. Reddy and P. R. Krishna, J. Org. Chem., 2003, 68, 4574.

[^5]: ${ }^{8}$ F. Kaiser, L. Schwink, J. Velder and H. G. Schmalz, J. Org. Chem., 2002, 67, 9248.
 ${ }^{9}$ P. R. Krishan, B. Lavanya, A. K. Mahalingam, V. V. R. Reddy and G. V. M. Sharma, Lett. Org. Chem., 2005, 2, 360.

[^6]: ${ }^{10}$ G. Koza, C. Theunissen, J. R. Al Dulayymi and M. S. Baird, Tetrahedron, 2009, 65, 10214.

[^7]: ${ }^{11}$ S. Priet, I. Zlatev, I. Barvik, Jr., K. Geerts, P. Leyssen, J. Neyts, H. Dutartre, B. Canard, J. -J. Vasseurt, F. Morvan and K. Alvarez, J. Med. Chem., 2010, 53, 6608.

[^8]: ${ }^{12}$ A. Arduini, R. Bussolati, A. Credi, G. Faimani, S. Caraudée, A. Pochini, A. Secchi, M. Semeraro, S. Silvi and M. Venturi, Chem. Eur. J., 2009, 15, 3230.

[^9]: ${ }^{13}$ M. Quintanar-Audelo, A. Fernández-Carvajal, W. Van Den Nest, C. Carreño, A. Ferrer-Montiel and F. Albericio, J. Med. Chem., 2007, 50, 6133.

[^10]: ${ }^{14}$ E. Boseggia, M. Gatos, L. Lucatello, F. Mancin, S. Moro, M. Palumbo, C. Sissi, P. Tecilla, U. Tonellato and G. Zagotto, J. Am. Chem. Soc., 2004, 126, 4543.

[^11]: ${ }^{15}$ K. T. Ziebart, S. M. Dixon, B. Avila, M. H. El-Badri, K. G. Guggenheim, M. J. Kurth and M. D. Toney, J. Med. Chem., 2010, 53, 3718.

[^12]: ${ }^{16}$ S. Isomura, P. Wirsching and K. D. Janda, J. Org. Chem., 2001, 66, 4115.

